1
|
Gomez-Vargas AD, Hernández-Martínez KM, López-Rosas ME, Alejo Jacuinde G, Simpson J. Evidence for Light and Tissue Specific Regulation of Genes Involved in Fructan Metabolism in Agave tequilana. PLANTS 2022; 11:plants11162153. [PMID: 36015458 PMCID: PMC9412663 DOI: 10.3390/plants11162153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Plant Glycoside Hydrolase Family 32 (PGHF32) contains the fructosyltransferases and fructan exohydrolase enzymes responsible for fructan metabolism, in addition to closely related vacuolar and cell wall acid invertases. Agave species produce complex and dynamic fructan molecules (agavins) requiring 4 different fructosyltransferase activities (1-SST, 1-FFT, 6G-FFT and 6-SFT) for their synthesis. Combined analysis of RNAseq and genome data for A. tequilana led to the characterization of the genes encoding 3 fructosyltransferases for this species and support the hypothesis that no separate 6-SFT type enzyme exists in A. tequilana, suggesting that at least one of the fructosyltransferases identified may have multiple enzymatic activities. Structures for PGHF32 genes varied for A. tequilana and between other plant species but were conserved for different enzyme types within a species. The observed patterns are consistent with the formation of distinct gene structures by intron loss. Promoter analysis of the PGHF32 genes identified abundant putative regulatory motifs for light regulation and tissue-specific expression, and these regulatory mechanisms were confirmed experimentally for leaf tissue. Motifs for phytohormone response, carbohydrate metabolism and dehydration responses were also uncovered. Based on the regulatory motifs, full-length cDNAs for MYB, GATA, DOF and GBF transcription factors were identified and their phylogenetic distribution determined by comparison with other plant species. In silico expression analysis for the selected transcription factors revealed both tissue-specific and developmental patterns of expression, allowing candidates to be identified for detailed analysis of the regulation of fructan metabolism in A. tequilana at the molecular level.
Collapse
|
2
|
Maceda-López LF, Góngora-Castillo EB, Ibarra-Laclette E, Morán-Velázquez DC, Girón Ramírez A, Bourdon M, Villalpando-Aguilar JL, Toomer G, Tang JZ, Azadi P, Santamaría JM, López-Rosas I, López MG, Simpson J, Alatorre-Cobos F. Transcriptome Mining Provides Insights into Cell Wall Metabolism and Fiber Lignification in Agave tequilana Weber. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111496. [PMID: 35684270 PMCID: PMC9182668 DOI: 10.3390/plants11111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/08/2023]
Abstract
Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for understanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots.
Collapse
Affiliation(s)
- Luis F. Maceda-López
- Colegio de Postgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico; (L.F.M.-L.); (D.C.M.-V.); (J.L.V.-A.)
| | - Elsa B. Góngora-Castillo
- CONACYT-Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 × 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico;
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Mexico;
| | - Dalia C. Morán-Velázquez
- Colegio de Postgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico; (L.F.M.-L.); (D.C.M.-V.); (J.L.V.-A.)
| | - Amaranta Girón Ramírez
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 × 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico; (A.G.R.); (J.M.S.)
| | - Matthieu Bourdon
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK;
| | - José L. Villalpando-Aguilar
- Colegio de Postgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico; (L.F.M.-L.); (D.C.M.-V.); (J.L.V.-A.)
| | - Gabriela Toomer
- Division of Microbiology and Molecular Biology, IIT Research Institute, Chicago, IL 60616, USA;
| | - John Z. Tang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (J.Z.T.); (P.A.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (J.Z.T.); (P.A.)
| | - Jorge M. Santamaría
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 × 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico; (A.G.R.); (J.M.S.)
| | - Itzel López-Rosas
- CONACYT-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico;
| | - Mercedes G. López
- Departmento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Irapuato 36824, Mexico;
| | - June Simpson
- Departmento de Ingeniería Genetica, Centro de Investigación y Estudios Avanzados del IPN, Irapuato 36824, Mexico;
| | - Fulgencio Alatorre-Cobos
- CONACYT-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico;
- Correspondence:
| |
Collapse
|
3
|
Yoshida M. Fructan Structure and Metabolism in Overwintering Plants. PLANTS 2021; 10:plants10050933. [PMID: 34067059 PMCID: PMC8151721 DOI: 10.3390/plants10050933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
In northern regions, annual and perennial overwintering plants such as wheat and temperate grasses accumulate fructan in vegetative tissues as an energy source. This is necessary for the survival of wintering tissues and degrading fructan for regeneration in spring. Other types of wintering plants, including chicory and asparagus, store fructan as a reserve carbohydrate in their roots during winter for shoot- and spear-sprouting in spring. In this review, fructan metabolism in plants during winter is discussed, with a focus on the fructan-degrading enzyme, fructan exohydrolase (FEH). Plant fructan synthase genes were isolated in the 2000s, and FEH genes have been isolated since the cloning of synthase genes. There are many types of FEH in plants with complex-structured fructan, and these FEHs control various kinds of fructan metabolism in growth and survival by different physiological responses. The results of recent studies on the fructan metabolism of plants in winter have shown that changes in fructan contents in wintering plants that are involved in freezing tolerance and snow mold resistance might be largely controlled by regulation of the expressions of genes for fructan synthesis, whereas fructan degradation by FEHs is related to constant energy consumption for survival during winter and rapid sugar supply for regeneration or sprouting of tissues in spring.
Collapse
Affiliation(s)
- Midori Yoshida
- NARO Hokkaido National Agricultural Research Center, Sapporo 062-8555, Japan
| |
Collapse
|
4
|
Maceda-López LF, Villalpando-Aguilar JL, García-Hernández E, Ávila de Dios E, Andrade-Canto SB, Morán-Velázquez DC, Rodríguez-López L, Hernández-Díaz D, Chablé-Vega MA, Trejo L, Góngora-Castillo E, López-Rosas I, Simpson J, Alatorre-Cobos F. Improved method for isolation of high-quality total RNA from Agave tequilana Weber roots. 3 Biotech 2021; 11:75. [PMID: 33505830 DOI: 10.1007/s13205-020-02620-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 12/26/2020] [Indexed: 12/30/2022] Open
Abstract
Together with their undeniable role in the ecology of arid and semiarid ecosystems, Agave species are emerging as a model to dissect the relationships between crassulacean acid metabolism and high efficiency of light and water use, and as an energy crop for bioethanol production. Transcriptome resources from economically valuable Agaves species, such as Agave tequilana and A. salmiana, as well as hybrids for fibers, are now available, and multiple gene expression landscape analyses have been reported. Key components in molecular mechanisms underlying drought tolerance could be uncovered by analyzing gene expression patterns of roots. This study describes an efficient protocol for high-quality total RNA isolation from phenolic compounds-rich Agave roots. Our methodology involves suitable root handling and collecting in the field and using saving-time commercial kits available. RNA isolated from roots free of lignified out-layers and clean cortex showed high values of quality and integrity according to electrophoresis and microfluidics-based platform. Synthesis of long full-length cDNAs and PCR amplification tested the suitability for downstream applications of extracted RNA. The protocol was applied successfully to A. tequilana roots but can be used for other Agave species that also develop lignified epidermis/exodermis in roots.
Collapse
Affiliation(s)
- Luis F Maceda-López
- Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - José L Villalpando-Aguilar
- Tecnológico Nacional de México, Instituto Tecnológico de Chiná, Calle 11entre 22 y 28, 24050 Chiná, Mexico
| | - Eleazar García-Hernández
- Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - Emmanuel Ávila de Dios
- Departmento de Ingeniería Genetica, Centro de Investigación y Estudios Avanzados, 3681 Irapuato, Mexico
| | - Silvia B Andrade-Canto
- Centro de Investigacion Cientifica de Yucatan, A.C., Calle 43 No.130 x 32 y 34, Chuburna de Hidalgo, 97205 Mérida, Yucatan Mexico
| | - Dalia C Morán-Velázquez
- Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - Lorena Rodríguez-López
- Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - Demetrio Hernández-Díaz
- Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - Manuel A Chablé-Vega
- Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - Laura Trejo
- CONACYT Research Fellow, Laboratorio de Biodiversidad y Cultivo de Tejidos Vegetales, Instituto de Biología, UNAM, 90640 Santa Cruz Tlaxcala, Tlaxcala Mexico
| | - Elsa Góngora-Castillo
- CONACYT Research Fellow, Centro de Investigacion Cientifica de Yucatan, A.C., Calle 43 No.130 x 32 y 34, Chuburna de Hidalgo, 97205 Mérida, Yucatan Mexico
| | - Itzel López-Rosas
- CONACYT Research Fellow, Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| | - June Simpson
- Departmento de Ingeniería Genetica, Centro de Investigación y Estudios Avanzados, 3681 Irapuato, Mexico
| | - Fulgencio Alatorre-Cobos
- CONACYT Research Fellow, Colegio de Postgraduados Campus Campeche, Carretera Haltunchen-Edzna km 17.5, Sihochac, 24450 Campeche, Mexico
| |
Collapse
|
5
|
Pérez-López AV, Simpson J, Clench MR, Gomez-Vargas AD, Ordaz-Ortiz JJ. Localization and Composition of Fructans in Stem and Rhizome of Agave tequilana Weber var. azul. FRONTIERS IN PLANT SCIENCE 2021; 11:608850. [PMID: 33552101 PMCID: PMC7855178 DOI: 10.3389/fpls.2020.608850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
Methodology combining mass spectrometry imaging (MSI) with ion mobility separation (IMS) has emerged as a biological imaging technique due to its versatility, sensitivity and label-free approach. This technique has been shown to separate isomeric compounds such as lipids, amino acids, carboxylic acids and carbohydrates. This report describes mass spectrometry imaging in combination with traveling-wave ion mobility separation and matrix-assisted laser desorption/ionization (MALDI). Positive ionization mode was used to locate fructans on tissue printed sections of Agave rhizome and stem tissue and distinguished fructan isoforms. Here we show the location of fructans ranging from DP3 to DP17 to be differentially abundant across the stem tissue and for the first time, experimental collision cross sections of endogenous fructan structures have been collected, revealing at least two isoforms for fructans of DP4, DP5, DP6, DP7, DP8, DP10, and DP11. This demonstrates that complex fructans such as agavins can be located and their isoforms resolved using a combination of MALDI, IMS, and MSI, without the need for extraction or derivatization. Use of this methodology uncovered patterns of fructan localization consistent with functional differences where higher DP fructans are found toward the central section of the stem supporting a role in long term carbohydrate storage whereas lower DP fructans are concentrated in the highly vascularized central core of rhizomes supporting a role in mobilization of carbohydrates from the mother plant to developing offsets. Tissue specific patterns of expression of genes encoding enzymes involved in fructan metabolism are consistent with fructan structures and localization.
Collapse
Affiliation(s)
| | - June Simpson
- Department of Genetic Engineering, CINVESTAV Unidad Irapuato, Irapuato, Mexico
| | - Malcolm R. Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - José J. Ordaz-Ortiz
- Metabolomics and Mass Spectrometry Laboratory, National Laboratory of Genomics for Biodiversity, Unidad de Genómica Avanzada (CINVESTAV), Irapuato, Mexico
| |
Collapse
|
6
|
Witzel K, Matros A. Fructans Are Differentially Distributed in Root Tissues of Asparagus. Cells 2020; 9:E1943. [PMID: 32842694 PMCID: PMC7565981 DOI: 10.3390/cells9091943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
Inulin- and neoseries-type fructans [fructooligosaccharides (FOS) and fructopolysaccharides] accumulate in storage roots of asparagus (Asparagus officinalis L.), which continue to grow throughout the lifespan of this perennial plant. However, little is known about the storage of fructans at the spatial level in planta, and the degree of control by the plant is largely uncertain. We have utilized mass spectrometry imaging (MSI) to resolve FOS distribution patterns in asparagus roots (inner, middle, and outer tissues). Fructan and proteome profiling were further applied to validate the differential abundance of various fructan structures and to correlate observed tissue-specific metabolite patterns with the abundance of related fructan biosynthesis enzymes. Our data revealed an increased abundance of FOS with higher degree of polymerization (DP > 5) and of fructopolysaccharides (DP11 to DP17) towards the inner root tissues. Three isoforms of fructan:fructan 6G-fructosyltransferase (6G-FFT), forming 6G-kestose with a β (2-6) linkage using sucrose as receptor and 1-kestose as donor, were similarly detected in all three root tissues. In contrast, one ß-fructofuranosidase, which likely exhibits fructan:fructan 1-fructosyltransferase (1-FFT) activity, showed very high abundance in the inner tissues and lower levels in the outer tissues. We concluded a tight induction of the biosynthesis of fructans with DP > 5, following a gradient from the outer root cortex to the inner vascular tissues, which also correlates with high levels of sucrose metabolism in inner tissues, observed in our study.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, 14979 Brandenburg, Germany;
| | - Andrea Matros
- ARC Centre of Excellence in Plant Energy Biology, Food and Wine, School of Agriculture, University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
7
|
Pérez-López AV, Simpson J. The Sweet Taste of Adapting to the Desert: Fructan Metabolism in Agave Species. FRONTIERS IN PLANT SCIENCE 2020; 11:324. [PMID: 32265971 PMCID: PMC7105686 DOI: 10.3389/fpls.2020.00324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Over 70% of Agave species, (159 of 206) are found in Mexico and are well adapted to survive under hot, arid conditions, often in marginal terrain, due to a unique combination of morphological and physiological attributes. In the pre-Columbian era agaves were also key to human adaptation to desert terrain. In contrast to other species such as cacti or resurrection plants, Agaves store carbohydrates in the form of fructan polymers rather than starch or sucrose, however, properties specific to fructans such as a strong hydration shell, the ability to be transported through phloem, variable composition throughout the Agave life-cycle and accumulation in succulent tissues and flowers suggest a potential for multiple functional roles. This mini-review summarizes current knowledge of molecular and biochemical aspects of fructan metabolism in Agave species.
Collapse
|
8
|
Kırtel O, Lescrinier E, Van den Ende W, Toksoy Öner E. Discovery of fructans in Archaea. Carbohydr Polym 2019; 220:149-156. [DOI: 10.1016/j.carbpol.2019.05.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
|
9
|
Avila de Dios E, Delaye L, Simpson J. Transcriptome analysis of bolting in A. tequilana reveals roles for florigen, MADS, fructans and gibberellins. BMC Genomics 2019; 20:473. [PMID: 31182030 PMCID: PMC6558708 DOI: 10.1186/s12864-019-5808-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/20/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Reliable indicators for the onset of flowering are not available for most perennial monocarpic species, representing a drawback for crops such as bamboo, agave and banana. The ability to predict and control the transition to the reproductive stage in A. tequilana would represent an advantage for field management of agaves for tequila production and for the development of a laboratory model for agave species. RESULTS Consistent morphological features could not be determined for the vegetative to reproductive transition in A. tequilana. However, changes in carbohydrate metabolism where sucrose decreased and fructans of higher degree of polymerization increased in leaves before and after the vegetative to reproductive transition were observed. At the molecular level, transcriptome analysis from leaf and shoot apical meristem tissue of A. tequilana plants from different developmental stages identified OASES as the most effective assembly program and revealed evidence for incomplete transcript processing in the highly redundant assembly obtained. Gene ontology analysis uncovered enrichment for terms associated with carbohydrate and hormone metabolism and detailed analysis of expression patterns for individual genes revealed roles for specific Flowering locus T (florigen), MADS box proteins, gibberellins and fructans in the transition to flowering. CONCLUSIONS Based on the data obtained, a preliminary model was developed to describe the regulatory mechanisms underlying the initiation of flowering in A. tequilana. Identification of specific promoter and repressor Flowering Locus T and MADS box genes facilitates functional analysis and the development of strategies to modulate the vegetative to reproductive transition in A. tequilana.
Collapse
Affiliation(s)
- Emmanuel Avila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - Luis Delaye
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
10
|
Avila de Dios E, Delaye L, Simpson J. Transcriptome analysis of bolting in A. tequilana reveals roles for florigen, MADS, fructans and gibberellins. BMC Genomics 2019; 20:473. [PMID: 31182030 DOI: 10.1186/s12864-019-5808-5809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/20/2019] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Reliable indicators for the onset of flowering are not available for most perennial monocarpic species, representing a drawback for crops such as bamboo, agave and banana. The ability to predict and control the transition to the reproductive stage in A. tequilana would represent an advantage for field management of agaves for tequila production and for the development of a laboratory model for agave species. RESULTS Consistent morphological features could not be determined for the vegetative to reproductive transition in A. tequilana. However, changes in carbohydrate metabolism where sucrose decreased and fructans of higher degree of polymerization increased in leaves before and after the vegetative to reproductive transition were observed. At the molecular level, transcriptome analysis from leaf and shoot apical meristem tissue of A. tequilana plants from different developmental stages identified OASES as the most effective assembly program and revealed evidence for incomplete transcript processing in the highly redundant assembly obtained. Gene ontology analysis uncovered enrichment for terms associated with carbohydrate and hormone metabolism and detailed analysis of expression patterns for individual genes revealed roles for specific Flowering locus T (florigen), MADS box proteins, gibberellins and fructans in the transition to flowering. CONCLUSIONS Based on the data obtained, a preliminary model was developed to describe the regulatory mechanisms underlying the initiation of flowering in A. tequilana. Identification of specific promoter and repressor Flowering Locus T and MADS box genes facilitates functional analysis and the development of strategies to modulate the vegetative to reproductive transition in A. tequilana.
Collapse
Affiliation(s)
- Emmanuel Avila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - Luis Delaye
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
11
|
Huang X, Wang B, Xi J, Zhang Y, He C, Zheng J, Gao J, Chen H, Zhang S, Wu W, Liang Y, Yi K. Transcriptome Comparison Reveals Distinct Selection Patterns in Domesticated and Wild Agave Species, the Important CAM Plants. Int J Genomics 2018; 2018:5716518. [PMID: 30596084 PMCID: PMC6282153 DOI: 10.1155/2018/5716518] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023] Open
Abstract
Agave species are an important family of crassulacean acid metabolism (CAM) plants with remarkable tolerance to heat and drought stresses (Agave deserti) in arid regions and multiple agricultural applications, such as spirit (Agave tequilana) and fiber (Agave sisalana) production. The agave genomes are commonly too large to sequence, which has significantly restricted our understanding to the molecular basis of stress tolerance and economic traits in agaves. In this study, we collected three transcriptome databases for comparison to reveal the phylogenic relationships and evolution patterns of the three agave species. The results indicated the close but distinctly domesticated relations between A. tequilana and A. sisalana. Natural abiotic and biotic selections are very important factors that have contributed to distinct economic traits in agave domestication together with artificial selection. Besides, a series of candidate unigenes regulating fructan, fiber, and stress response-related traits were identified in A. tequilana, A. sisalana, and A. deserti, respectively. This study represents the first transcriptome comparison within domesticated and wild agaves, which would serve as a guidance for further studies on agave evolution, environmental adaptation, and improvement of economically important traits.
Collapse
Affiliation(s)
- Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | | | - Chunping He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinlong Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianming Gao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Helong Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shiqing Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanqiong Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
12
|
Zavala-García LE, Sánchez-Segura L, Avila de Dios E, Pérez-López A, Simpson J. Starch accumulation is associated with active growth in A. tequilana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:623-632. [PMID: 30125759 DOI: 10.1016/j.plaphy.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 05/13/2023]
Abstract
Transcriptome analysis of different tissues and developmental stages of A. tequilana plants led to the identification of full length cDNAs and the corresponding amino acid sequences for enzymes involved in starch metabolism in this species. Comparison with sequences from other species confirmed the identities of putative A. tequilana starch metabolism genes and uncovered differences in the evolutionary patterns of these genes between gramineous and non-gramineous monocotyledons. In silico expression patterns showed high levels of expression of starch metabolism genes in shoot apical meristem tissue and histological studies showed the presence of starch in leaf primordia surrounding the shoot apical meristem and in the primary thickening meristem of the stem. Starch was also found to accumulate significantly in developing floral organs and immature embryos. Low levels of starch were observed overall in leaf tissue with the exception of stomatal guard cells where starch was abundant. In root tissue, starch was only observed in statoliths at the root tip. A. tequilana starch grains were found to be small in comparison to other species and have an almost spherical form. The data for gene expression and histological localization are consistent with a role for starch as a transient carbohydrate store for actively growing tissues in A. tequilana.
Collapse
Affiliation(s)
- Laura E Zavala-García
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - Lino Sánchez-Segura
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - Emmanuel Avila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - Arely Pérez-López
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
13
|
Ueno K, Sonoda T, Yoshida M, Shiomi N, Onodera S. Purification, characterization, and functional analysis of a novel 6G&1-FEH mainly hydrolyzing neokestose from asparagus. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4295-4308. [PMID: 29931209 DOI: 10.1093/jxb/ery234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Asparagus (Asparagus officinalis L.) accumulates inulin- and inulin neoseries-type fructans. Fructose released by the hydrolysis of fructans is an energy source for emerging asparagus spears. Plant fructans are hydrolyzed by fructan exohydrolases (FEHs), whose presence in asparagus has not yet been fully characterized. Here, we describe for the first time the purification and characterization of an FEH from asparagus, and the functional analysis of its gene. The purified enzyme was predicted to exist as a dimer (approximately 130 kDa) consisting of two polypeptides with a molecular mass of approximately 68 kDa. N-terminal sequences of the purified enzyme were matched with the amino acid sequences of aoeh4a and aoeh4b cDNAs isolated from asparagus (cv. Gijnlim and Taihouwase). Native enzymes obtained from asparagus roots and recombinant enzymes produced by Pichia pastoris showed fructan 1-exohydrolase (1-FEH) activity via the hydrolysis of inulin-type fructan. Unlike other 1-FEHs, these enzymes showed minimal hydrolysis of 1-kestose but efficiently hydrolyzed neokestose. Therefore, the enzyme was termed 6G&1-FEH. Gene expression studies in asparagus roots showed that aoeh4 increased during root storage at 2 °C and spear harvesting. These findings suggest that 6G&1-FEH may be involved in fructan hydrolysis in asparagus roots to provide an energy source for emerging asparagus spears.
Collapse
Affiliation(s)
- Keiji Ueno
- Department of Food Sciences, Faculty of Dairy Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Takahiro Sonoda
- Department of Sustainable Agricultures, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
- Department of Food Sciences, Faculty of Dairy Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Midori Yoshida
- NARO Hokkaido Agricultural Research Center, Hitsujigaoka, Sapporo, Japan
| | - Norio Shiomi
- Department of Food Sciences, Faculty of Dairy Science, Rakuno Gakuen University, Ebetsu, Japan
| | - Shuichi Onodera
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
- Department of Food Sciences, Faculty of Dairy Science, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
14
|
Application of in Casa Pollination and Embryo Rescue Techniques for Breeding of Agave Species. Methods Mol Biol 2018; 1815:289-300. [PMID: 29981130 DOI: 10.1007/978-1-4939-8594-4_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Species of the genus Agave are distributed originally in the tropical and subtropical areas of the American continent with about 200 taxa and 136 species, and its center of origin is probably limited to México. These kind of plants usually grow and live in extreme environmental conditions such as heat and drought where their CAM pathway for fixing CO2 allow them to survive in conditions where other plants cannot survive. Although this kind of plants resist harsh environmental conditions, climate change is imposing stronger kinds of stress that diminish their productive potential and in some cases are cause of death. Because of this, genetic improvement becomes a need of fundamental importance in this kind of species. Despite their economic importance, Agave species have received scarce attention with regard to its genetic improvement, probably due to their unique botanical features such as plant architecture, spines, long life span, and monocarpy, among others, which make hybridization a difficult task for the intra- and interspecific gene transfer and creation of genetic variability among many other breeding techniques.The protocol here presented is a combination of a novel hybridization technique and biotechnological tools, and allows the use of several procedures for the genetic improvement of agaves such as pollen selection, clonal selection, and somatic cell selection, among others, since the rescued embryos can be used for micropropagation, for phenotype/genotype selection or the production of cell lineages for diverse genetic improvement purposes.
Collapse
|
15
|
Differential fructan accumulation and expression of fructan biosynthesis, invertase and defense genes is induced in Agave tequilana plantlets by sucrose or stress-related elicitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|