1
|
Marian M, Antonielli L, Pertot I, Perazzolli M. Amplicon sequencing and culture-dependent approaches reveal core bacterial endophytes aiding freezing stress tolerance in alpine Rosaceae plants. mBio 2025; 16:e0141824. [PMID: 39998219 PMCID: PMC11980557 DOI: 10.1128/mbio.01418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Wild plants growing in alpine regions are associated with endophytic microbial communities that may support plant growth and survival under cold conditions. The structure and function of endophytic bacterial communities were characterized in flowers, leaves, and roots of three alpine Rosaceae plants in Alpine areas using a combined amplicon sequencing and culture-dependent approaches to determine the role of core taxa on plant freezing stress tolerance. Amplicon sequencing analysis revealed that plant tissue, collection site, and host plant are the main factors affecting the richness, diversity, and taxonomic structure of endophytic bacterial communities in alpine Rosaceae plants. Core endophytic bacterial taxa were identified as 31 amplicon sequence variants highly prevalent across all plant tissues. Psychrotolerant bacterial endophytes belonging to the core taxa of Duganella, Erwinia, Pseudomonas, and Rhizobium genera mitigated freezing stress in strawberry plants, demonstrating the beneficial role of endophytic bacterial communities and their potential use for cold stress mitigation in agriculture.IMPORTANCEFreezing stress is one of the major abiotic stresses affecting fruit production in Rosaceae crops. Current strategies to reduce freezing damage include physical and chemical methods, which have several limitations in terms of costs, efficacy, feasibility, and environmental impacts. The use or manipulation of plant-associated microbial communities was proposed as a promising sustainable approach to alleviate cold stress in crops, but no information is available on the possible mitigation of freezing stress in Rosaceae plants. A combination of amplicon sequencing, culture-dependent, and plant bioassay approaches revealed the beneficial role of the endophytic bacterial communities in alpine Rosaceae plants. In particular, we showed that culturable psychrotolerant bacterial endophytes belonging to the core taxa of Duganella, Erwinia, Pseudomonas, and Rhizobium genera can mitigate freezing stress on strawberry seedlings. Overall, this study demonstrates the potential use of psychrotolerant bacterial endophytes for the development of biostimulants for cold stress mitigation in agriculture.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
2
|
Zhao J, Liu X, Hou L, Xu G, Guan F, Zhang W, Luo H, Wu N, Yao B, Zhang C, Delaplace P, Tian J. The seed endophytic microbe Microbacterium testaceum M15 enhances the cold tolerance and growth of rice (Oryza sativa L.). Microbiol Res 2024; 289:127908. [PMID: 39321593 DOI: 10.1016/j.micres.2024.127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
The potential of seed endophytic microbes to enhance plant growth and resilience is well recognized, yet their role in alleviating cold stress in rice remains underexplored due to the complexity of these microbial communities. In this study, we investigated the diversity of seed endophytic microbes in two rice varieties, the cold-sensitive CB9 and the cold-tolerant JG117. Our results revealed significant differences in the abundance of Microbacteriaceae, with JG117 exhibiting a higher abundance under both cold stress and room temperature conditions compared to CB9. Further analysis led to the identification of a specific cold-tolerant microbe, Microbacterium testaceum M15, in JG117 seeds. M15-inoculated CB9 plants showed enhanced growth and cold tolerance, with a germination rate increase from 40 % to 56.67 % at 14℃ and a survival rate under cold stress (4℃) doubling from 22.67 % to 66.67 %. Additionally, M15 significantly boosted chlorophyll content by over 30 %, increased total protein by 16.31 %, reduced malondialdehyde (MDA) levels by 37.76 %, and increased catalase activity by 26.15 %. Overall, our study highlights the potential of beneficial endophytic microbes like M. testaceum M15 in improving cold tolerance in rice, which could have implications for sustainable agricultural practices and increased crop productivity in cold-prone regions.
Collapse
Affiliation(s)
- Jintong Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, Gembloux 5030, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Guoshun Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, Gembloux 5030, Belgium
| | - Jian Tian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Zhang J, Song K, Jin F, Jia F, Liang J, Wang F, Zhang J. A novel strategy of artificially regulating plant rhizosphere microbial community to promote plant tolerance to cold stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175184. [PMID: 39089386 DOI: 10.1016/j.scitotenv.2024.175184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fengyuan Jin
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Prihatna C, Yan Q. Exopolysaccharide is required by Paraburkholderia phytofirmans PsJN to confer drought-stress tolerance in pea. Front Microbiol 2024; 15:1442001. [PMID: 39184028 PMCID: PMC11341992 DOI: 10.3389/fmicb.2024.1442001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Paraburkholderia phytofirmans PsJN is a plant symbiotic bacterium that can colonize a broad spectrum of plant hosts and frequently shows beneficial effects on plant growth. Exopolysaccharide (EPS) is known to be important in plant-bacteria interactions. Previously, we reported that EPS is required for PsJN to survive from drought stress and colonize in pea (Pisum sativum) under drought condition. However, whether EPS is necessary for PsJN to promote plant growth remains unknown. In this work, a comparative study was conducted between the wild-type PsJN and its ∆bceQ mutant that lacks EPS to investigate the role of EPS in PsJN to confer drought-stress tolerance on pea plant. Our results showed that wild type PsJN, but not the ∆bceQ mutant, promoted pea seed germination and seedlings growth under drought stress. Pea plants inoculated with the wild type PsJN had a higher level of drought tolerance, as shown by a better vegetative growth and enhanced nodule formation, than plants inoculated with the ∆bceQ mutant. Moreover, EPS plays a role in the plant colonization under drought stress, because the ∆bceQ mutant was unable to colonize pea seeds and roots as effectively as the wild type PsJN. Further, expression of the EPS biosynthesis genes in the bceOVN operon of the wild type PsJN was induced by the presence of glucose. Overall, this study demonstrated that PsJN can promote pea plant growth under drought conditions and EPS is required for PsJN to confer beneficial effects to host plant.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
5
|
Tian Y, Li P, Chen X, He J, Tian M, Zheng Z, Hu R, Fu Z, Yi Z, Li J. R3 strain and Fe-Mn modified biochar reduce Cd absorption capacity of roots and available Cd content of soil by affecting rice rhizosphere and endosphere key flora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116418. [PMID: 38696873 DOI: 10.1016/j.ecoenv.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microorganisms have a significant role in regulating the absorption and transportation of Cd in the soil-plant system. However, the mechanism by which key microbial taxa play a part in response to the absorption and transportation of Cd in rice under Cd stress requires further exploration. In this study, the cadmium-tolerant endophytic bacterium Herbaspirillum sp. R3 (R3) and Fe-Mn-modified biochar (Fe-Mn) were, respectively, applied to cadmium-contaminated rice paddies to investigate the effects of key bacterial taxa in the soil-rice system on the absorption and transportation of Cd in rice under different treatments. The results showed that both R3 and Fe-Mn treatments considerably decreased the content of cadmium in roots, stems and leaves of rice at the peak tillering stage by 17.24-49.28% in comparison to the control (CK). The cadmium content reduction effect of R3 treatment is better than that of Fe-Mn treatment. Further analysis revealed that the key bacterial taxa in rice roots under R3 treatment were Sideroxydans and Actinobacteria, and that their abundance showed a substantial positive correlation and a significant negative correlation with the capacity of rice roots to assimilate Cd from the surroundings, respectively. The significant increase in soil pH under Fe-Mn treatment, significant reduction in the relative abundances of Acidobacteria, Verrucomicrobia, Subdivision3 genera incertae sedis, Sideroxydans, Geobacter, Gp1, and Gp3, and the significant increase in the relative abundance of Thiobacillus among the soil bacterial taxa may be the main reasons for the decrease in available Cd content of the soil. In addition, both the R3 and Fe-Mn treatments showed some growth-promoting effects on rice, which may be related to their promotion of transformations of soil available nutrients. This paper describes the possible microbial mechanisms by which strain R3 and Fe-Mn biochar reduce Cd uptake in rice, providing a theoretical basis for the remediation of Cd contamination in rice and soil by utilizing key microbial taxa.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, 410125, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jing He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongyi Zheng
- College of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqiang Fu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
6
|
Guerrero-Egido G, Pintado A, Bretscher KM, Arias-Giraldo LM, Paulson JN, Spaink HP, Claessen D, Ramos C, Cazorla FM, Medema MH, Raaijmakers JM, Carrión VJ. bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria. Nat Commun 2024; 15:2072. [PMID: 38453959 PMCID: PMC10920822 DOI: 10.1038/s41467-024-46302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Bacteria have an extensive adaptive ability to live in close association with eukaryotic hosts, exhibiting detrimental, neutral or beneficial effects on host growth and health. However, the genes involved in niche adaptation are mostly unknown and their functions poorly characterized. Here, we present bacLIFE ( https://github.com/Carrion-lab/bacLIFE ) a streamlined computational workflow for genome annotation, large-scale comparative genomics, and prediction of lifestyle-associated genes (LAGs). As a proof of concept, we analyzed 16,846 genomes from the Burkholderia/Paraburkholderia and Pseudomonas genera, which led to the identification of hundreds of genes potentially associated with a plant pathogenic lifestyle. Site-directed mutagenesis of 14 of these predicted LAGs of unknown function, followed by plant bioassays, showed that 6 predicted LAGs are indeed involved in the phytopathogenic lifestyle of Burkholderia plantarii and Pseudomonas syringae pv. phaseolicola. These 6 LAGs encompassed a glycosyltransferase, extracellular binding proteins, homoserine dehydrogenases and hypothetical proteins. Collectively, our results highlight bacLIFE as an effective computational tool for prediction of LAGs and the generation of hypotheses for a better understanding of bacteria-host interactions.
Collapse
Affiliation(s)
- Guillermo Guerrero-Egido
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Adrian Pintado
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Kevin M Bretscher
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Luisa-Maria Arias-Giraldo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Joseph N Paulson
- Department of Data Sciences, N-Power Medicine, Redwood City, CA, 94063, USA
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Cayo Ramos
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
- Área de Genética, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain
| | - Marnix H Medema
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Víctor J Carrión
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010, Málaga, Spain.
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010, Málaga, Spain.
| |
Collapse
|
7
|
Su F, Zhao B, Dhondt-Cordelier S, Vaillant-Gaveau N. Plant-Growth-Promoting Rhizobacteria Modulate Carbohydrate Metabolism in Connection with Host Plant Defense Mechanism. Int J Mol Sci 2024; 25:1465. [PMID: 38338742 PMCID: PMC10855160 DOI: 10.3390/ijms25031465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Plant-growth-promoting rhizobacteria (PGPR) could potentially enhance photosynthesis and benefit plant growth by improving soil nutrient uptake and affecting plant hormone balance. Several recent studies have unveiled a correlation between alterations in photosynthesis and host plant resistance levels. Photosynthesis provides materials and energy for plant growth and immune defense and affects defense-related signaling pathways. Photosynthetic organelles, which could be strengthened by PGPR inoculation, are key centers for defense signal biosynthesis and transmission. Although endophytic PGPRs metabolize plant photosynthates, they can increase soluble sugar levels and alternate sugar type and distribution. Soluble sugars clearly support plant growth and can act as secondary messengers under stressed conditions. Overall, carbohydrate metabolism modifications induced by PGPR may also play a key role in improving plant resistance. We provide a concise overview of current knowledge regarding PGPR-induced modulation in carbohydrate metabolism under both pathogen-infected and pathogen-free conditions. We highlight PGPR application as a cost-saving strategy amidst unpredictable pathogen pressures.
Collapse
Affiliation(s)
- Fan Su
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300071, China;
| | - Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China;
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Résistance Induite et Bioprotection des Plantes—USC INRAE 1488, Université de Reims Champagne Ardenne, 51100 Reims, France;
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Résistance Induite et Bioprotection des Plantes—USC INRAE 1488, Université de Reims Champagne Ardenne, 51100 Reims, France;
| |
Collapse
|
8
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
9
|
Fu B, Yan Q. Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Front Microbiol 2023; 14:1218653. [PMID: 37670984 PMCID: PMC10475733 DOI: 10.3389/fmicb.2023.1218653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Paraburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
10
|
King E, Wallner A, Guigard L, Rimbault I, Parrinello H, Klonowska A, Moulin L, Czernic P. Paraburkholderia phytofirmans PsJN colonization of rice endosphere triggers an atypical transcriptomic response compared to rice native Burkholderia s.l. endophytes. Sci Rep 2023; 13:10696. [PMID: 37400579 DOI: 10.1038/s41598-023-37314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The plant microbiome has recently emerged as a reservoir for the development of sustainable alternatives to chemical fertilizers and pesticides. However, the response of plants to beneficial microbes emerges as a critical issue to understand the molecular basis of plant-microbiota interactions. In this study, we combined root colonization, phenotypic and transcriptomic analyses to unravel the commonalities and specificities of the response of rice to closely related Burkholderia s.l. endophytes. In general, these results indicate that a rice-non-native Burkholderia s.l. strain, Paraburkholderia phytofirmans PsJN, is able to colonize the root endosphere while eliciting a markedly different response compared to rice-native Burkholderia s.l. strains. This demonstrates the variability of plant response to microbes from different hosts of origin. The most striking finding of the investigation was that a much more conserved response to the three endophytes used in this study is elicited in leaves compared to roots. In addition, transcriptional regulation of genes related to secondary metabolism, immunity, and phytohormones appear to be markers of strain-specific responses. Future studies need to investigate whether these findings can be extrapolated to other plant models and beneficial microbes to further advance the potential of microbiome-based solutions for crop production.
Collapse
Affiliation(s)
- Eoghan King
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France.
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.
| | - Adrian Wallner
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, Cedex 2, BP1039, 51687, Reims, France
| | - Ludivine Guigard
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Isabelle Rimbault
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Agnieszka Klonowska
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Lionel Moulin
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Pierre Czernic
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France.
| |
Collapse
|
11
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Zhang W, Wang X, Li Y, Wei P, Sun N, Wen X, Liu Z, Li D, Feng Y, Zhang X. Differences Between Microbial Communities of Pinus Species Having Differing Level of Resistance to the Pine Wood Nematode. MICROBIAL ECOLOGY 2022; 84:1245-1255. [PMID: 34757460 DOI: 10.1007/s00248-021-01907-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a destructive invasive species that exerts devastating effects on most native pines in invaded regions, while many of the non-native pines have resistance to PWN. Recently, increasingly more research is focused on how microbial communities can improve host resistance against pathogens. However, the relationship between the microbial community structures and varying levels of pathogen resistance observed in different pine tree species remains unclear. Here, the bacterial and fungal communities of introduced resistant pines Pinus elliottii, P. caribaea, and P. taeda and native susceptible pines healthy and wilted P. massoniana infected by PWN were analyzed. The results showed that 6057 bacterial and 3931 fungal OTUs were annotated. The pine samples shared 944 bacterial OTUs primarily in the phyla Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi and 111 fungal OTUs primarily in phyla Ascomycota and Basidiomycota, though different pines had unique OTUs. There were significant differences in microbial community diversity between different pines, especially between the bacterial communities of resistant and susceptible pines, and fungal communities between healthy pines (resistant pines included) and the wilted P. massoniana. Resistant pines had a greater abundance of bacteria in the genera Acidothermus (class unidentified_Actinobacteria) and Prevotellaceae (class Alphaproteobacteria), but a lower abundance of Erwinia (class Gammaproteobacteria). Healthy pines had a higher fungal abundance of Cladosporium (class Dothideomycetes) and class Eurotiomycetes, but a lower abundance of Graphilbum, Sporothrix, Geosmithia (class Sordariomycetes), and Cryptoporus (classes Agaricomycetes and Saccharomycetes). These differences in microbial abundance between resistant and healthy pines might be associated with pathogen resistance of the pines, and the results of this study contribute to the studies exploring microbial-based control of PWN.
Collapse
Affiliation(s)
- Wei Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Pengfei Wei
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ningning Sun
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojian Wen
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenkai Liu
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongzhen Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Kamran M, Imran QM, Ahmed MB, Falak N, Khatoon A, Yun BW. Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells 2022; 11:cells11203292. [PMID: 36291157 PMCID: PMC9600683 DOI: 10.3390/cells11203292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil fertility, and health. These stresses may have significant financial repercussions, necessitating a practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants. Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant health and protection; however, these chemical supplements have serious implications for human health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it is important to experimentally validate these interactions and determine how they affect plant fitness. This review highlights research that sheds light on how endophytes help plants tolerate biotic and abiotic stresses through plant–symbiont and plant–microbiota interactions. There is a great need to focus research efforts on this vital area to achieve a system-level understanding of plant–microbe interactions that occur naturally.
Collapse
Affiliation(s)
- Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
- Correspondence: (M.K.); (B.-W.Y.)
| | - Qari Muhammad Imran
- Department of Medical Biochemistry & Biophysics, Umea University, 90187 Umea, Sweden
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Noreen Falak
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Amna Khatoon
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.K.); (B.-W.Y.)
| |
Collapse
|
14
|
Thiebaut F, Urquiaga MCDO, Rosman AC, da Silva ML, Hemerly AS. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. Int J Mol Sci 2022; 23:ijms231911301. [PMID: 36232602 PMCID: PMC9569789 DOI: 10.3390/ijms231911301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Agriculture is facing increasing challenges with regard to achieving sustainable growth in productivity without negatively impacting the environment. The use of bioinoculants is emerging as a sustainable solution for agriculture, especially bioinoculants based on diazotrophic bacteria. Brazil is at the forefront of studies intended to identify beneficial diazotrophic bacteria, as well as in the molecular characterization of this association on both the bacterial and plant sides. Here we highlight the main advances in molecular studies to understand the benefits brought to plants by diazotrophic bacteria. Different molecular pathways in plants are regulated both genetically and epigenetically, providing better plant performance. Among them, we discuss the involvement of genes related to nitrogen metabolism, cell wall formation, antioxidant metabolism, and regulation of phytohormones that can coordinate plant responses to environmental factors. Another important aspect in this regard is how the plant recognizes the microorganism as beneficial. A better understanding of plant–bacteria–environment interactions can assist in the future formulation of more efficient bioinoculants, which could in turn contribute to more sustainable agriculture practices.
Collapse
|
15
|
Pal G, Saxena S, Kumar K, Verma A, Sahu PK, Pandey A, White JF, Verma SK. Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiol Res 2022; 265:127201. [PMID: 36167006 DOI: 10.1016/j.micres.2022.127201] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
The genus Burkholderia has proven potential in improving plant performance. In recent decades, a huge diversity of Burkholderia spp. have been reported with diverse capabilities of plant symbiosis which could be harnessed to enhance plant growth and development. Colonization of endophytic Burkholderia spp. have been extensively studied through techniques like advanced microscopy, fluorescent labelling, PCR based assays, etc., and found to be systemically distributed in plants. Thus, use of these biostimulant microbes holds the promise of improving quality and quantity of crops. The endophytic Burkholderia spp. have been found to support plant functions along with boosting nutrient availability, especially under stress. Endophytic Burkholderia spp. improve plant survival against deadly pathogens via mechanisms like competition, induced systemic resistance, and antibiosis. At the same time, they are reported to extend plant tolerance towards multiple abiotic stresses especially drought, salinity, and cold. Several attempts have been made to decipher the potential of Burkholderia spp. by genome mining, and these bacteria have been found to harbour genes for plant symbiosis and for providing multiple benefits to host plants. Characteristics specific for host recognition and nutrient acquisition were confirmed in endophytic Burkholderia by genomics and proteomics-based studies. This could pave the way for harnessing Burkholderia spp. for biotechnological applications like biotransformation, phytoremediation, insecticidal activity, antimicrobials, etc. All these make Burkholderia spp. a promising microbial agent in improving plant performance under multiple adversities. Thus, the present review highlights critical roles of endophytic Burkholderia spp., their colonization, alleviation of biotic and abiotic stresses, biotechnological applications and genomic insights.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Pramod K Sahu
- National Bureau of Agriculturally Important Microorganisms, Mau, UP, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| | - Satish K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
16
|
Biologicals and their plant stress tolerance ability. Symbiosis 2022. [DOI: 10.1007/s13199-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
18
|
Persyn A, Mueller A, Goormachtig S. Drops join to make a stream: high-throughput nanoscale cultivation to grasp the lettuce root microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:60-69. [PMID: 34797028 DOI: 10.1111/1758-2229.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Root endospheres house complex and diverse bacterial communities, of which many strains have not been cultivated yet by means of the currently available isolation techniques. The Prospector® (General Automation Lab Technologies, San Carlos, CA, USA), an automated and high-throughput bacterial cultivation system, was applied to analyse the root endomicrobiome of lettuce (Lactuca sativa L.). By using deep sequencing, we compared the results obtained with the Prospector and the traditional solid medium culturing and extinction methods. We found that the species richness did not differ and that the amount of previously uncultured bacteria did not increase, but that the bacterial diversity isolated by the three methods varied. In addition, the tryptic soy broth and King's B media provided a lower, but different, diversity of bacteria than that of Reasoner's 2A (R2A) medium when used within the Prospector system and the number of unique bacterial strains did not weigh up against those isolated with the R2A medium. Thus, to cultivate as broad a variety of bacteria as possible, divergent isolation techniques should be used in parallel. Thanks to its speed and limited manual requirements, the Prospector is a valuable system to enlarge root microbiome culture collections.
Collapse
Affiliation(s)
- Antoine Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - André Mueller
- General Automation Lab Technologies (GALT), San Carlos, CA, 94070, USA
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
19
|
Guo DJ, Li DP, Singh RK, Singh P, Sharma A, Verma KK, Qin Y, Khan Q, Lu Z, Malviya MK, Song XP, Xing YX, Li YR. Differential Protein Expression Analysis of Two Sugarcane Varieties in Response to Diazotrophic Plant Growth-Promoting Endophyte Enterobacter roggenkampii ED5. FRONTIERS IN PLANT SCIENCE 2021; 12:727741. [PMID: 34887881 PMCID: PMC8649694 DOI: 10.3389/fpls.2021.727741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
Plant endophytic bacteria have many vital roles in plant growth promotion (PGP), such as nitrogen (N) fixation and resistance to biotic and abiotic stresses. In this study, the seedlings of sugarcane varieties B8 (requires a low concentration of nitrogen for growth) and GT11 (requires a high concentration of nitrogen for growth) were inoculated with endophytic diazotroph Enterobacter roggenkampii ED5, which exhibits multiple PGP traits, isolated from sugarcane roots. The results showed that the inoculation with E. roggenkampii ED5 promoted the growth of plant significantly in both sugarcane varieties. 15N detection at 60 days post-inoculation proved that the inoculation with strain ED5 increased the total nitrogen concentration in the leaf and root than control in both sugarcane varieties, which was higher in B8. Biochemical parameters and phytohormones in leaf were analyzed at 30 and 60 days after the inoculation. The results showed that the inoculation with E. roggenkampii ED5 improved the activities of superoxide dismutase (SOD), catalase (CAT), NADH-glutamate dehydrogenase (NADH-GDH), glutamine synthetase (GS), and endo-β-1,4-glucanase, and the contents of proline and indole acetic acid (IAA) in leaf, and it was generally more significant in B8 than in GT11. Tandem Mass Tags (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to perform comparative proteomic analysis in the sugarcane leaves at 30 days after inoculation with strain ED5. A total of 27,508 proteins were detected, and 378 differentially expressed proteins (DEPs) were found in the treated sugarcane variety B8 (BE) as compared to control (BC), of which 244 were upregulated and 134 were downregulated. In contrast, a total of 177 DEPs were identified in the treated sugarcane variety GT11 (GE) as compared to control (GC), of which 103 were upregulated and 74 were downregulated. The DEPs were associated with nitrogen metabolism, photosynthesis, starch, sucrose metabolism, response to oxidative stress, hydrolase activity, oxidative phosphorylation, glutathione metabolism, phenylpropanoid metabolic process, and response to stresses in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. To the best of our knowledge, this is the first proteomic approach to investigate the molecular basis of the interaction between N-fixing endophytic strain E. roggenkampii ED5 and sugarcane.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Lu
- College of Agriculture, Guangxi University, Nanning, China
| | - Mukesh K. Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| |
Collapse
|
20
|
Backes A, Charton S, Planchon S, Esmaeel Q, Sergeant K, Hausman JF, Renaut J, Barka EA, Jacquard C, Guerriero G. Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:488-500. [PMID: 34757299 DOI: 10.1016/j.plaphy.2021.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Net blotch, caused by the ascomycete Drechslera teres, can compromise barley production. Beneficial bacteria strains are of substantial interest as biological agents for plant protection in agriculture. Belonging to the genus Paraburkholderia, a bacterium, referred to as strain B25, has been identified as protective for barley against net blotch. The strain Paraburkholderia phytofirmans (strain PsJN), which has no effect on the pathogen's growth, has been used as control. In this study, the expression of target genes involved in cell wall-related processes, defense responses, carbohydrate and phenylpropanoid pathways was studied under various conditions (with or without pathogen and/or with or without bacterial strains) at different time-points (0-6-12-48 h). The results show that specific genes were subjected to a circadian regulation and that the expression of most of them increased in barley infected with D. teres and/or bacterized with the strain PsJN. On the contrary, a decreased gene expression was observed in the presence of strain B25. To complement and enrich the gene expression analysis, untargeted metabolomics was carried out on the same samples. The data obtained show an increase in the production of lipid compounds in barley in the presence of the pathogen. In addition, the presence of strain B25 leads to a decrease in the production of defense compounds in this crop. The results contribute to advance the knowledge on the mechanisms occurring at the onset of D. teres infection and in the presence of a biocontrol agent limiting the severity of net blotch in barley.
Collapse
Affiliation(s)
- Aurélie Backes
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100, Reims, France.
| | - Sophie Charton
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Biotechnologies and Environmental Analytics Platform (BEAP), 41 rue du Brill, L-4422, Belvaux, Luxembourg.
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Biotechnologies and Environmental Analytics Platform (BEAP), 41 rue du Brill, L-4422, Belvaux, Luxembourg.
| | - Qassim Esmaeel
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100, Reims, France.
| | - Kjell Sergeant
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, GreenTech Innovation Centre, 5 rue Bommel, Z.A.E. Robert Steichen, L-4940, Hautcharage, Luxembourg.
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, GreenTech Innovation Centre, 5 rue Bommel, Z.A.E. Robert Steichen, L-4940, Hautcharage, Luxembourg.
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, GreenTech Innovation Centre, 5 rue Bommel, Z.A.E. Robert Steichen, L-4940, Hautcharage, Luxembourg.
| | - Essaid Ait Barka
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100, Reims, France.
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100, Reims, France.
| | - Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, GreenTech Innovation Centre, 5 rue Bommel, Z.A.E. Robert Steichen, L-4940, Hautcharage, Luxembourg.
| |
Collapse
|
21
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
22
|
A biological agent modulates the physiology of barley infected with Drechslera teres. Sci Rep 2021; 11:8330. [PMID: 33859319 PMCID: PMC8050242 DOI: 10.1038/s41598-021-87853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Recognized as the causal agent of net blotch, Drechslera teres is responsible for major losses of barley crop yield. The consequences of this leaf disease are due to the impact of the infection on the photosynthetic performance of barley leaves. To limit the symptoms of this ascomycete, the use of beneficial bacteria known as "Plant Growth Promoting Rhizobacteria" constitutes an innovative and environmentally friendly strategy. A bacterium named as strain B25 belonging to the genus Burkholderia showed a strong antifungal activity against D. teres. The bacterium was able to limit the development of the fungus by 95% in detached leaves of bacterized plants compared to the non-bacterized control. In this study, in-depth analyses of the photosynthetic performance of young barley leaves infected with D. teres and/or in the presence of the strain B25 were carried out both in and close to the necrotic area. In addition, gas exchange measurements were performed only near the necrotic area. Our results showed that the presence of the beneficial bacterium reduced the negative impact of the fungus on the photosynthetic performance and modified only the net carbon assimilation rate close to the necrotic area. Indeed, the presence of the strain B25 decreased the quantum yield of regulated non-photochemical energy loss in PSII noted as Y(NPQ) and allowed to maintain the values stable of maximum quantum yield of PSII photochemistry known as Fv/Fm and close to those of the control in the presence of D. teres. To the best of our knowledge, these data constitute the first study focusing on the impact of net blotch fungus and a beneficial bacterium on photosynthesis and respiratory parameters in barley leaves.
Collapse
|
23
|
Loera-Muro A, Caamal-Chan MG, Castellanos T, Luna-Camargo A, Aguilar-Díaz T, Barraza A. Growth effects in oregano plants ( Origanum vulgare L.) assessment through inoculation of bacteria isolated from crop fields located on desert soils. Can J Microbiol 2020; 67:381-395. [PMID: 33136463 DOI: 10.1139/cjm-2020-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria can establish beneficial interactions with plants by acting as growth promoters and enhancing stress tolerance during plant interactions. Likewise, bacteria can develop multispecies communities where multiple interactions are possible. In this work, we assessed the physiological effects of three bacteria isolated from an arid environment (Bacillus niacini, Bacillus megaterium, and Moraxella osloensis) applied as single species or as a consortium on oregano (Origanum vulgare L.) plants. Moreover, we assessed the quorum-sensing (QS) signaling activity to determine the molecular communication between plant-growth-promoting bacteria. The plant inoculation with B. megaterium showed a positive effect on morphometric and physiologic parameters. However, no synergistic effects were observed when a bacterial consortium was inoculated. Likewise, activation of QS signaling in biofilm assays was observed only for interspecies interaction within the Bacillus genus, not for either interaction with M. osloensis. These results suggest a neutral or antagonistic interaction for interspecific bacterial biofilm establishment, as well as for the interaction with oregano plants when bacteria were inoculated in a consortium. In conclusion, we were able to determine that the bacterial interactions are not always positive or synergistic, but they also might be neutral or antagonistic.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONACYT - Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional, 195 Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, México
| | - María Goretty Caamal-Chan
- CONACYT - Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional, 195 Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, México
| | - Thelma Castellanos
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional, 195 Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico
| | - Angélica Luna-Camargo
- Instituto Tecnológico de La Paz, 4720 Boulevard Forjadores de Baja California Sur, 8 de Octubre 2da Secc, La Paz, Baja California Sur, C.P. 23080, Mexico
| | - Trinidad Aguilar-Díaz
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional, 195 Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico
| | - Aarón Barraza
- CONACYT - Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional, 195 Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, México
| |
Collapse
|
24
|
Babalola OO, Fadiji AE, Enagbonma BJ, Alori ET, Ayilara MS, Ayangbenro AS. The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies. Front Microbiol 2020; 11:548037. [PMID: 33013781 PMCID: PMC7499240 DOI: 10.3389/fmicb.2020.548037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The diversity of plant-associated microbes is enormous and complex. These microbiomes are structured and form complex interconnected microbial networks that are important in plant health and ecosystem functioning. Understanding the composition of the microbiome and their core function is important in unraveling their networking strategies and their potential influence on plant performance. The network is altered by the host plant species, which in turn influence the microbial interaction dynamics and co-evolution. We discuss the plant microbiome and the complex interplay among microbes and between their host plants. We provide an overview of how plant performance is influenced by the microbiome diversity and function.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayomide E Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ben J Enagbonma
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Elizabeth T Alori
- Department of Crop and Soil Sciences, Landmark University, Omu-Aran, Nigeria
| | - Modupe S Ayilara
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina S Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
25
|
Fadiji AE, Babalola OO. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci 2020; 27:3622-3633. [PMID: 33304173 PMCID: PMC7714962 DOI: 10.1016/j.sjbs.2020.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/23/2022] Open
Abstract
Pathogen affects plant growth, host health and productivity. Endophytes, presumed to live inside the plant tissues, might be helpful in sustaining the future of agriculture. Although recent studies have proven that endophytes can be pathogenic, commensal, non-pathogenic, and/or beneficial, this review will focus on the beneficial category only. Beneficial endophytes produce a number of compounds which are useful for protecting plants from environmental conditions, enhancing plant growth and sustainability, while living conveniently inside the hosts. The population of endophytes is majorly controlled by location, and climatic conditions where the host plant grows. Often the most frequently isolated endophytes from the tissues of the plant are fungi, but sometimes greater numbers of bacteria are isolated. Beneficial endophytes stand a chance to replace the synthetic chemicals currently being used for plant growth promotion if carefully explored by researchers and embraced by policymakers. However, the roles of endophytes in plant growth improvement and their behavior in the host plant have not been fully understood. This review presents the current development of research into beneficial endophytes and their effect in improving plant growth.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, South Africa
| |
Collapse
|
26
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
27
|
Beirinckx S, Viaene T, Haegeman A, Debode J, Amery F, Vandenabeele S, Nelissen H, Inzé D, Tito R, Raes J, De Tender C, Goormachtig S. Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. MICROBIOME 2020; 8:54. [PMID: 32305066 PMCID: PMC7166315 DOI: 10.1186/s40168-020-00833-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND When maize (Zea mays L.) is grown in the Northern hemisphere, its development is heavily arrested by chilling temperatures, especially at the juvenile phase. As some endophytes are beneficial for plants under stress conditions, we analyzed the impact of chilling temperatures on the root microbiome and examined whether microbiome-based analysis might help to identify bacterial strains that could promote growth under these temperatures. RESULTS We investigated how the maize root microbiome composition changed by means of 16S rRNA gene amplicon sequencing when maize was grown at chilling temperatures in comparison to ambient temperatures by repeatedly cultivating maize in field soil. We identified 12 abundant and enriched bacterial families that colonize maize roots, consisting of bacteria recruited from the soil, whereas seed-derived endophytes were lowly represented. Chilling temperatures modified the root microbiome composition only slightly, but significantly. An enrichment of several chilling-responsive families was detected, of which the Comamonadaceae and the Pseudomonadaceae were the most abundant in the root endosphere of maize grown under chilling conditions, whereas only three were strongly depleted, among which the Streptomycetaceae. Additionally, a collection of bacterial strains isolated from maize roots was established and a selection was screened for growth-promoting effects on juvenile maize grown under chilling temperatures. Two promising strains that promoted maize growth under chilling conditions were identified that belonged to the root endophytic bacterial families, from which the relative abundance remained unchanged by variations in the growth temperature. CONCLUSIONS Our analyses indicate that chilling temperatures affect the bacterial community composition within the maize root endosphere. We further identified two bacterial strains that boost maize growth under chilling conditions. Their identity revealed that analyzing the chilling-responsive families did not help for their identification. As both strains belong to root endosphere enriched families, visualizing and comparing the bacterial diversity in these communities might still help to identify new PGPR strains. Additionally, a strain does not necessarely need to belong to a high abundant family in the root endosphere to provoke a growth-promoting effect in chilling conditions. Video abstract.
Collapse
Affiliation(s)
- Stien Beirinckx
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | | | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Fien Amery
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | | | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Raul Tito
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
- Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
28
|
Acuña-Rodríguez IS, Newsham KK, Gundel PE, Torres-Díaz C, Molina-Montenegro MA. Functional roles of microbial symbionts in plant cold tolerance. Ecol Lett 2020; 23:1034-1048. [PMID: 32281227 DOI: 10.1111/ele.13502] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
In this review, we examine the functional roles of microbial symbionts in plant tolerance to cold and freezing stresses. The impacts of symbionts on antioxidant activity, hormonal signaling and host osmotic balance are described, including the effects of the bacterial endosymbionts Burkholderia, Pseudomonas and Azospirillum on photosynthesis and the accumulation of carbohydrates such as trehalose and raffinose that improve cell osmotic regulation and plasma membrane integrity. The influence of root fungal endophytes and arbuscular mycorrhizal fungi on plant physiology at low temperatures, for example their effects on nutrient acquisition and the accumulation of indole-3-acetic acid and antioxidants in tissues, are also reviewed. Meta-analyses are presented showing that aspects of plant performance (shoot biomass, relative water content, sugar and proline concentrations and Fv /Fm ) are enhanced in symbiotic plants at low (-1 to 15 °C), but not at high (20-26 °C), temperatures. We discuss the implications of microbial symbionts for plant performance at low and sub-zero temperatures in the natural environment and propose future directions for research into the effects of symbionts on the cold and freezing tolerances of plants, concluding that further studies should routinely incorporate symbiotic microbes in their experimental designs.
Collapse
Affiliation(s)
- Ian S Acuña-Rodríguez
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | | | - Pedro E Gundel
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Marco A Molina-Montenegro
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Campus San Miguel, Talca, Chile
| |
Collapse
|
29
|
Backes A, Hausman JF, Renaut J, Ait Barka E, Jacquard C, Guerriero G. Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes (Basel) 2020; 11:E300. [PMID: 32178281 PMCID: PMC7140844 DOI: 10.3390/genes11030300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 02/05/2023] Open
Abstract
Drechslera teres (D. teres) is an ascomycete, responsible for net blotch, the most serious barley disease causing an important economic impact. The cell wall is a crucial structure for the growth and development of fungi. Thus, understanding cell wall structure, composition and biosynthesis can help in designing new strategies for pest management. Despite the severity and economic impact of net blotch, this is the first study analyzing the cell wall-related genes in D. teres. We have identified key genes involved in the synthesis/remodeling of cell wall polysaccharides, namely chitin, β-(1,3)-glucan and mixed-linkage glucan synthases, as well as endo/exoglucanases and a mitogen-activated protein kinase. We have also analyzed the differential expression of these genes in D. teres spores and in the mycelium after cultivation on different media, as well as in the presence of Paraburkholderia phytofirmans strain PsJN, a plant growth-promoting bacterium (PGPB). The targeted gene expression analysis shows higher gene expression in the spores and in the mycelium with the application of PGPB. Besides analyzing key cell-wall-related genes, this study also identifies the most suitable reference genes to normalize qPCR results in D. teres, thus serving as a basis for future molecular studies on this ascomycete.
Collapse
Affiliation(s)
- Aurélie Backes
- Unité de Recherche Résistance Induite et Bio-protection des Plantes—EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse—Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France; (A.B.); (E.A.B.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg; (J.-F.H.); (J.R.)
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg; (J.-F.H.); (J.R.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes—EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse—Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France; (A.B.); (E.A.B.)
| | - Cédric Jacquard
- Unité de Recherche Résistance Induite et Bio-protection des Plantes—EA 4707, Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Moulin de la Housse—Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France; (A.B.); (E.A.B.)
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4940 Hautcharage, Luxembourg; (J.-F.H.); (J.R.)
| |
Collapse
|
30
|
Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. PLANT CELL REPORTS 2020; 39:3-17. [PMID: 31346716 DOI: 10.1007/s00299-019-02447-5] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
This article describes the composition of root exudates, how these metabolites are released to the rhizosphere and their importance in the recruitment of beneficial microbiota that alleviate plant stress. Metabolites secreted to the rhizosphere by roots are involved in several processes. By modulating the composition of the root exudates, plants can modify soil properties to adapt and ensure their survival under adverse conditions. They use several strategies such as (1) changing soil pH to solubilize nutrients into assimilable forms, (2) chelating toxic compounds, (3) attracting beneficial microbiota, or (4) releasing toxic substances for pathogens, etc. In this work, the composition of root exudates as well as the different mechanisms of root exudation have been reviewed. Existing methodologies to collect root exudates, indicating their advantages and disadvantages, are also described. Factors affecting root exudation have been exposed, including physical, chemical, and biological agents which can produce qualitative and quantitative changes in exudate composition. Finally, since root exudates play an important role in the recruitment of mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR), the mechanisms of interaction between plants and the beneficial microbiota have been highlighted.
Collapse
Affiliation(s)
- Vicente Vives-Peris
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Carlos de Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Rosa María Pérez-Clemente
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
31
|
Biofilms Positively Contribute to Bacillus amyloliquefaciens 54-induced Drought Tolerance in Tomato Plants. Int J Mol Sci 2019; 20:ijms20246271. [PMID: 31842360 PMCID: PMC6940783 DOI: 10.3390/ijms20246271] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Drought stress is a major obstacle to agriculture. Although many studies have reported on plant drought tolerance achieved via genetic modification, application of plant growth-promoting rhizobacteria (PGPR) to achieve tolerance has rarely been studied. In this study, the ability of three isolates, including Bacillus amyloliquefaciens 54, from 30 potential PGPR to induce drought tolerance in tomato plants was examined via greenhouse screening. The results indicated that B. amyloliquefaciens 54 significantly enhanced drought tolerance by increasing survival rate, relative water content and root vigor. Coordinated changes were also observed in cellular defense responses, including decreased concentration of malondialdehyde and elevated concentration of antioxidant enzyme activities. Moreover, expression levels of stress-responsive genes, such as lea, tdi65, and ltpg2, increased in B. amyloliquefaciens 54-treated plants. In addition, B. amyloliquefaciens 54 induced stomatal closure through an abscisic acid-regulated pathway. Furthermore, we constructed biofilm formation mutants and determined the role of biofilm formation in B. amyloliquefaciens 54-induced drought tolerance. The results showed that biofilm-forming ability was positively correlated with plant root colonization. Moreover, plants inoculated with hyper-robust biofilm (ΔabrB and ΔywcC) mutants were better able to resist drought stress, while defective biofilm (ΔepsA-O and ΔtasA) mutants were more vulnerable to drought stress. Taken altogether, these results suggest that biofilm formation is crucial to B. amyloliquefaciens 54 root colonization and drought tolerance in tomato plants.
Collapse
|
32
|
Timmermann T, Poupin MJ, Vega A, Urrutia C, Ruz GA, González B. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS One 2019; 14:e0221358. [PMID: 31437216 PMCID: PMC6705864 DOI: 10.1371/journal.pone.0221358] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism.
Collapse
Affiliation(s)
- Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Andrea Vega
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Urrutia
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A. Ruz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- * E-mail:
| |
Collapse
|
33
|
Saleh D, Jarry J, Rani M, Aliferis K, Seguin P, Jabaji S. Diversity, distribution and multi‐functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (Phleum pratenseL.). J Appl Microbiol 2019; 127:794-811. [DOI: 10.1111/jam.14334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- D. Saleh
- Department of Plant Science Department, Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University Ste‐Anne‐De Bellevue QC Canada
| | - J. Jarry
- Department of Plant Science Department, Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University Ste‐Anne‐De Bellevue QC Canada
| | - M. Rani
- Department of Plant Science Department, Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University Ste‐Anne‐De Bellevue QC Canada
| | - K.A. Aliferis
- Laboratory of Pesticide Science Agricultural University of Athens Athens Greece
| | - P. Seguin
- Department of Plant Science Department, Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University Ste‐Anne‐De Bellevue QC Canada
| | - S.H. Jabaji
- Department of Plant Science Department, Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University Ste‐Anne‐De Bellevue QC Canada
| |
Collapse
|
34
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems Biology of Plant-Microbiome Interactions. MOLECULAR PLANT 2019; 12:804-821. [PMID: 31128275 DOI: 10.1016/j.molp.2019.05.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/02/2023]
Abstract
In natural environments, plants are exposed to diverse microbiota that they interact with in complex ways. While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants, many microbes and microbial communities can have substantial beneficial effects on their plant host. Such beneficial effects include improved acquisition of nutrients, accelerated growth, resilience against pathogens, and improved resistance against abiotic stress conditions such as heat, drought, and salinity. However, the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific, posing an obstacle to their general application. Remarkably, many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens. To unravel the complex network of genetic, microbial, and metabolic interactions, including the signaling events mediating microbe-host interactions, comprehensive quantitative systems biology approaches will be needed.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Rothballer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Institute of Environmental Medicine (IEM), UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|
35
|
Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not In Planta. Appl Environ Microbiol 2019; 85:AEM.02670-18. [PMID: 30902863 DOI: 10.1128/aem.02670-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/09/2019] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in planta IMPORTANCE Paraburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.
Collapse
|
36
|
Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y, Ballias P, Clément C, Jacquard C, Vaillant-Gaveau N, Aït Barka E. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato ( Lycopersicon esculentum L.) Under High Temperature. FRONTIERS IN PLANT SCIENCE 2018; 9:1397. [PMID: 30405648 PMCID: PMC6201190 DOI: 10.3389/fpls.2018.01397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/03/2018] [Indexed: 05/24/2023]
Abstract
Abnormal temperatures induce physiological and biochemical changes resulting in the loss of yield. The present study investigates the impact of the PsJN strain of Paraburkholderia phytofirmans on tomato (Lycopersicon esculentum Mill.) in response to heat stress (32°C). The results of this work showed that bacterial inoculation with P. phytofirmans strain PsJN increased tomato growth parameters such as chlorophyll content and gas exchange at both normal and high temperatures (25 and 32°C). At normal temperature (25°C), the rate of photosynthesis and the photosystem II activity increased with significant accumulations of sugars, total amino acids, proline, and malate in the bacterized tomato plants, demonstrating that the PsJN strain had a positive effect on plant growth. However, the amount of sucrose, total amino acids, proline, and malate were significantly affected in tomato leaves at 32°C compared to that at 25°C. Changes in photosynthesis and chlorophyll fluorescence showed that the bacterized tomato plants were well acclimated at 32°C. These results reinforce the current knowledge about the PsJN strain of P. phytofirmans and highlight in particular its ability to alleviate the harmful effects of high temperatures by stimulating the growth and tolerance of tomato plants.
Collapse
Affiliation(s)
- Alaa Issa
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Qassim Esmaeel
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Barbara Courteaux
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Jean-Francois Guise
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Villenave-d’Ornon, France
| | - Patricia Ballias
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Villenave-d’Ornon, France
| | - Christophe Clément
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Vaillant-Gaveau
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Essaïd Aït Barka
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
37
|
Lata R, Chowdhury S, Gond SK, White JF. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 2018; 66:268-276. [PMID: 29359344 DOI: 10.1111/lam.12855] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/01/2022]
Abstract
Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants.
Collapse
Affiliation(s)
- R Lata
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - S Chowdhury
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - S K Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - J F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
38
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017; 8:2552. [PMID: 29312235 PMCID: PMC5742157 DOI: 10.3389/fmicb.2017.02552] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C. Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Su F, Villaume S, Rabenoelina F, Crouzet J, Clément C, Vaillant-Gaveau N, Dhondt-Cordelier S. Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans. PHOTOSYNTHESIS RESEARCH 2017; 134:201-214. [PMID: 28840464 DOI: 10.1007/s11120-017-0435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Pathogen infection of plant results in modification of photosynthesis and defense mechanisms. Beneficial microorganisms are known to improve plant tolerance to stresses. Burkholderia phytofirmans PsJN (Bp), a beneficial endophytic bacterium, promotes growth of a wide range of plants and induces plant resistance against abiotic and biotic stresses such as coldness and infection by a necrotrophic pathogen. However, mechanisms underlying its role in plant tolerance towards (hemi)biotrophic invaders is still lacking. We thus decipher photosynthetic and defense responses during the interaction between Arabidopsis, Bp and the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst). Different Bp inoculations allowed analyzes at both systemic and local levels. Despite no direct antibacterial action, our results showed that only local presence of Bp alleviates Pst growth in planta during the early stage of infection. Molecular investigations showed that seed inoculation of Bp, leading to a restricted presence in the root system, transiently primed PR1 expression after challenge with Pst but continuously primed PDF1.2 expression. Bacterization with Bp reduced Y(ND) but had no impact on PSII activity or RuBisCO accumulation. Pst infection caused an increase of Y(NA) and a decrease in ΦPSI, ETRI and in PSII activity, showed by a decrease in Fv/Fm, Y(NPQ), ΦPSII, and ETRII values. Inoculation with both bacteria did not display any variation in photosynthetic activity compared to plants inoculated with only Pst. Our findings indicated that the role of Bp here is not multifaceted, and relies only on priming of defense mechanisms but not on improving photosynthetic activity.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Sandra Villaume
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Fanja Rabenoelina
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Jérôme Crouzet
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France.
| |
Collapse
|
40
|
Timmermann T, Armijo G, Donoso R, Seguel A, Holuigue L, González B. Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:215-230. [PMID: 28118091 DOI: 10.1094/mpmi-09-16-0192-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv. tomato DC3000, in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared with noninoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared with noninoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants suggested that resistance to infection by DC3000 in plants treated with strain PsJN involves salicylic acid-, jasmonate-, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being a necessary metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium.
Collapse
Affiliation(s)
- Tania Timmermann
- 1 Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
- 4 Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Grace Armijo
- 2 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
| | - Raúl Donoso
- 1 Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
- 4 Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Aldo Seguel
- 2 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
| | - Loreto Holuigue
- 2 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
| | - Bernardo González
- 1 Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- 3 Millennium Nucleus Center for Plant Systems and Synthetic Biology, Santiago, Chile; and
- 4 Center of Applied Ecology and Sustainability, Santiago, Chile
| |
Collapse
|
41
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017. [PMID: 29312235 DOI: 10.1016/j.apsoil.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R. Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front Microbiol 2016; 7:1838. [PMID: 27909432 PMCID: PMC5112238 DOI: 10.3389/fmicb.2016.01838] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P. phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
Collapse
Affiliation(s)
- Thomas Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Sandy Rojas
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Tatiana Garrido
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Pablo Richter
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Javier Tamayo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Raúl Donoso
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center of Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| |
Collapse
|
43
|
Abstract
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
44
|
Bruňáková K, Čellárová E. Conservation Strategies in the Genus Hypericum via Cryogenic Treatment. FRONTIERS IN PLANT SCIENCE 2016; 7:558. [PMID: 27200032 PMCID: PMC4846653 DOI: 10.3389/fpls.2016.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 05/25/2023]
Abstract
In the genus Hypericum, cryoconservation offers a strategy for maintenance of remarkable biodiversity, emerging from large inter- and intra-specific variability in morphological and phytochemical characteristics. Long-term cryostorage thus represents a proper tool for preservation of genetic resources of endangered and threatened Hypericum species or new somaclonal variants with unique properties. Many representatives of the genus are known as producers of pharmacologically important polyketides, namely naphthodianthrones and phloroglucinols. As a part of numerous in vitro collections, the nearly cosmopolitan Hypericum perforatum - Saint John's wort - has become a suitable model system for application of biotechnological approaches providing an attractive alternative to the traditional methods for secondary metabolite production. The necessary requirements for efficient cryopreservation include a high survival rate along with an unchanged biochemical profile of plants regenerated from cryopreserved cells. Understanding of the processes which are critical for recovery of H. perforatum cells after the cryogenic treatment enables establishment of cryopreservation protocols applicable to a broad number of Hypericum species. Among them, several endemic taxa attract a particular attention due to their unique characteristics or yet unrevealed spectrum of bioactive compounds. In this review, recent advances in the conventional two-step and vitrification-based cryopreservation techniques are presented in relation to the recovery rate and biosynthetic capacity of Hypericum spp. The pre-cryogenic treatments which were identified to be crucial for successful post-cryogenic recovery are discussed. Being a part of genetic predisposition, the freezing tolerance as a necessary precondition for successful post-cryogenic recovery is pointed out. Additionally, a beneficial influence of cold stress on modulating naphthodianthrone biosynthesis is outlined.
Collapse
|
45
|
Poupin MJ, Greve M, Carmona V, Pinedo I. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN. FRONTIERS IN PLANT SCIENCE 2016; 7:492. [PMID: 27148317 PMCID: PMC4828629 DOI: 10.3389/fpls.2016.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 05/05/2023]
Abstract
Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.
Collapse
Affiliation(s)
- María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- *Correspondence: María J. Poupin,
| | - Macarena Greve
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Vicente Carmona
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| |
Collapse
|
46
|
Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L. Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. FRONTIERS IN PLANT SCIENCE 2016; 7:1236. [PMID: 27602036 PMCID: PMC4993772 DOI: 10.3389/fpls.2016.01236] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including grapevine. Further, the bacterium induces plant resistance against abiotic and biotic stresses. However, no study has deciphered triggered-mechanisms during the tripartite interaction between grapevine, B. phytofirmans PsJN and Botrytis cinerea. Herein, we showed that in contrast with classical rhizobacteria, which are restricted in the root system and act through ISR, B. phytofirmans PsJN is able to migrate until aerial part and forms at leaves surface a biofilm around B. cinerea mycelium to restrict the pathogen. Nevertheless, considering the endophytic level of PsJN in leaves, the plant protection efficacy of B. phytofirmans PsJN could not be explained solely by its direct antifungal effect. Deeper investigations showed a callose deposition, H2O2 production and primed expression of PR1, PR2, PR5, and JAZ only in bacterized-plantlets after pathogen challenge. The presence of PsJN modulated changes in leaf carbohydrate metabolism including gene expression, sugar levels, and chlorophyll fluorescence imaging after Botrytis challenge. Our findings indicated that protection induced by B. phytofirmans PsJN was multifaceted and relied on a direct antifungal effect, priming of defense mechanisms as well as the mobilization of carbon sources in grapevine leaf tissues.
Collapse
Affiliation(s)
- Lidiane Miotto-Vilanova
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Cédric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Barbara Courteaux
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Laurence Wortham
- Laboratoire de Recherche en Nanosciences, EA 4682, Department of Physics, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Jean Michel
- Laboratoire de Recherche en Nanosciences, EA 4682, Department of Physics, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Essaïd A. Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-ArdenneReims, France
- *Correspondence: Lisa Sanchez,
| |
Collapse
|
47
|
Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L. Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27602036 DOI: 10.3389/fpls.2016.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including grapevine. Further, the bacterium induces plant resistance against abiotic and biotic stresses. However, no study has deciphered triggered-mechanisms during the tripartite interaction between grapevine, B. phytofirmans PsJN and Botrytis cinerea. Herein, we showed that in contrast with classical rhizobacteria, which are restricted in the root system and act through ISR, B. phytofirmans PsJN is able to migrate until aerial part and forms at leaves surface a biofilm around B. cinerea mycelium to restrict the pathogen. Nevertheless, considering the endophytic level of PsJN in leaves, the plant protection efficacy of B. phytofirmans PsJN could not be explained solely by its direct antifungal effect. Deeper investigations showed a callose deposition, H2O2 production and primed expression of PR1, PR2, PR5, and JAZ only in bacterized-plantlets after pathogen challenge. The presence of PsJN modulated changes in leaf carbohydrate metabolism including gene expression, sugar levels, and chlorophyll fluorescence imaging after Botrytis challenge. Our findings indicated that protection induced by B. phytofirmans PsJN was multifaceted and relied on a direct antifungal effect, priming of defense mechanisms as well as the mobilization of carbon sources in grapevine leaf tissues.
Collapse
Affiliation(s)
- Lidiane Miotto-Vilanova
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Cédric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Barbara Courteaux
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Laurence Wortham
- Laboratoire de Recherche en Nanosciences, EA 4682, Department of Physics, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Jean Michel
- Laboratoire de Recherche en Nanosciences, EA 4682, Department of Physics, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Essaïd A Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes URVVC-EA 4707, UFR Sciences Exactes et Naturelles, University of Reims-Champagne-Ardenne Reims, France
| |
Collapse
|
48
|
Su F, Gilard F, Guérard F, Citerne S, Clément C, Vaillant-Gaveau N, Dhondt-Cordelier S. Spatio-temporal Responses of Arabidopsis Leaves in Photosynthetic Performance and Metabolite Contents to Burkholderia phytofirmans PsJN. FRONTIERS IN PLANT SCIENCE 2016; 7:403. [PMID: 27066045 PMCID: PMC4811906 DOI: 10.3389/fpls.2016.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/14/2016] [Indexed: 05/13/2023]
Abstract
A valuable strategy to improve crop yield consists in the use of plant growth-promoting rhizobacteria (PGPRs). However, the influence of PGPR colonization on plant physiology is largely unknown. PGPR Burkholderia phytofirmans strain PsJN (Bp PsJN) colonized only Arabidopsis thaliana roots after seed or soil inoculation. Foliar bacteria were detected only after leaf infiltration. Since, different bacterial times of presence and/or locations in host plant could lead to different plant physiological responses, photosynthesis, and metabolite profiles in A. thaliana leaves were thus investigated following leaf, root, or seed inoculation with Bp PsJN. Only Bp PsJN leaf colonization transiently decreased cyclic electron transport and effective quantum yield of photosystem I (PSI), and prevented a decrease in net photosynthesis and stomatal opening compared to the corresponding control. Metabolomic analysis revealed that soluble sugars, amino acids or their derivatives accumulated differently in all Bp PsJN-inoculated plants. Octanoic acid accumulated only in case of inoculated plants. Modifications in vitamin, organic acid such as tricarboxylic acid intermediates, and hormone amounts were dependent on bacterial time of presence and location. Additionally, a larger array of amino acids and hormones (auxin, cytokinin, abscisic acid) were modified by seed inoculation with Bp PsJN. Our work thereby provides evidence that relative short-term inoculation with Bp PsJN altered physiological status of A. thaliana leaves, whereas long-term bacterization triggered modifications on a larger set of metabolites. Our data highlighted the changes displayed during this plant-microbe interaction to trigger physiological and metabolic responses that could explain the increase in plant growth or stress tolerance conferred by the presence of Bp PsJN.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
| | - Françoise Gilard
- UMR CNRS-INRA 9213, Saclay Plant Sciences, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), Université Paris-SudOrsay, France
| | - Florence Guérard
- UMR CNRS-INRA 9213, Saclay Plant Sciences, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), Université Paris-SudOrsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, ERL 3559 CNRS, INRA Versailles-GrignonVersailles, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France
- *Correspondence: Sandrine Dhondt-Cordelier,
| |
Collapse
|