1
|
Zhao D, An H, Tao J. Unlocking the molecular secrets of Paeonia plants: advances in key gene mining and molecular breeding technology. HORTICULTURE RESEARCH 2025; 12:uhaf090. [PMID: 40352288 PMCID: PMC12064954 DOI: 10.1093/hr/uhaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 05/14/2025]
Abstract
Paeonia plants are famous for their ornamental, medicinal, and oil values. Due to the popularity of seed oil and cut flowers in the market, the mechanisms underlying related traits of Paeonia plants have been fascinating, and the research work on them has increased rapidly in recent years, urging a comprehensive review of their research progress. To unlock the molecular secrets of Paeonia plants, we first summarize the latest advances in their genome research. More importantly, we emphasize the key genes involved in plant growth and development processes, such as bud dormancy, flowering regulation, seed oil formation, flower coloration, stem strength regulation, fragrance emission, as well as plant resistance to stress, including drought, high-temperature, low-temperature, salt, and waterlogging stresses, and biotic stress. In addition, the advances in molecular breeding technology of Paeonia plants are highlighted, such as molecular marker, genetic map, localization of quantitative trait loci, tissue culture, and genetic transformation system. This review covers advances in the past decades and provides valuable insights into the perspectives for the key gene mining and molecular breeding technology of Paeonia plants, which would help breed new Paeonia varieties through molecular breeding technology.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Honglei An
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
2
|
Ye Q, Liu F, Feng K, Fu T, Li W, Zhang C, Li M, Wang Z. Integrated Metabolomics and Transcriptome Analysis of Anthocyanin Biosynthetic Pathway in Prunus serrulata. PLANTS (BASEL, SWITZERLAND) 2025; 14:114. [PMID: 39795374 PMCID: PMC11723355 DOI: 10.3390/plants14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Prunus serrulata is an important landscape tree species whose flower color has high ornamental value. However, the molecular mechanisms regulating flower color in P. serrulata remain unclear. By studying the metabolomics and transcriptomics of three different color varieties under the species lineage of P. serrulata, 'Eigeng' (EG, white), 'Albo-rosea' (AR, pink), and 'Grandiflora' (GF, green), the biosynthetic mechanisms of different flower colors in P. serrulata were revealed. The results showed that the different colors of the petals were related to the content of chlorophyll and anthocyanins. Among these, cyanidin-3-O-glucoside and cyanidin-3-O-(6-O-malonyl-β-D-glucoside) were highly expressed in AR. A combined transcriptomic analysis revealed that five flavonoid structural genes, including two DFR genes and three UFGT genes, were specifically expressed. In addition, three key transcription factors, PsMYB77, PsMYB17, and PsMYB105, were identified as regulators of the structural genes DFR and UFGT and participants in the forward synthesis of anthocyanin. This study provides convincing evidence elucidating the regulatory mechanisms of anthocyanin synthesis of P. serrulata and provides a theoretical basis for the breeding and development of new varieties and germplasm resource innovation for cherry blossom.
Collapse
Affiliation(s)
- Qi Ye
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Feng Liu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Kai Feng
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Tao Fu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Wen Li
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Cheng Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Meng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhilong Wang
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| |
Collapse
|
3
|
Fan Y, Jin X, Wang M, Liu H, Tian W, Xue Y, Wang K, Li H, Wu Y. Flower morphology, flower color, flowering and floral fragrance in Paeonia L. FRONTIERS IN PLANT SCIENCE 2024; 15:1467596. [PMID: 39640998 PMCID: PMC11617204 DOI: 10.3389/fpls.2024.1467596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Paeonia have diverse flower colors, rich flower types, varying bloom periods, and delightful fragrances, rendering them highly valuable for both ornamental and economic purposes in horticulture. Investigating the developmental mechanisms of morphology, flower color, flowering and floral fragrance in Paeonia holds significant value for enhancing their ornamental traits and conducting germplasm improvement. This review provides an overview of research progress on Paeonia flower morphology (including flower bud differentiation, classification, omics applications in shape studies, and functional genes regulating flower morphology), flower colors (omics applications in color research and functional genes regulating flower colors), bloom periods (flower bud dormancy, flowering time), and fragrances (preparation, analysis, components, and molecular biology research of flower fragrances) within the Paeonia. Additionally, it offers a comprehensive analysis of current research challenges and future directions.
Collapse
Affiliation(s)
- Yongming Fan
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Xing Jin
- Construction Decoration Co., LTD of China Construction No.7 Engineering Bureau, Zhengzhou, China
| | - Mengshan Wang
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Huadong Liu
- Construction Decoration Co., LTD of China Construction No.7 Engineering Bureau, Zhengzhou, China
| | - Weili Tian
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Yandong Xue
- Construction Decoration Co., LTD of China Construction No.7 Engineering Bureau, Zhengzhou, China
| | - Kai Wang
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Hu Li
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Yan Wu
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| |
Collapse
|
4
|
Zheng Y, Li P, Shen J, Yang K, Wu X, Wang Y, Yuan YH, Xiao P, He C. Comprehensive comparison of different parts of Paeonia ostii, a food-medicine plant, based on untargeted metabolomics, quantitative analysis, and bioactivity analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243724. [PMID: 37711307 PMCID: PMC10497777 DOI: 10.3389/fpls.2023.1243724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Introduction Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Pei Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Kailin Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xinyan Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yu-he Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Xu S, Liu W, Liu X, Qin C, He L, Wang P, Kong L, Chen X, Liu Z, Ma W. DUS evaluation of nine intersubgeneric hybrids of Paeonia lactiflora and fingerprint analysis of the chemical components in the roots. Front Chem 2023; 11:1158727. [PMID: 36970400 PMCID: PMC10038168 DOI: 10.3389/fchem.2023.1158727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Intersubgeneric hybrids of Paeonia lactiflora (Paeonia lactiflora pall., P. lactiflora.) cover a huge variety of systems in the genus Paeonia. In recent years, many studies have confirmed that the intersubgeneric hybrids of P. lactiflora. are rich in paeoniflorin and other medicinal ingredients, however, it has always proved difficult to clarify the medicinal value of the hybrids and whether they can be used for medicinal purposes. In this study, the consistency of the plant population was evaluated through DUS evaluation, in order to clarify whether the selected research materials had stability and consistency within the population and specificity between populations. The differences between the paeoniflorin contents in the roots of the nine intersubgeneric hybrids of the P. lactiflora. varieties and two medicinal varieties were critically compared. The differences in the chemical components of the roots of nine intersubgeneric hybrids of P. lactiflora. and reference medicine substances of P. lactiflora. and Paeonia anomala subsp. veitchii (Lynch) D. Y. Hong and K. Y. Pan (Paeonia veitchii Lynch., P. veitchii.) were explored via stoichiometric and chemical fingerprint high performance liquid chromatography analyses. The results showed that there were significant differences in the chemical compositions between the intersubgeneric hybrids of P. lactiflora. and the medicinal reference materials, and the contents of paeoniflorin were elevated such that the hybrids could be used as the raw material for extraction of paeoniflorin, thus providing an opportunity to explore the medicinal value of the hybrids. This study explored the key differential components among the varieties and provides a reference and basis for the study of the medicinal value and the identification of the intersubgeneric hybrids of the P. lactiflora. varieties.
Collapse
Affiliation(s)
- Shiyi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi Chen
- Harbin Academy of Agricultural Sciences, Harbin, China
| | - Zhiyang Liu
- Harbin Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Zhiyang Liu, ; Wei Ma,
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Zhiyang Liu, ; Wei Ma,
| |
Collapse
|
6
|
Grohar MC, Medic A, Ivancic T, Veberic R, Jogan J. Color Variation and Secondary Metabolites' Footprint in a Taxonomic Complex of Phyteuma sp. (Campanulaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2894. [PMID: 36365351 PMCID: PMC9658285 DOI: 10.3390/plants11212894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the genus Phyteuma, the taxonomic delimitation of some species is difficult since a high variability of morphological traits, such as flower color, is present, probably due to high levels of hybridization. Historic descriptions and the morphological traits used in the taxonomic keys are sometimes unclear and lead to misinterpretations. Here, a detailed analysis of flower color variability in different populations of sympatric P. spicatum, P. ovatum, and P. persicifolium constitutes a new approach to clarifying the taxonomic statuses. The numeric analysis of color, providing colorimetric variables, together with the detailed description of the metabolic profiles of populations with different flower colors, constitute a unique chemical fingerprint that identifies species and subspecies with clear markers. This study is the most complete metabolic research on genus Phyteuma, since we identified and quantified 44 phenolic compounds using HPLC-MS, comprising 14 phenolic acids, 23 flavonols and flavones, and, for the first time in the genus, 7 anthocyanins involved in flower color variability. This approach contributes to clarifying the differences between species, which is particularly relevant in taxonomic complexes such as the present, where morphology fails to clearly differentiate taxa at specific and intraspecific levels.
Collapse
Affiliation(s)
- Mariana Cecilia Grohar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Aljaz Medic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Tea Ivancic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Jernej Jogan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
8
|
Tasaki K, Watanabe A, Nemoto K, Takahashi S, Goto F, Sasaki N, Hikage T, Nishihara M. Identification of Candidate Genes Responsible for Flower Colour Intensity in Gentiana triflora. FRONTIERS IN PLANT SCIENCE 2022; 13:906879. [PMID: 35812931 PMCID: PMC9257217 DOI: 10.3389/fpls.2022.906879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Gentians cultivated in Japan (Gentiana triflora and Gentiana scabra and hybrids) have blue flowers, but flower colour intensity differs among cultivars. The molecular mechanism underlying the variation in flower colour intensity is unclear. Here, we produced F2 progeny derived from an F1 cross of intense- and faint-blue lines and attempted to identify the genes responsible for flower colour intensity using RNA-sequencing analyses. Comparative analysis of flower colour intensity and transcriptome data revealed differentially expressed genes (DEGs), although known flavonoid biosynthesis-related genes showed similar expression patterns. From quantitative RT-PCR (qRT-PCR) analysis, we identified two and four genes with significantly different expression levels in the intense- and faint-blue flower lines, respectively. We conducted further analyses on one of the DEGs, termed GtMIF1, which encodes a putative mini zinc-finger protein homolog, which was most differently expressed in faint-blue individuals. Functional analysis of GtMIF1 was performed by producing stable tobacco transformants. GtMIF1-overexpressing tobacco plants showed reduced flower colour intensity compared with untransformed control plants. DNA-marker analysis also confirmed that the GtMIF1 allele of the faint-blue flower line correlated well with faint flower colour in F2 progeny. These results suggest that GtMIF1 is one of the key genes involved in determining the flower colour intensity of gentian.
Collapse
Affiliation(s)
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | | | - Fumina Goto
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | - Takashi Hikage
- Hachimantai City Floricultural Research and Development Center, Hachimantai, Japan
| | | |
Collapse
|
9
|
Luo X, Luo S, Fu Y, Kong C, Wang K, Sun D, Li M, Yan Z, Shi Q, Zhang Y. Genome-Wide Identification and Comparative Profiling of MicroRNAs Reveal Flavonoid Biosynthesis in Two Contrasting Flower Color Cultivars of Tree Peony. FRONTIERS IN PLANT SCIENCE 2022; 12:797799. [PMID: 35058956 PMCID: PMC8763678 DOI: 10.3389/fpls.2021.797799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 05/08/2023]
Abstract
MicroRNA (miRNA)-mediated gene regulation is involved in various physiological processes in plants. Flower color is one of the vital ornamental traits of tree peony (Paeonia suffruticosa Andr.). However, the yellow-flowered tree peony cultivars are particularly rare. To elucidate the miRNA-mediated gene regulatory mechanism underlying yellow pigmentation in tree peony, we combined pigment assessment, miRNA identification, expression analysis, and gene functional verification in two contrasting flower color cultivars "High Noon" and "Roufurong." Flavones/flavonols and anthocyanins were found to be the main contributors to the coloration of "High Noon" and "Roufurong" petals, respectively. Subsequently, miRNA analysis based on available genome data identified 9 differentially expressed miRNAs and 12 relevant target genes implicated in flavonoid biosynthesis. Their dynamic expression patterns determined the key role of mdm-miR156b-PsSPL2 module in yellow pigmentation of tree peony flowers. The sequence analysis and subcellular localization validated that PsSPL2 might function as a nuclear-localized transcription factor. Overexpression of PsSPL2 in tobacco resulted in a decrease of anthocyanin content and down-regulation of NtF3'H and NtDFR transcripts. PsSPL2-silenced petals exhibited lighter yellow color, and the contents of THC, Ap, and Ch decreased significantly. Meanwhile, expression levels of PsCHS, PsCHI, and PsF3H were significantly decreased in the petals with PsSPL2 silencing, while those of PsF3'H and PsDFR were remarkably increased. This study offers a novel insight into yellow pigmentation-related miRNA regulation network in tree peony, and further provides the valuable information on physiological changes during yellow coloring process of tree peony.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Chen Kong
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Kai Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Mengchen Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Zhenguo Yan
- Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Osorio-Guarín JA, Gopaulchan D, Quanckenbush C, Lennon AM, Umaharan P, Cornejo OE. Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.). PLoS One 2021; 16:e0261364. [PMID: 34890418 PMCID: PMC8664202 DOI: 10.1371/journal.pone.0261364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently insufficient information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum were characterized by transcriptome sequencing (RNA-seq). For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three cultivars that differ in spathe color (‘Sasha’ (white), ‘Honduras’ (red), and ‘Rapido’ (purple)). A large number of differentially expressed genes (8,324), potentially involved in multiple biological and metabolic pathways, were identified, including genes in the flavonoid and anthocyanin biosynthetic pathways. Our results showed that the chalcone isomerase (CHI) gene presented the strongest evidence for an association with differences in color and the highest correlation with other key genes (flavanone 3-hydroxylase (F3H), flavonoid 3’5’ hydroxylase (F3’5’H)/ flavonoid 3’-hydroxylase (F3’H), and leucoanthocyanidin dioxygenase (LDOX)) in the anthocyanin pathway. We also identified a differentially expressed cytochrome P450 gene in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Furthermore, transcription factors related to putative MYB-domain protein that may control anthocyanin pathway were identified through a weighted gene co-expression network analysis (WGCNA). The results provided basic sequence information for future research on spathe color, which have important implications for this ornamental breeding strategies.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria–Agrosavia, Mosquera, Cundinamarca, Colombia
| | - David Gopaulchan
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Corey Quanckenbush
- Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Adrian M. Lennon
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Pathmanathan Umaharan
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tong NN, Peng LP, Liu ZA, Li Y, Zhou XY, Wang XR, Shu QY. Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species. PHYSIOLOGIA PLANTARUM 2021; 173:961-977. [PMID: 34237150 DOI: 10.1111/ppl.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Paeonia is recognized globally due to its ornamental value. However, the mechanisms behind the formation of distinct levels of lignification in Paeonia stems remain largely unknown. In this study, we selected three representative Paeonia species, namely P. ostii (shrub), P. lactiflora (herb), and P. × 'Hexie' (semi-shrub), to evaluate and contrast their respective anatomical structure, phytochemical composition and transcriptomic profile. Our results showed that the degree of lignin deposition on the cell wall, along with the total amount of lignin and its monomers (especially G-lignin) were higher in P. ostii stems compared to the other two species at almost all development stages except 80 days after flowering. Furthermore, we estimated a total number of unigenes of 60,238 in P. ostii, 43,563 in P. × 'Hexie', and 40,212 in P. lactiflora from stem transcriptome. We then built a co-expression network of 25 transcription factors and 21 enzyme genes involved in lignin biosynthesis and identified nine key candidate genes. The expression patterns of these genes were positively correlated with the transcription levels of PAL, C4H, 4CL2, CCR, and COMT, as well as lignin content. Moreover, the highest relative expression levels of CCR, 4CL2, and C4H were found in P. ostii. This study provides an explanation for the observed differences in lignification between woody and herbaceous Paeonia stems, and constitutes a novel reference for molecular studies of stem-specific lignification process and lignin biosynthesis that can impact the ornamental industry.
Collapse
Affiliation(s)
- Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yang Zhou
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Luo X, Sun D, Wang S, Luo S, Fu Y, Niu L, Shi Q, Zhang Y. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. HORTICULTURE RESEARCH 2021; 8:235. [PMID: 34719694 PMCID: PMC8558324 DOI: 10.1038/s41438-021-00666-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 06/02/2023]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a popular ornamental plant in China due to its showy and colorful flowers. However, yellow-colored flowers are rare in both wild species and domesticated cultivars. The molecular mechanisms underlying yellow pigmentation remain poorly understood. Here, petal tissues of two tree peony cultivars, "High Noon" (yellow flowers) and "Roufurong" (purple-red flowers), were sampled at five developmental stages (S1-S5) from early flower buds to full blooms. Five petal color indices (brightness, redness, yellowness, chroma, and hue angle) and the contents of ten different flavonoids were determined. Compared to "Roufurong," which accumulated abundant anthocyanins at S3-S5, the yellow-colored "High Noon" displayed relatively higher contents of tetrahydroxychalcone (THC), flavones, and flavonols but no anthocyanin production. The contents of THC, flavones, and flavonols in "High Noon" peaked at S3 and dropped gradually as the flower bloomed, consistent with the color index patterns. Furthermore, RNA-seq analyses at S3 showed that structural genes such as PsC4Hs, PsDFRs, and PsUFGTs in the flavonoid biosynthesis pathway were downregulated in "High Noon," whereas most PsFLSs, PsF3Hs, and PsF3'Hs were upregulated. Five transcription factor (TF) genes related to flavonoid biosynthesis were also upregulated in "High Noon." One of these TFs, PsMYB111, was overexpressed in tobacco, which led to increased flavonols but decreased anthocyanins. Dual-luciferase assays further confirmed that PsMYB111 upregulated PsFLS. These results improve our understanding of yellow pigmentation in tree peony and provide a guide for future molecular-assisted breeding experiments in tree peony with novel flower colors.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
| |
Collapse
|
13
|
Sánchez-Cabrera M, Jiménez-López FJ, Narbona E, Arista M, Ortiz PL, Romero-Campero FJ, Ramanauskas K, Igić B, Fuller AA, Whittall JB. Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis. FRONTIERS IN PLANT SCIENCE 2021; 12:633979. [PMID: 33692818 PMCID: PMC7937975 DOI: 10.3389/fpls.2021.633979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
Anthocyanins are the primary pigments contributing to the variety of flower colors among angiosperms and are considered essential for survival and reproduction. Anthocyanins are members of the flavonoids, a broader class of secondary metabolites, of which there are numerous structural genes and regulators thereof. In western European populations of Lysimachia arvensis, there are blue- and orange-petaled individuals. The proportion of blue-flowered plants increases with temperature and daylength yet decreases with precipitation. Here, we performed a transcriptome analysis to characterize the coding sequences of a large group of flavonoid biosynthetic genes, examine their expression and compare our results to flavonoid biochemical analysis for blue and orange petals. Among a set of 140 structural and regulatory genes broadly representing the flavonoid biosynthetic pathway, we found 39 genes with significant differential expression including some that have previously been reported to be involved in similar flower color transitions. In particular, F3'5'H and DFR, two genes at a critical branchpoint in the ABP for determining flower color, showed differential expression. The expression results were complemented by careful examination of the SNPs that differentiate the two color types for these two critical genes. The decreased expression of F3'5'H in orange petals and differential expression of two distinct copies of DFR, which also exhibit amino acid changes in the color-determining substrate specificity region, strongly correlate with the blue to orange transition. Our biochemical analysis was consistent with the transcriptome data indicating that the shift from blue to orange petals is caused by a change from primarily malvidin to largely pelargonidin forms of anthocyanins. Overall, we have identified several flavonoid biosynthetic pathway loci likely involved in the shift in flower color in L. arvensis and even more loci that may represent the complex network of genetic and physiological consequences of this flower color polymorphism.
Collapse
Affiliation(s)
- Mercedes Sánchez-Cabrera
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Montserrat Arista
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Pedro L. Ortiz
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Francisco J. Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, University of Seville – Centro Superior de Investigación Científica, Seville, Spain
- Department of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain
| | - Karolis Ramanauskas
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Boris Igić
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Amelia A. Fuller
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Justen B. Whittall
- Department of Biology, College of Arts and Sciences, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
14
|
Cui X, Deng J, Huang C, Tang X, Li X, Li X, Lu J, Zhang Z. Transcriptomic Analysis of the Anthocyanin Biosynthetic Pathway Reveals the Molecular Mechanism Associated with Purple Color Formation in Dendrobium Nestor. Life (Basel) 2021; 11:113. [PMID: 33540822 PMCID: PMC7912934 DOI: 10.3390/life11020113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/14/2023] Open
Abstract
Dendrobium nestor is a famous orchid species in the Orchidaceae family. There is a diversity of flower colorations in the Dendrobium species, but knowledge of the genes involved and molecular mechanism underlying the flower color formation in D. nestor is less studied. Therefore, we performed transcriptome profiling using Illumina sequencing to facilitate thorough studies of the purple color formation in petal samples collected at three developmental stages, namely-flower bud stage (F), half bloom stage (H), and full bloom stage (B) in D. nestor. In addition, we identified key genes and their biosynthetic pathways as well as the transcription factors (TFs) associated with purple flower color formation. We found that the phenylpropanoid-flavonoid-anthocyanin biosynthesis genes such as phenylalanine ammonia lyase, chalcone synthase, anthocyanidin synthase, and UDP-flavonoid glucosyl transferase, were largely up-regulated in the H and B samples as compared to the F samples. This upregulation might partly account for the accumulation of anthocyanins, which confer the purple coloration in these samples. We further identified several differentially expressed genes related to phytohormones such as auxin, ethylene, cytokinins, salicylic acid, brassinosteroid, and abscisic acid, as well as TFs such as MYB and bHLH, which might play important roles in color formation in D. nestor flower. Sturdy upregulation of anthocyanin biosynthetic structural genes might be a potential regulatory mechanism in purple color formation in D. nestor flowers. Several TFs were predicted to regulate the anthocyanin genes through a K-mean clustering analysis. Our study provides valuable resource for future studies to expand our understanding of flower color development mechanisms in D. nestor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiashi Lu
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.C.); (J.D.); (C.H.); (X.T.); (X.L.); (X.L.)
| | - Zibin Zhang
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.C.); (J.D.); (C.H.); (X.T.); (X.L.); (X.L.)
| |
Collapse
|
15
|
Yin X, Zhang Y, Zhang L, Wang B, Zhao Y, Irfan M, Chen L, Feng Y. Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:761668. [PMID: 34925411 PMCID: PMC8672200 DOI: 10.3389/fpls.2021.761668] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Flower color is the decisive factor that affects the commercial value of ornamental flowers. Therefore, it is important to study the regulation of flower color formation in lily to discover the positive and negative factors that regulate this important trait. In this study, MYB transcription factors (TFs) were characterized to understand the regulatory mechanism of anthocyanin biosynthesis in lily. Two R2R3-MYB TFs, LvMYB5, and LvMYB1, were found to regulate anthocyanin biosynthesis in lily flowers. LvMYB5, which has an activation motif, belongs to the SG6 MYB protein subgroup of Arabidopsis thaliana. Transient expression of LvMYB5 indicated that LvMYB5 can promote coloration in Nicotiana benthamiana leaves, and that expression of LvMYB5 increases the expression levels of NbCHS, NbDFR, and NbANS. VIGS experiments in lily petals showed that the accumulation of anthocyanins was reduced when LvMYB5 was silenced. Luciferase assays showed that LvMYB5 can promote anthocyanin synthesis by activating the ANS gene promoter. Therefore, LvMYB5 plays an important role in flower coloration in lily. In addition, the transient expression experiment provided preliminary evidence that LvMYB1 (an R2R3-MYB TF) inhibits anthocyanin synthesis in lily flowers. The discovery of activating and inhibitory factors related to anthocyanin biosynthesis in lily provides a theoretical basis for improving flower color through genetic engineering. The results of our study provide a new direction for the further study of the mechanisms of flower color formation in lilies.
Collapse
Affiliation(s)
- Xiaojuan Yin
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Yibing Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Baohua Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yidi Zhao
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Lijing Chen, ;
| | - Yulong Feng
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Yulong Feng, ;
| |
Collapse
|
16
|
The Regulation of Floral Colour Change in Pleroma raddianum (DC.) Gardner. Molecules 2020; 25:molecules25204664. [PMID: 33066182 PMCID: PMC7587386 DOI: 10.3390/molecules25204664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/03/2022] Open
Abstract
Floral colour change is a widespread phenomenon in angiosperms, but poorly understood from the genetic and chemical point of view. This article investigates this phenomenon in Pleroma raddianum, a Brazilian endemic species whose flowers change from white to purple. To this end, flavonoid compounds and their biosynthetic gene expression were profiled. By using accurate techniques (Ultra Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UPLC-HRMS)), thirty phenolic compounds were quantified. Five key genes of the flavonoid biosynthetic pathway were partially cloned, sequenced, and the mRNA levels were analysed (RT-qPCR) during flower development. Primary metabolism was also investigated by gas chromatography coupled to mass spectrometry (GC-EIMS), where carbohydrates and organic acids were identified. Collectively, the obtained results suggest that the flower colour change in P. raddianum is determined by petunidin and malvidin whose accumulation coincides with the transcriptional upregulation of early and late biosynthetic genes of the flavonoid pathway, mainly CHS and ANS, respectively. An alteration in sugars, organic acids and phenolic co-pigments is observed together with the colour change. Additionally, an increment in the content of Fe3+ ions in the petals, from the pink to purple stage, seemed to influence the saturation of the colour.
Collapse
|
17
|
Liu C, Yu Q, Li Z, Jin X, Xing W. Metabolic and transcriptomic analysis related to flavonoid biosynthesis during the color formation of Michelia crassipes tepal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:938-951. [PMID: 32961471 DOI: 10.1016/j.plaphy.2020.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 05/02/2023]
Abstract
Michelia crassipes is the only plant with purple flowers amongst Michelia species, and its tepals exhibit an obvious color change from green to purple. In this study, a combination of metabolic and transcriptomic analyses was conducted at three stages of tepals in Michelia crassipes: green tepal, purple spot-containing tepal, and totally purple tepal. Several classes of flavonoid compounds were detected and cyanidin 3-rutinoside and delphinidin 3-glucoside were the major anthocyanins underlying the purple color formation, along with co-pigmentation of flavone compounds represented by luteolin derivatives and flavonol compounds represented by kaempferol and quercetin derivatives. Transcriptome analysis revealed up-regulation of genes encoding enzymes involved in the conversion of phenylpropanoid for flavonoid biosynthesis in Stage 1 vs. Stage 2, whereas up-regulation of most flavonoid biosynthesis genes was observed in Stage 1 vs. Stage 3. MYB, bHLH, and WD40 isoforms, as well as other classes of transcriptional factors, also exhibited differential expression. In addition, differentially expressed genes putatively related to the transport of flavonoids were also identified. The results of the current study provide insight into the regulatory mechanism underlying the color transition from green to purple in Michelia crassipes tepals and describe a complicated network involving PAL, transporter genes, and transcription factors, specifically responsible for the emergence of purple color in Stage 1 vs. Stage 2.
Collapse
Affiliation(s)
- Caixian Liu
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Qiuxiu Yu
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Zeqing Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Xing
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
18
|
Nawaz I, Tariq R, Nazir T, Khan I, Basit A, Gul H, Anwar T, Awan SA, Bacha SAS, Zhang L, Zhang C, Cong P. RNA-Seq profiling reveals the plant hormones and molecular mechanisms stimulating the early ripening in apple. Genomics 2020; 113:493-502. [PMID: 32966860 DOI: 10.1016/j.ygeno.2020.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/23/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Fruit development and ripening are essential components of human and animal diets. Fruit ripening is also a vital plant trait for plant shelf life at the commercial level. In the present study, two apple cultivars, Hanfu wild (HC) and Hanfu mutant (HM), were employed for RNA-Sequencing (RNA-Seq) to explore the genes involved in fruit ripening. We retrieved 2642 genes, differentially expressed in HC and HM apple cultivars. Gene ontology (GO) analysis revealed the 569 categories, significantly enriched in biological process, cellular component, and molecular function. KEGG analysis exhibited the plant hormone transduction and flavonoid-anthocyanin biosynthesis pathways, might be involved in the fruit ripening and anthocyanin biosynthesis mechanism. A cluster of 13 and 26 DEGs was retrieved, representing the plant hormones and transcription factors, respectively, that may be important for early ripening in HM genotype. This transcriptome study would be useful for researchers to functionally characterize the DEGs responsible for early ripening.
Collapse
Affiliation(s)
- Iqra Nawaz
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China
| | - Rezwan Tariq
- Department of Biotechnology, University of Okara, Punjab Zip code: 56300, Pakistan
| | - Talha Nazir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Imran Khan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Basit
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | - Hera Gul
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China
| | - Tauqir Anwar
- The Directorate General, Pest Warning & Quality Control of Pesticides, Punjab Agriculture Department, Lahore 54000, Punjab, Pakistan
| | - Samrah Afzal Awan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China
| | - Syed Asim Shah Bacha
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture, Xinghai South Street 98, Xingcheng 125100, China
| | - Liyi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China
| | - Caixia Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China.
| | - Peihua Cong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China.
| |
Collapse
|
19
|
Duan HR, Wang LR, Cui GX, Zhou XH, Duan XR, Yang HS. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC PLANT BIOLOGY 2020; 20:110. [PMID: 32164566 PMCID: PMC7068929 DOI: 10.1186/s12870-020-2322-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/28/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND To understand the gene expression networks controlling flower color formation in alfalfa, flowers anthocyanins were identified using two materials with contrasting flower colors, namely Defu and Zhongtian No. 3, and transcriptome analyses of PacBio full-length sequencing combined with RNA sequencing were performed, across four flower developmental stages. RESULTS Malvidin and petunidin glycoside derivatives were the major anthocyanins in the flowers of Defu, which were lacking in the flowers of Zhongtian No. 3. The two transcriptomic datasets provided a comprehensive and systems-level view on the dynamic gene expression networks underpinning alfalfa flower color formation. By weighted gene coexpression network analyses, we identified candidate genes and hub genes from the modules closely related to floral developmental stages. PAL, 4CL, CHS, CHR, F3'H, DFR, and UFGT were enriched in the important modules. Additionally, PAL6, PAL9, 4CL18, CHS2, 4 and 8 were identified as hub genes. Thus, a hypothesis explaining the lack of purple color in the flower of Zhongtian No. 3 was proposed. CONCLUSIONS These analyses identified a large number of potential key regulators controlling flower color pigmentation, thereby providing new insights into the molecular networks underlying alfalfa flower development.
Collapse
Affiliation(s)
- Hui-Rong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li-Rong Wang
- College of Ecological Environment and Resources, Qinghai Nationalities University, Xining, China
| | - Guang-Xin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Rong Duan
- Shanxi Electric Power Research Institute, State Grid Corporation of China, Taiyuan, China
| | - Hong-Shan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
20
|
Zhang Y, Zhou T, Dai Z, Dai X, Li W, Cao M, Li C, Tsai WC, Wu X, Zhai J, Liu Z, Wu S. Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population. Int J Mol Sci 2019; 21:E247. [PMID: 31905846 PMCID: PMC6982098 DOI: 10.3390/ijms21010247] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants.
Collapse
Affiliation(s)
- Yiyi Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Tinghong Zhou
- Huanglong National Scenic Reserve, Songpan 623300, China;
| | - Zhongwu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Xiaoyu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Wei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Mengxia Cao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Chengru Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Wen-Chieh Tsai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan City 701, China
| | - Xiaoqian Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| |
Collapse
|
21
|
Fan Y, Wang Q, Dong Z, Yin Y, Teixeira da Silva JA, Yu X. Advances in molecular biology of Paeonia L. PLANTA 2019; 251:23. [PMID: 31784828 DOI: 10.1007/s00425-019-03299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular biology can serve as a tool to solve the limitations of traditional breeding and cultivation techniques related to flower patterns, the improvement of flower color, and the regulation of flowering and stress resistance. These characteristics of molecular biology ensured its significant role in improving the efficiency of breeding and germplasm amelioration of Paeonia. This review describes the advances in molecular biology of Paeonia, including: (1) the application of molecular markers; (2) genomics, transcriptomics, proteomics, metabolomics, and microRNA studies; (3) studies of functional genes; and (4) molecular biology techniques. This review also points out select limitations in current molecular biology, analyzes the direction of Paeonia molecular biology research, and provides advice for future research objectives.
Collapse
Affiliation(s)
- Yongming Fan
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Qi Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Zhijun Dong
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | - Yijia Yin
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, People's Republic of China.
| |
Collapse
|
22
|
Liu N, Cheng F, Zhong Y, Guo X. Comparative transcriptome and coexpression network analysis of carpel quantitative variation in Paeonia rockii. BMC Genomics 2019; 20:683. [PMID: 31464595 PMCID: PMC6716868 DOI: 10.1186/s12864-019-6036-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Quantitative variation of floral organs in plants is caused by an extremely complex process of transcriptional regulation. Despite progress in model plants, the molecular mechanisms of quantitative variation remain unknown in woody flower plants. The Paeonia rockii originated in China is a precious woody plant with ornamental, medicinal and oil properties. There is a wide variation in the number of carpel in P. rockii, but the molecular mechanism of the variation has rarely been studied. Then a comparative transcriptome was performed among two cultivars of P. rockii with different development patterns of carpel in this study. RESULTS Through the next-generation and single-molecule long-read sequencing (NGS and SMLRS), 66,563 unigenes and 28,155 differentially expressed genes (DEGs) were identified in P. rockii. Then clustering pattern and weighted gene coexpression network analysis (WGCNA) indicated that 15 candidate genes were likely involved in the carpel quantitative variation, including floral organ development, transcriptional regulatory and enzyme-like factors. Moreover, transcription factors (TFs) from the MYB, WD, RING1 and LRR gene families suggested the important roles in the management of the upstream genes. Among them, PsMYB114-like, PsMYB12 and PsMYB61-like from the MYB gene family were probably the main characters that regulated the carpel quantitative variation. Further, a hypothetical model for the regulation pattern of carpel quantitative variation was proposed in which the candidate genes function synergistically the quantitative variation process. CONCLUSIONS We present the high-quality sequencing products in P. rockii. Our results summarize a valuable collective of gene expression profiles characterizing the carpel quantitative variation. The DEGs are candidate for functional analyses of genes regulating the carpel quantitative variation in tree peonies, which provide a precious resource that reveals the molecular mechanism of carpel quantitative variation in other woody flower crops.
Collapse
Affiliation(s)
- Na Liu
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangyun Cheng
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Yuan Zhong
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xin Guo
- Peony International Institute, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
23
|
Zhang X, Xu Z, Yu X, Zhao L, Zhao M, Han X, Qi S. Identification of Two Novel R2R3-MYB Transcription factors, PsMYB114L and PsMYB12L, Related to Anthocyanin Biosynthesis in Paeonia suffruticosa. Int J Mol Sci 2019; 20:E1055. [PMID: 30823465 PMCID: PMC6429501 DOI: 10.3390/ijms20051055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Flower color is a charming phenotype with very important ornamental and commercial values. Anthocyanins play a critical role in determining flower color pattern formation, and their biosynthesis is typically regulated by R2R3-MYB transcription factors (TFs). Paeonia suffruticosa is a famous ornamental plant with colorful flowers. However, little is known about the R2R3-MYB TFs that regulate anthocyanin accumulation in P. suffruticosa. In the present study, two R2R3-MYB TFs, namely, PsMYB114L and PsMYB12L, were isolated from the petals of P. suffruticosa 'Shima Nishiki' and functionally characterized. Sequence analysis suggested that PsMYB114L contained a bHLH-interaction motif, whereas PsMYB12L contained two flavonol-specific motifs (SG7 and SG7-2). Subsequently, the in vivo function of PsMYB114L and PsMYB12L was investigated by their heterologous expression in Arabidopsis thaliana and apple calli. In transgenic Arabidopsis plants, overexpression of PsMYB114L and of PsMYB12L caused a significantly higher accumulation of anthocyanins, resulting in purple-red leaves. Transgenic apple calli overexpressing PsMYB114L and PsMYB12L also significantly enhanced the anthocyanins content and resulted in a change in the callus color to red. Meanwhile, gene expression analysis in A. thaliana and apple calli suggested that the expression levels of the flavonol synthase (MdFLS) and anthocyanidin reductase (MdANR) genes were significantly downregulated and the dihydroflavonol 4-reductase (AtDFR) and anthocyanin synthase (AtANS) genes were significantly upregulated in transgenic lines of PsMYB114L. Moreover, the expression level of the FLS gene (MdFLS) was significantly downregulated and the DFR (AtDFR/MdDFR) and ANS (AtANS/MdANS) genes were all significantly upregulated in transgenic lines plants of PsMYB12L. These results indicate that PsMYB114L and PsMYB12L both enhance anthocyanin accumulation by specifically regulating the expression of some anthocyanin biosynthesis-related genes in different plant species. Together, these results provide a valuable resource with which to further study the regulatory mechanism of anthocyanin biosynthesis in P. suffruticosa and for the breeding of tree peony cultivars with novel and charming flower colors.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Xiaoyan Yu
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Mingyuan Zhao
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Xu Han
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Shuai Qi
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
24
|
Yang Y, Cui B, Tan Z, Song B, Cao H, Zong C. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum. BMC Genomics 2018; 19:930. [PMID: 30545307 PMCID: PMC6293651 DOI: 10.1186/s12864-018-5351-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Vaccinium uliginosum (Ericaceae) is an important wild berry having high economic value. The white-fruited V. uliginosum variety found in the wild lacks anthocyanin and bears silvery white fruits. Hence, it is a good resource for investigating the mechanism of fruit color development. This study aimed to verify the differences in the expression levels of some structural genes and transcription factors affecting the anthocyanin biosynthesis pathway by conducting high-throughput transcriptome sequencing and real-time PCR analysis by using the ripening fruits of V. uliginosum and the white-fruited variety. RESULTS We annotated 42,837 unigenes. Of the 325 differentially expressed genes, 41 were up-regulated and 284 were down-regulated. Further, 11 structural genes of the flavonoid pathway were up-regulated, whereas two were down-regulated. Of the seven genes encoding transcription factors, five were up-regulated and two were down-regulated. The structural genes VuCHS, VuF3'H, VuFHT, VuDFR, VuANS, VuANR, and VuUFGT and the transcription factors VubHLH92, VuMYB6, VuMYBPA1, VuMYB11, and VuMYB12 were significantly down-regulated. However, the expression of only VuMYB6 and VuMYBPA1 rapidly increased during the last two stages of V. uliginosum when the fruit was ripening, consistent with anthocyanin accumulation. CONCLUSIONS VuMYB6 was annotated as MYB1 by the BLAST tool. Thus, the white fruit color in the V. uliginosum variant can be attributed to the down-regulation of transcription factors VuMYB1 and VuMYBPA1, which leads to the down-regulation of structural genes associated with the anthocyanin synthesis pathway.
Collapse
Affiliation(s)
- Yang Yang
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Baihui Cui
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Zhiwen Tan
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Bingxue Song
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Hounan Cao
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Chengwen Zong
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| |
Collapse
|
25
|
Guo L, Guo D, Yin W, Hou X. Tolerance strategies revealed in tree peony ( Paeonia suffruticosa; Paeoniaceae) ecotypes differentially adapted to desiccation. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01191. [PMID: 30386716 PMCID: PMC6201725 DOI: 10.1002/aps3.1191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/05/2018] [Indexed: 05/29/2023]
Abstract
PREMISE OF THE STUDY Tree peony (Paeonia suffruticosa; Paeoniaceae) is well known for its ornamental value, edible oil, and medicinal properties. However, its growing area has been limited by drought that has been exacerbated by global climate change. METHODS Gene expression profiles of a drought-tolerant cultivar and a drought-sensitive cultivar during dehydration and rehydration were investigated by transcriptome analysis. Expression patterns of unigenes related to drought and recovery response and unrelated to either cultivar were classified by hierarchical clustering and real-time quantitative PCR (qPCR). RESULTS A total of 81,725 unigenes with a mean length of 762 nucleotides that may play roles in drought response were identified. Unigenes were characterized as being involved in lipid transport metabolism, proline metabolism, and photosynthesis. In addition, plant hormone signaling pathway genes were also characterized as potentially being involved in drought response. Expression patterns of the 20 drought-responsive unigenes verified by qPCR showed a differential expression pattern under either the drought or recovery treatment. DISCUSSION This is the first report to identify and verify unigenes of tree peonies with differing water sensitivity during dehydration and rehydration. This study offers a valuable resource for candidate genes involved in drought and provides insight into the breeding of drought-resistant tree peony cultivars.
Collapse
Affiliation(s)
- Lili Guo
- College of AgricultureHenan University of Science and TechnologyLuoyang471023People's Republic of China
| | - Dalong Guo
- College of ForestryHenan University of Science and TechnologyLuoyang471023People's Republic of China
| | - Weilun Yin
- College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083People's Republic of China
| | - Xiaogai Hou
- College of AgricultureHenan University of Science and TechnologyLuoyang471023People's Republic of China
| |
Collapse
|
26
|
Zhang X, Zhao M, Guo J, Zhao L, Xu Z. Anatomical and biochemical analyses reveal the mechanism of double-color formation in Paeonia suffruticosa 'Shima Nishiki'. 3 Biotech 2018; 8:420. [PMID: 30305991 PMCID: PMC6158150 DOI: 10.1007/s13205-018-1459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Paeonia suffruticosa 'Shima Nishiki' is a very precious double-color cultivar because of its distinctive and colorful flowers. However, our understanding of the underlying mechanisms of its double-color formation is limited. The present study investigated the soluble sugar content, cell sap pH value and anatomical structure, anthocyanin composition and content and expression patterns of genes related to anthocyanin biosynthesis in the red and pink petals of the 'Shima Nishiki' cultivar. Here, we found that soluble sugar content, cell sap pH and the shape of outer epidermal cells were not the key factors that determine double-color formation. Five different anthocyanins were detected in both the red and pink petals, and the pelargonidin-3,5-di-O-glucoside (Pg3G5G) and pelargonidin-3-O-glucoside (Pg3G) contents in the red petals were significantly higher than those in the pink petals at every developmental stage. In addition, these gene expression patterns suggested that the significant differential expression of the dihydroflavonol 4-reductase gene (PsDFR) gene might play a key role in double-color formation. These results will provide a valuable resource for further studies unraveling the underlying genetic mechanisms of double-color formation in P. suffruticosa 'Shima Nishiki'.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Mingyuan Zhao
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
27
|
Zhang X, Zhao L, Xu Z, Yu X. Transcriptome sequencing of Paeonia suffruticosa 'Shima Nishiki' to identify differentially expressed genes mediating double-color formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:114-124. [PMID: 29227950 DOI: 10.1016/j.plaphy.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/14/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Paeonia suffruticosa 'Shima Nishiki' is one of extremely rare double-color cultivars in the world. It usually shows the two beautiful colors of red and white in the same flower, and this trait undoubtedly makes the flowers more charming for the ornamental market. However, few studies have been done to unravel the molecular mechanisms of double-color formation in P. suffruticosa 'Shima Nishiki'. In this study, we measured the anthocyanin composition and concentration, and sequenced the transcriptomes of the red and white petals. We found that the total content of Pg-based glycosides was at a significantly higher level in the red petals. Furthermore, we assembled and annotated 92,671 unigenes. Comparative analyses of the two transcriptomes showed 227 differentially expressed genes (DEGs), among which 57 were up-regulated, and 170 were down-regulated in the red petals. Subsequently, we identified 3 DEGs and the other 6 structural genes in the anthocyanin biosynthetic pathway including PsCHS, PsCHI, PsF3H, PsF3'H, PsDFR, PsANS, PsAOMT, PsMYB, and PsWD40. Among them, PsDFR and PsMYB expressed at a significantly higher level and showed positive correlations between their expression and anthocyanin concentration in the red petals. However, PsWD40 expressed at a significantly lower level and exhibited an inverse relationship in the red petals. Furthermore, we further confirmed the relative expression of the 9 candidate genes using quantitative real-time PCR. Based on the above results, we concluded that the significant differential expression of PsDFR, PsMYB and PsWD40 may play a key role in anthocyanin concentration in the red and white petals, thereby mediating double-color formation. These data will provide a valuable resource to better understand the molecular mechanisms of double-color formation of P. suffruticosa 'Shima Nishiki'.
Collapse
Affiliation(s)
- Xinpeng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Lanyong Zhao
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Zongda Xu
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| | - Xiaoyan Yu
- College of Forestry, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| |
Collapse
|
28
|
Li Y, Shan X, Zhou L, Gao R, Yang S, Wang S, Wang L, Gao X. The R2R3-MYB Factor FhMYB5 From Freesia hybrida Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1935. [PMID: 30666265 PMCID: PMC6330306 DOI: 10.3389/fpls.2018.01935] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 05/05/2023]
Abstract
The flavonoids are important and nourishing compounds for plants and human. The transcription regulation of anthocyanin and proanthocyanidin (PA) biosynthesis was extensively studied in dicot compared with monocot plants. In this study, we characterized the functionality of an R2R3-MYB gene FhMYB5 from the monocotyledonous flowering plant of Iridaceae, Freesia hybrida. Multiple sequence alignment and phylogenetic analysis implied that FhMYB5 was clustered into grapevine VvMYB5b subclade. Correlation analysis indicated that the spatio-temporal expression patterns of FhMYB5 coincided well with anthocyanin and PA accumulations in Freesia per se. Furthermore, transient transfection assays in Freesia protoplasts revealed that the late flavonoid biosynthetic genes (e.g., DFR and LDOX) were slightly up-regulated by FhMYB5 alone, whereas both early and late biosynthetic genes were significantly activated when FhMYB5 were co-infected with either of the two IIIf clade bHLH genes, FhTT8L and FhGL3L. Moreover, these results were further confirmed by co-transfection of FhMYB5 with either of the bHLH genes aforementioned into protoplasts expressing GUS reporter gene driven by Freesia promoters. In addition, the overexpression of FhMYB5 in tobacco and Arabidopsis could also significantly up-regulate the expression of genes participating in the general flavonoid pathway. In conclusion, FhMYB5 was proved to function in the general flavonoid pathway in Freesia. The results implied a function conservation of flavonoid biosynthesis related MYB regulators in angiosperm plants.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Liudi Zhou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
- *Correspondence: Li Wang, Xiang Gao,
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
- *Correspondence: Li Wang, Xiang Gao,
| |
Collapse
|
29
|
Narbona E, Wang H, Ortiz PL, Arista M, Imbert E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:8-20. [PMID: 28430395 DOI: 10.1111/plb.12575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/18/2017] [Indexed: 05/20/2023]
Abstract
Flower colour polymorphism (FCP) is the occurrence of at least two discrete flower colour variants in the same population. Despite a vast body of research concerning the maintenance and evolutionary consequences of FCP, only recently has the spatial variation in morph frequencies among populations been explored. Here we summarise the biochemical and genetic basis of FCP, the factors that have been proposed to explain their maintenance, and the importance of FCP and its geographic variation in the speciation process. We also review the incidence of FCP in the environmentally heterogeneous Mediterranean Basin. Nearly 88% of Mediterranean FCP species showed anthocyanin-based polymorphisms. Concerning the evolutionary mechanisms that contribute to maintain FCP, selection by pollinators is suggested in some species, but in others, selection by non-pollinator agents, genetic drift or gene flow are also found; in some cases different processes interact in the maintenance of FCP. We emphasise the role of both autonomous selfing and clonal reproduction in FCP maintenance. Mediterranean polymorphic species show mainly monomorphic populations with only a few polymorphic ones, which generate clinal or mosaic patterns of variation in FCP. No cases of species with only polymorphic populations were found. We posit that different evolutionary processes maintaining polymorphism the Mediterranean Basin will result in a continuum of geographic patterns in morph compositions and relative frequencies of FCP species.
Collapse
Affiliation(s)
- E Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - H Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, Montpellier, France
| | - P L Ortiz
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - M Arista
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - E Imbert
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, Montpellier, France
| |
Collapse
|
30
|
Nishihara M, Tasaki K, Sasaki N, Takahashi H. Development of basic technologies for improvement of breeding and cultivation of Japanese gentian. BREEDING SCIENCE 2018; 68:14-24. [PMID: 29681744 PMCID: PMC5903972 DOI: 10.1270/jsbbs.17074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
Japanese gentians are the most important ornamental flowers in Iwate Prefecture and their breeding and cultivation have been actively conducted for half a century. With its cool climate and large hilly and mountainous area, more than 60% of gentian production in Japan occurs in Iwate Prefecture. Recent advances in gentian breeding and cultivation have facilitated the efficient breeding of new cultivars; disease control and improved cultivation conditions have led to the stable production of Japanese gentians. Molecular biology techniques have been developed and applied in gentian breeding, including the diagnosis of viral diseases and analysis of physiological disorders to improve gentian production. This review summarizes such recent approaches that will assist in the development of new cultivars and support cultivation. More recently, new plant breeding techniques, including several new biotechnological methods such as genome editing and viral vectors, have also been developed in gentian. We, therefore, present examples of their application to gentians and discuss their advantages in future studies of gentians.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center,
22-174-4 Narita, Kitakami, Iwate 024-0003,
Japan
- Corresponding author (e-mail: )
| | - Keisuke Tasaki
- Iwate Biotechnology Research Center,
22-174-4 Narita, Kitakami, Iwate 024-0003,
Japan
| | - Nobuhiro Sasaki
- Toyo University,
1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193,
Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center,
22-174-4 Narita, Kitakami, Iwate 024-0003,
Japan
| |
Collapse
|
31
|
Genetic analyses reveal independent domestication origins of the emerging oil crop Paeonia ostii, a tree peony with a long-term cultivation history. Sci Rep 2017; 7:5340. [PMID: 28706300 PMCID: PMC5509724 DOI: 10.1038/s41598-017-04744-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/19/2017] [Indexed: 11/08/2022] Open
Abstract
Paeonia ostii, a member of tree peony, is an emerging oil crop with important medical and oil uses and widely cultivated in China. Dissolving the genetic diversity and domestication history of this species is important for further genetic improvements and deployments. We firstly selected 29 simple sequence repeats (SSRs) via transcriptome mining, segregation analyses and polymorphism characterizations; then, 901 individuals from the range-wide samples were genotyped using well-characterized SSR markers. We observed moderate genetic diversity among individuals, and Shaanxi Province was identified as the center of genetic diversity for our cultivated plants. Five well-separated gene pools were detected by STRUCTURE analyses, and the results suggested that multiple independent domestication origins occurred in Shaanxi Province and Tongling City (Anhui Province). Taken together, the genetic evidence and the historical records suggest multiple long-distance introductions after the plant was domesticated in Shandong, Henan and Hunan provinces. The present study provides the first genetic evaluation of the domestication history of P. ostii, and our results provide an important reference for further genetic improvements and deployments of this important crop.
Collapse
|
32
|
Zhang Y, Zhao G, Li Y, Zhang J, Shi M, Muhammad T, Liang Y. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:897. [PMID: 28620401 PMCID: PMC5449478 DOI: 10.3389/fpls.2017.00897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 05/23/2023]
Abstract
Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys), that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq) analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT). We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato. Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2) and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Guiye Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yushun Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Meijing Shi
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yan Liang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| |
Collapse
|
33
|
Lu Z, Xu J, Li W, Zhang L, Cui J, He Q, Wang L, Jin B. Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri. FRONTIERS IN PLANT SCIENCE 2017; 8:261. [PMID: 28298915 PMCID: PMC5331048 DOI: 10.3389/fpls.2017.00261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/13/2017] [Indexed: 05/19/2023]
Abstract
Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in flowers.
Collapse
|