1
|
Gastélum-Estrada A, Reza-Zaldivar EE, Jacobo-Velázquez DA. Boosting Health Benefits in Vegetables: A Novel Ultraviolet B (UVB) Device for Rapid At-Home Enhancement of Phytochemicals and Bioactivity. Foods 2024; 13:3311. [PMID: 39456373 PMCID: PMC11507927 DOI: 10.3390/foods13203311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The consumption of vegetables is essential for reducing the risk of noncommunicable diseases, yet global intake falls short of recommended levels. Enhancing the nutraceutical content of vegetables through postharvest abiotic stress, such as ultraviolet B (UVB) radiation, offers a promising solution to increase health benefits. This study developed a user-friendly, at-home UVB device designed to increase the phytochemical content in common vegetables like carrots, lettuce, and broccoli. The device applies UVB radiation (305-315 nm) to fresh-cut vegetables, optimizing exposure time and intensity to maximize nutraceutical enrichment. The results demonstrated that UVB exposure increased the phenolic content by 44% in carrots, 58% in broccoli, and 10% in lettuce, with chlorogenic acid levels rising by 367% in lettuce, 547% in broccoli, and 43% in carrots after 48 h of storage. UVB treatment also enhanced antioxidant activity by up to 41% in broccoli and anti-inflammatory potential by 22% in carrots. In terms of gene expression, UVB treatment upregulated UCP-1 expression by 555% in carrots, enhanced thermogenesis, and increased SIRT-1 and ATGL expression by over 200%, promoting lipid metabolism. This process provides a convenient and efficient method for consumers to boost the health benefits of their vegetables. The study concludes that UVB-induced abiotic stress is an effective strategy to improve vegetable nutritional quality, offering a novel approach to increasing bioactive compound intake and aiding in the prevention of diet-related diseases.
Collapse
Affiliation(s)
| | | | - Daniel A. Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Guadalajara, Av. General Ramón Corona 2514, Zapopan 45201, Jalisco, Mexico; (A.G.-E.); (E.E.R.-Z.)
| |
Collapse
|
2
|
Cisneros-Zevallos L, Maghoumi M, Lopez-Torres M, Beltran-Maldonado B. Transforming stressed plants into healthy foods. Curr Opin Biotechnol 2023; 83:102980. [PMID: 37536039 DOI: 10.1016/j.copbio.2023.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
This paper presents the current status of transforming stressed plants into healthy foods and the future trends in this emerging field. Herein, we describe the three major key elements to advance this field, including a better understanding of the mode of action of oxidative stress on nutraceutical biosynthesis under pre- and postharvest scenarios either converting plants into biofactories of nutraceuticals or creating 'functional fresh produce' while preserving quality. We discuss the need of designing healthy products based on stressed fresh produce and by-products and present a pragmatic strategy to enhance nutraceuticals in plants, and finally we propose designing appropriate studies with stressed plants targeting immunomodulatory properties to determine preventive and therapeutic effects against chronic diseases and the appropriate recommended dose.
Collapse
Affiliation(s)
- Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States.
| | - Mahshad Maghoumi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| | - Manuel Lopez-Torres
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| | - Belem Beltran-Maldonado
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, United States
| |
Collapse
|
3
|
Setiawati T, Arofah AN, Nurzaman M, Annisa A, Mutaqin AZ, Hasan R. Effect of sucrose as an elicitor in increasing quercetin-3-O-rhamnoside (quercitrin) content of chrysanthemum ( Chrysanthemum morifolium Ramat) callus culture based on harvest time differences. BIOTECHNOLOGIA 2023; 104:289-300. [PMID: 37850113 PMCID: PMC10578125 DOI: 10.5114/bta.2023.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 10/19/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) contains secondary metabolites, such as flavonoid compounds, especially luteolin-7-glucoside and quercetin-3-O-rhamnoside (quercitrin), in its tissues. Utilizing sucrose as an elicitor through callus culture presents an alternative method to enhance the production of secondary metabolites. This research aimed to determine the best sucrose concentration and harvest time for maximizing quercitrin content in chrysanthemum callus culture. The research employed a completely randomized design with four treatment groups: 0, 30, 45, and 60 g/l of sucrose added to MS medium containing 4 ppm 2,4-dichlorophenoxyacetic acid (2,4-D). Callus samples were harvested on the 15th and 30th days of culture. The observed parameters included callus morphology (color and texture), fresh weight, dry weight, the diameter of the callus, and quercitrin content analyzed using high-performance liquid chromatography. The results showed that all callus cultures exhibited intermediate textures and varied colors, predominantly shades of brown. The treatment involving 45 g/l of sucrose with a 30th-day harvest yielded the highest fresh weight, dry weight, and quercitrin content, namely 2.108 g, 0.051 g, and 0.437 mg/g DW, respectively. Notably, the quercitrin content exhibited a 63.67% increase compared to the control.
Collapse
Affiliation(s)
- Tia Setiawati
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa N. Arofah
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Asep Z. Mutaqin
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Rusdi Hasan
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| |
Collapse
|
4
|
Jaipal N, Ram H, Kumar P, Charan J, Kashyap P, Chowdhury S, Tripathi R, Kumar S, Singh BP, Panwar A. Statins mimic and free radical scavenging potential of phytoconstituents of methanolic pod extract of Prosopis cineraria (L.) Druce. VEGETOS 2023; 37:1357-1369. [DOI: 10.1007/s42535-023-00677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 09/25/2023]
|
5
|
Torres-Contreras AM, Nair V, Senés-Guerrero C, Pacheco A, González-Agüero M, Ramos-Parra PA, Cisneros-Zevallos L, Jacobo-Velázquez DA. Cross-Talk and Physiological Role of Jasmonic Acid, Ethylene, and Reactive Oxygen Species in Wound-Induced Phenolic Biosynthesis in Broccoli. PLANTS (BASEL, SWITZERLAND) 2023; 12:1434. [PMID: 37050060 PMCID: PMC10097011 DOI: 10.3390/plants12071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Wounding induces phenolic biosynthesis in broccoli. However, there is scarce information about the physiological and molecular mechanisms governing this stress response. In the present study, a chemical-genetics approach was used to elucidate the role of reactive oxygen species (ROS), jasmonic acid (JA), and ethylene (ET) as stress-signaling molecules in the wound-induced phenolic biosynthesis in broccoli. Wounding activated the biosynthesis of ET and JA. Likewise, the wound-induced biosynthesis of ET and JA was regulated by ROS. JA activated primary metabolism, whereas the three signaling molecules activated phenylpropanoid metabolism. The signaling molecules inhibited the wound-induced activation of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) gene, which is involved in caffeoylquinic acids biosynthesis, and the main phenolics accumulated in wounded broccoli, suggesting that an alternative caffeoylquinic biosynthesis pathway is activated in the tissue due to wounding. ROS mediated the biosynthesis of most individual phenolic compounds evaluated. In conclusion, ROS, ET, and JA are essential in activating broccoli's primary and secondary metabolism, resulting in phenolic accumulation.
Collapse
Affiliation(s)
- Ana Mariel Torres-Contreras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A & M University, College Station, TX 77843-2133, USA
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo Mexico, Zapopan C.P. 45138, Jalisco, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Mauricio González-Agüero
- Institute for Agricultural Research, INIA-La Platina, Postharvest Unit, Santa Rosa 11610, Santiago 8831314, Chile
| | - Perla A. Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A & M University, College Station, TX 77843-2133, USA
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo Mexico, Zapopan C.P. 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. General Ramón Corona 2514, Nuevo Mexico, Zapopan C.P. 45138, Jalisco, Mexico
| |
Collapse
|
6
|
Guan Y, Ji Y, Yang X, Pang L, Cheng J, Lu X, Zheng J, Yin L, Hu W. Antioxidant activity and microbial safety of fresh-cut red cabbage stored in different packaging films. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Radünz M, Mota Camargo T, Dos Santos Hackbart HC, Paes Nunes CF, Araújo Ribeiro J, da Rosa Zavareze E. Characterization of ultrafine zein fibers incorporated with broccoli, kale, and cauliflower extracts by electrospinning. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4210-4217. [PMID: 35023582 DOI: 10.1002/jsfa.11772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Broccoli, kale, and cauliflower contain phenolic compounds and glucosinolates, which have several biological effects on the body. However, because they are thermolabile, many of these substances are lost in the cooking process. Electrospinning encapsulation, using zein as a preservative wall material, can expand the applications of the compounds in the food and pharmaceutical industries. The objective of this research was to characterize broccoli, kale, and cauliflower extracts and encapsulate them with the electrospinning technique using zein. RESULTS Broccoli, kale, and cauliflower extracts contain five phenolic compounds and three glucosinolates. Fibers from broccoli, kale, and cauliflower showed high encapsulation efficiency, good thermal stability, and nanometric size, especially those containing extract and zein in proportions of up to 35:65. CONCLUSION Fibers from broccoli, kale, and cauliflower containing extract and zein in proportions of up to 35:65 have the potential for effective nutraceutical application for the control of non-communicable chronic diseases or application in food packaging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marjana Radünz
- Postgraduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Taiane Mota Camargo
- Postgraduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | | | - Jardel Araújo Ribeiro
- Postgraduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | |
Collapse
|
8
|
Khan AL, Al-Harrasi A, Wang JP, Asaf S, Riethoven JJM, Shehzad T, Liew CS, Song XM, Schachtman DP, Liu C, Yu JG, Zhang ZK, Meng FB, Yuan JQ, Wei CD, Guo H, Wang X, Al-Rawahi A, Lee IJ, Bennetzen JL, Wang XY. Genome structure and evolutionary history of frankincense producing Boswellia sacra. iScience 2022; 25:104574. [PMID: 35789857 PMCID: PMC9249616 DOI: 10.1016/j.isci.2022.104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022] Open
Abstract
Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid—a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae. Assembly and architecture of frankincense producing Boswellia sacra Flueck Comparative genomics and evolutionary history of frankincense tree within orders Transcriptome of stem part and gene expression patterns of wounding to the tree Resin biosynthesis pathway and related CYP450 enzymes and gene families
Collapse
|
9
|
Gao Y, Wang J, Zhao M, Xia T, Liu Q, Chen N, Liao W, Zeng Z, You F, Zeng J. Atractylenolide III Attenuates Angiogenesis in Gastric Precancerous Lesions Through the Downregulation of Delta-Like Ligand 4. Front Pharmacol 2022; 13:797805. [PMID: 35846998 PMCID: PMC9282052 DOI: 10.3389/fphar.2022.797805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Blocking and even reversing gastric precancerous lesions (GPL) is a key measure to lower the incidence of gastric cancer. Atractylenolide III (AT-III) is a mainly active component of the Atractylodes rhizome and has been widely used in tumor treatment. However, the effects of AT-III on GPL and its mechanisms have not been reported.Methods: H & E staining and AB-PAS staining were employed to evaluate the histopathology in the gastric mucosa. In parallel, CD34 immunostaining was performed for angiogenesis assessment, and transmission electron microscope for microvessel ultrastructural observation. Investigation for the possible mechanism in vivo and in vitro was conducted using immunohistochemistry, RT-qPCR and western blotting.Results: In most GPL specimens, AT-III treatment reduced microvascular abnormalities and attenuated early angiogenesis, with the regression of most intestinal metaplasia and partial dysplasia. Meanwhile, the expression of VEGF-A and HIF-1α was enhanced in GPL samples of model rats, and their expressions were decreased in AT-III-treated GPL rats. Moreover, DLL4 mRNA and protein expression were higher in GPL rats than in control rats. DLL4 protein expression was significantly enhanced in human GPL tissues. In addition, AT-III treatment could diminish DLL4 mRNA level and protein expression in the MNNG-induced GPL rats. In vitro study showed that in AGS and HGC-27 cells, DLL4 mRNA level and protein expression were significantly decreased after AT-III treatment. However, AT-III had no significant regulatory effect on Notch1 and Notch4.Conclusion: AT-III treatment is beneficial in lessening gastric precancerous lesions and attenuating angiogenesis in rats, and that may be contributed by the decrease of angiogenesis-associated HIF-1α and VEGF-A, and downregulation of DLL4.
Collapse
Affiliation(s)
- Ying Gao
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jundong Wang
- Gastroenterology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Gastroenterology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Gastroenterology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhen Zeng
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fengming You, ; Jinhao Zeng,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fengming You, ; Jinhao Zeng,
| |
Collapse
|
10
|
Wang J, Mao S, Liang M, Zhang W, Chen F, Huang K, Wu Q. Preharvest Methyl Jasmonate Treatment Increased Glucosinolate Biosynthesis, Sulforaphane Accumulation, and Antioxidant Activity of Broccoli. Antioxidants (Basel) 2022; 11:antiox11071298. [PMID: 35883789 PMCID: PMC9312100 DOI: 10.3390/antiox11071298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli is becoming increasingly popular among consumers owing to its nutritional value and rich bioactive compounds, such glucosinolates (GSLs) and hydrolysis products, which are secondary metabolites for plant defense, cancer prevention, and higher antioxidant activity for humans. In this study, 40 μmol/L methyl jasmonate (MeJA) was sprayed onto broccoli from budding until harvest. The harvested broccoli florets, stem, and leaves were used to measure the contents of GSLs, sulforaphane, total phenolics, and flavonoids, as well as myrosinase activity, antioxidant activity, and gene expression involved in GSL biosynthesis. The overall results revealed that GSL biosynthesis and sulforaphane accumulation were most likely induced by exogenous MeJA treatment by upregulating the expression of CYP83A1, SUR1, UGT74B1, and SOT18 genes. Exogenous MeJA treatment more remarkably contributed to the increased GSL biosynthesis in broccoli cultivars with low-level GSL content (Yanxiu) than that with high-level GSLs (Xianglv No.3). Moreover, MeJA treatment had a more remarkable increasing effect in broccoli florets than stem and leaves. Interestingly, total flavonoid content substantially increased in broccoli florets after MeJA treatment, but total phenolics did not. Similarly, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, trolox-equivalent antioxidant capacity (ABTS), and ferric-reducing antioxidant power (FRAP) were higher in broccoli floret after MeJA treatment. In conclusion, MeJA mediated bioactive compound metabolism, had positive effects on GSL biosynthesis, sulforaphane, and flavonoids accumulation, and showed positive correlation on inducing higher antioxidant activities in broccoli floret. Hence, preharvest supplementation with 40 μM MeJA could be a good way to improve the nutritional value of broccoli florets.
Collapse
Affiliation(s)
- Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Mantian Liang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Wenxia Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Fangzhen Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.W.); (S.M.); (M.L.); (W.Z.); (F.C.)
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Correspondence: (K.H.); (Q.W.)
| |
Collapse
|
11
|
Shebis Y, Vanegas A, Tish N, Fallik E, Rodov V, Poverenov E. Facile method for preparation of oligo-carboxymethyl cellulose and other oligosaccharides: Physicochemical properties and bioactivity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Tropaeolum tuberosum Ruíz and Pav. “Mashua” is a crop from the Andean region associated with preventing chronic degenerative diseases. This study evaluated the content of bioactive compounds (phenolics, glucosinolates, carotenoids, and ascorbic acid) in twenty-seven Peruvian mashua morphotypes. Furthermore, three morphotypes (MAC 067, MAC 092, and MAC 123) were selected to evaluate further the effect of methyl jasmonate (MeJA) on the accumulation of bioactive compounds. Phenolic content in the mashua morphotypes ranged from 2990.76 ± 273.5 mg/kg to 24,217.36 ± 1144 mg/kg; whereas carotenoids ranged from 12.8 ± 0.6 mg/kg to 85.8 ± 3.1 mg/kg. Moreover, total glucosinolate content ranged from 65 ± 11 mmol/kg to 1289 ± 65 mmol/kg. The different mashua morphotypes showed low levels of ascorbic acid (lower than 5 mg/kg) compared with other crops. Except for glucosinolates, MeJA application augmented the level of bioactive compounds, showing increases of up to 150.1%, 535.0%, and 542% for total phenolics, carotenoids, and ascorbic acid, respectively. Results indicated that mashua is an excellent source of phenolics and glucosinolates, whereas it contains adequate levels of carotenoids and low levels of vitamin C. MeJA application during postharvest represented a simple approach to increase the content of bioactive compounds in mashua.
Collapse
|
13
|
Hu W, Sarengaowa, Guan Y, Feng K. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front Microbiol 2022; 13:906069. [PMID: 35694311 PMCID: PMC9176389 DOI: 10.3389/fmicb.2022.906069] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Phenolic compounds are secondary metabolites and widely distributed in higher plants. When plants are subjected to injury stress, the rapid synthesis of more phenols is induced to result in injury defense response for wound healing and repair. Fresh-cut fruits and vegetables undergo substantial mechanical injury caused by pre-preparations such as peeling, coring, cutting and slicing. These processing operations lead to activate the biosynthesis of phenolic compounds as secondary metabolite. Phenolic compounds are important sources of antioxidant activity in fresh-cut fruits and vegetables. The wound-induced biosynthesis and accumulation of phenolic compounds in fresh-cut fruits and vegetables have been widely reported in recent years. This article provides a brief overview of research published over the last decade on the phenolic compounds and antioxidant activity in fresh-cut fruits and vegetables. It is suggested that fresh-cut processing as mechanical wounding stress can be used as an effective way to improve the nutritional composition and function of fresh-cut produces.
Collapse
|
14
|
Ortega-Hernández E, Antunes-Ricardo M, Cisneros-Zevallos L, Jacobo-Velázquez DA. Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091271. [PMID: 35567272 PMCID: PMC9100039 DOI: 10.3390/plants11091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Jal, Mexico
| |
Collapse
|
15
|
Guo X, Ahlawat YK, Liu T, Zare A. Evaluation of Postharvest Senescence of Broccoli via Hyperspectral Imaging. PLANT PHENOMICS 2022; 2022:9761095. [PMID: 35620399 PMCID: PMC9115666 DOI: 10.34133/2022/9761095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022]
Abstract
Fresh fruit and vegetables are invaluable for human health; however, their quality often deteriorates before reaching consumers due to ongoing biochemical processes and compositional changes. We currently lack any objective indices which indicate the freshness of fruit or vegetables resulting in limited capacity to improve product quality eventually leading to food loss and waste. In this conducted study, we hypothesized that certain proteins and compounds, such as glucosinolates, could be used as one potential indicator to monitor the freshness of broccoli following harvest. To support our study, glucosinolate contents in broccoli based on HPLC measurement and transcript expression of glucosinolate biosynthetic genes in response to postharvest stresses were evaluated. We found that the glucosinolate biosynthetic pathway coincided with the progression of senescence in postharvest broccoli during storage. Additionally, we applied machine learning-based hyperspectral image (HSI) analysis, unmixing, and subpixel target detection approaches to evaluate glucosinolate level to detect postharvest senescence in broccoli. This study provides an accessible approach to precisely estimate freshness in broccoli through machine learning-based hyperspectral image analysis. Such a tool would further allow significant advancement in postharvest logistics and bolster the availability of high-quality, nutritious fresh produce.
Collapse
Affiliation(s)
- Xiaolei Guo
- University of Florida, Department of Electrical and Computer Engineering, Gainesville, Florida, USA
| | - Yogesh K. Ahlawat
- University of Florida, Horticultural Sciences Department, Gainesville, Florida, USA
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Gainesville, Florida, USA
| | - Alina Zare
- University of Florida, Department of Electrical and Computer Engineering, Gainesville, Florida, USA
| |
Collapse
|
16
|
UVA and UVB Radiation as Innovative Tools to Biofortify Horticultural Crops with Nutraceuticals. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The consumption of fruits and vegetables is related to the prevention and treatment of chronic–degenerative diseases due to the presence of secondary metabolites with pharmaceutical activity. Most of these secondary metabolites, also known as nutraceuticals, are present in low concentrations in the plant tissue. Therefore, to improve the health benefits of horticultural crops, it is necessary to increase their nutraceutical content before reaching consumers. Applying ultraviolet radiation (UVR) to fruits and vegetables has been a simple and effective technology to biofortify plant tissue with secondary metabolites. This review article describes the physiological and molecular basis of stress response in plants. Likewise, current literature on the mechanisms and effects of UVA and UVB radiation on the accumulation of different bioactive phytochemicals are reviewed. The literature shows that UVR is an effective tool to biofortify horticultural crops to enhance their nutraceutical content.
Collapse
|
17
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Enhancement of Glucosinolate Formation in Broccoli Sprouts by Hydrogen Peroxide Treatment. Foods 2022; 11:foods11050655. [PMID: 35267288 PMCID: PMC8909455 DOI: 10.3390/foods11050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Broccoli sprouts are known as a rich source of health-beneficial phytonutrients: glucosinolates and phenolic compounds. The production of phytonutrients can be stimulated by elicitors that activate the plant stress response. The aim of this study was enhancing the nutritional value of broccoli sprouts using hydrogen peroxide (H2O2) as an elicitor. Daily spraying with H2O2 (500-1000 mM) enhanced the accumulation of glucosinolates, doubling their content in the cotyledons of 16/8 h photoperiod-grown 7-day sprouts compared to the water-treated controls. The application of H2O2 on dark-grown sprouts showed a smaller extent of glucosinolate stimulation than with light exposure. The treatment affected sprout morphology without reducing their yield. The H2O2-treated sprouts had shorter hypocotyls and roots, negative root tropism and enhanced root branching. The activated glucosinolate production became evident 24 h after the first H2O2 application and continued steadily until harvest. Applying the same treatment to greenhouse-grown wild rocket plants caused scattered leaf bleaching, a certain increase in glucosinolates but decline in phenolics content. The H2O2 treatment of broccoli sprouts caused a 3.5-fold upregulation of APK1, a gene related to sulfur mobilization for glucosinolate synthesis. Comparing the APK1 expression with the competing gene GSH1 using sulfur for antioxidant glutathione production indicated that glutathione synthesis prevailed in the sprouts over the formation of glucosinolates.
Collapse
|
19
|
Phytonutrients and Metabolism Changes in Topped Radish Root and Its Detached Leaves during 1 °C Cold Postharvest Storage. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucosinolates, lipid-soluble vitamins E and K contents, primary metabolites and plant hormones were analyzed from topped radish root and detached leaf during storage at 1 °C. The topped root was analyzed at 0, 5, 15, 30, and 90 days after storage while the detached leaf was analyzed at 0, 5, 15, 30, and 45 days in an airtight storage atmosphere environment. The results showed that aliphatic glucosinolates were gradually decreased in leaf but not in root. There was a highly significant correlation between tryptophan and 4-methoxyindoleglucobrassicin in both tissues (r = 0.922, n = 10). There was no significant difference in vitamins E and K in leaf and root during storage. Plant hormones partially explained the significantly changed metabolites by tissue and time, which were identified during cold storage. Phenylalanine, lysine, tryptophan, and myo-inositol were the most important biomarkers that explained the difference in leaf and root tissue during cold storage. The most different metabolism between leaf and root tissue was starch and sucrose metabolism. Therefore, different postharvest technology or regimes should be applied to these tissues.
Collapse
|
20
|
Torres-Contreras AM, Nair V, Senés-Guerrero C, Pacheco A, González-Agüero M, Ramos-Parra PA, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chemical Genetics Applied to Elucidate the Physiological Role of Stress-Signaling Molecules on the Wound-Induced Accumulation of Glucosinolates in Broccoli. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122660. [PMID: 34961133 PMCID: PMC8706940 DOI: 10.3390/plants10122660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 05/17/2023]
Abstract
Wounding stress is an effective strategy to induce glucosinolate (GS) biosynthesis in broccoli. However, there is insufficient knowledge on the physiological and molecular mechanisms underlying this stress response. Herein, a chemical-genetic approach was applied to elucidate the role of jasmonic acid (JA), ethylene (ET), and reactive oxygen species (ROS) on the wound-induced biosynthesis of GS. Broccoli was processed into chops to induce wounding stress. Broccoli chops were treated with phenidone (PHEN) and diphenyleneiodonium chloride (DPI) as inhibitors of JA and ROS biosynthesis, respectively, whereas 1-methylcyclopropene (1-MCP) was applied as an inhibitor of ET action. Wounding stress induced the expression of genes related to the biosynthesis of indolic and aliphatic GS, which was correlated with the accumulation of GS and modulated by the inhibitors of signaling molecules applied. Results of gene expression analysis indicated that JA played a key role in the activation of most genes, followed by ROS. Furthermore, except for the CYP79B2 gene, PHEN and 1-MCP synergistically downregulated the expression of GS biosynthetic genes evaluated, showing that the interaction between JA and ET was fundamental to modulate GS biosynthesis. Results presented herein increased our knowledge of the physiological and molecular mechanisms governing the wound-induced biosynthesis of GS in broccoli.
Collapse
Affiliation(s)
- Ana M. Torres-Contreras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico; (A.M.T.-C.); (A.P.); (P.A.R.-P.)
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (V.N.); (L.C.-Z.)
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Zapopan C.P. 45201, Jalisco, Mexico;
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico; (A.M.T.-C.); (A.P.); (P.A.R.-P.)
| | - Mauricio González-Agüero
- Postharvest Unit, Institute for Agricultural Research, INIA-La Platina, Santa Rosa, Santiago 11610, Chile;
| | - Perla A. Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico; (A.M.T.-C.); (A.P.); (P.A.R.-P.)
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (V.N.); (L.C.-Z.)
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Zapopan C.P. 45201, Jalisco, Mexico;
- Correspondence: ; Tel.: +52-312-119-1650
| |
Collapse
|
21
|
Guan Y, Hu W, Xu Y, Sarengaowa, Ji Y, Yang X, Feng K. Proteomic analysis validates previous findings on wounding-responsive plant hormone signaling and primary metabolism contributing to the biosynthesis of secondary metabolites based on metabolomic analysis in harvested broccoli (Brassica oleracea L. var. italica). Food Res Int 2021; 145:110388. [PMID: 34112391 DOI: 10.1016/j.foodres.2021.110388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
The plant wound-response is a complex process that generates physiological modifications for protecting the wounded tissue. In this study, tandem mass tag (TMT)-based quantitative proteomic analysis was performed to clarify the comprehensive molecular mechanism for the wound-response of broccoli subjected to two wounding intensities (0.04 and 1.85 m2 kg-1 for florets and shreds, respectively). Furthermore, integrated proteomic and metabolomic analysis was performed to reveal the interaction among the critical metabolic pathway responses to wounding. The results show that a total of 399 proteins and 266 proteins were identified as differentially expressed proteins (DEPs) in florets and shreds broccoli compared to control, respectively. Furthermore, 167 DEPs were detected in shreds broccoli compared to the florets broccoli. Salicylic acid (SA) and ethylene (ET) biosynthesis were more susceptible to being induced by wounding with lower intensities, whereas, phenylpropanoid biosynthesis, aliphatic glucosinolate synthesis and jasmonic acid (JA) biosynthesis were more susceptible to being activated by wounding with higher intensities. The activation of starch and sucrose metabolism, TCA cycle, glycolysis, pentose phosphate could provide carbon sources and ATP for the production of amino acids including phenylalanine, valine, threonine, isoleucine, L-methionine, methionine and histidine. The motivation of carbohydrate metabolic pathways and amino acid biosynthesis-related pathways promotes the precursor levels for phenolic substances and glucosinolate synthesis. Furthermore, the accumulation of SA, ET and JA may activated secondary metabolite biosynthesis through the regulation of critical proteins involved in the corresponding metabolic pathways.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China
| |
Collapse
|
22
|
Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: A review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Guan Y, Hu W, Xu Y, Yang X, Ji Y, Feng K, Sarengaowa. Metabolomics and physiological analyses validates previous findings on the mechanism of response to wounding stress of different intensities in broccoli. Food Res Int 2021; 140:110058. [PMID: 33648282 DOI: 10.1016/j.foodres.2020.110058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
The mechanism of response of plant to wounding stress is a complex process that physiologically modifies the wounded tissue for protection. In this study, untargeted metabolomics and physiological analyses were performed to validate the molecular mechanism of response to wounding stress of two intensities (0.04 and 1.85 m2 kg-1) in broccoli florets and shreds, respectively. The results showed that 97 and 1220 differentially expressed metabolites could be identified in broccoli subjected to the Florets vs. Control and Shreds vs. Control experiments, respectively. The Kyoto Encyclopedia Genes and Genomes pathway analyses revealed that these metabolites were mainly involved in aminoacyl-tRNA, amino acid, and secondary metabolite biosynthesis; purine metabolism; and plant signal molecule production. This study validated that wounding stress induced plant signal molecule production. Activation of jasmonic acid biosynthesis and H2O2 production were more susceptible to wounding stress of higher intensities, whereas induction of salicylic acid biosynthesis and O2- production were more susceptible to wounding stress of lower intensities. Furthermore, wounding stress also activated glucosinolate and phenylpropanoid biosynthesis by regulating the levels of the precursors, including L-leucine, phenylalanine, tyrosine, valine, isoleucine, tryptophan, methionine, and phenylalanine. Wounding stress induced phenylpropanoid biosynthesis and the antioxidant system by upregulating the corresponding critical enzyme activity and gene expression, contributing greatly to the enhancement of phenolic compound levels, free radical scavenging ability, and resistance to wounding in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China
| | - Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Yang YH, Yang H, Li RF, Li CX, Zeng L, Wang CJ, Li N, Luo Z. A Rehmannia glutinosa cinnamate 4-hydroxylase promotes phenolic accumulation and enhances tolerance to oxidative stress. PLANT CELL REPORTS 2021; 40:375-391. [PMID: 33392729 DOI: 10.1007/s00299-020-02639-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
RgC4H promotes phenolic accumulation in R. glutinosa, activating the molecular networks of its antioxidant systems, and enhancing the tolerance to oxidative stresses exposed to drought, salinity and H2O2 conditions. Rehmannia glutinosa is of great economic importance in China and increasing R. glutinosa productivity relies, in part, on understanding its tolerance to oxidative stress. Oxidative stress is a key influencing factor for crop productivity in plants exposed to harsh conditions. In the defense mechanisms of plants against stress, phenolics serve an important antioxidant function. Cinnamate 4-hydroxylase (C4H) is the first hydroxylase in the plant phenolics biosynthesis pathway, and elucidating the molecular characteristics of this gene in R. glutinosa is essential for understanding the effect of tolerance to oxidative stress tolerance on improving yield. Using in vitro and in silico methods, a C4H gene, RgC4H, from R. glutinosa was isolated and characterized. RgC4H has 86.34-93.89% amino acid sequence identity with the equivalent protein in other plants and localized to the endoplasmic reticulum. An association between the RgC4H expression and total phenolics content observed in non-transgenic and transgenic R. glutinosa plants suggests that this gene is involved in the process of phenolics biosynthesis. Furthermore, the tolerance of R. glutinosa to drought, salinity and H2O2 stresses was positively or negatively altered in plants with the overexpression or knockdown of RgC4H, respectively, as indicated by the analysis in some antioxidant physiological and molecular indices. Our study highlights the important role of RgC4H in the phenolics/phenylpropanoid pathway and reveals the involvement of phenolic-mediated regulation in oxidative stress tolerance in R. glutinosa.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China.
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Cui Xiang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Na Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Zhuang Luo
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| |
Collapse
|
25
|
Huang P, Xia L, Zhou L, Liu W, Wang P, Qing Z, Zeng J. Influence of different elicitors on BIA production in Macleaya cordata. Sci Rep 2021; 11:619. [PMID: 33436669 PMCID: PMC7804250 DOI: 10.1038/s41598-020-79802-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Sanguinarine (SAN) and chelerythrine (CHE) have been widely used as substitutes for antibiotics for decades. For a long time, SAN and CHE have been extracted from mainly Macleaya cordata, a plant species that is a traditional herb in China and belongs to the Papaveraceae family. However, with the sharp increase in demand for SAN and CHE, it is necessary to develop a new method to enhance the supply of raw materials. Here, we used methyl jasmonate (MJ), salicylic acid (SA) and wounding alone and in combination to stimulate aseptic seedlings of M. cordata at 0 h, 24 h, 72 h and 120 h and then compared the differences in metabolic profiles and gene expression. Ultimately, we found that the effect of using MJ alone was the best treatment, with the contents of SAN and CHE increasing by 10- and 14-fold, respectively. However, the increased SAN and CHE contents in response to combined wounding and MJ were less than those for induced by the treatment with MJ alone. Additionally, after MJ treatment, SAN and CHE biosynthetic pathway genes, such as those encoding the protopine 6-hydroxylase and dihydrobenzophenanthridine oxidase enzymes, were highly expressed, which is consistent with the accumulation of SAN and CHE. At the same time, we have also studied the changes in the content of synthetic intermediates of SAN and CHE after elicitor induction. This study is the first systematic research report about using elicitors to increase the SAN and CHE in Macleaya cordata.
Collapse
Affiliation(s)
- Peng Huang
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China ,grid.257160.70000 0004 1761 0331Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410125 Hunan China
| | - Liqiong Xia
- Clinical Pharmacy, Yueyang Hospital of TCM, Yueyang, 414000 Hunan China
| | - Li Zhou
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Wei Liu
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China ,grid.257160.70000 0004 1761 0331College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Peng Wang
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Zhixing Qing
- grid.257160.70000 0004 1761 0331College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- grid.257160.70000 0004 1761 0331Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China ,grid.257160.70000 0004 1761 0331National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, 410128 Hunan China
| |
Collapse
|
26
|
Guan Y, Hu W, Jiang A, Xu Y, Zhao M, Yu J, Ji Y, Sarengaowa, Yang X, Feng K. The effect of cutting style on the biosynthesis of phenolics and cellular antioxidant capacity in wounded broccoli. Food Res Int 2020; 137:109565. [PMID: 33233182 DOI: 10.1016/j.foodres.2020.109565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
Abstract
To explore the effect of cutting style on the biosynthesis of phenolic compounds and cellular antioxidant capacity in wounded broccoli subjected to different cutting styles (heads, florets, 1/2 florets and shredded florets), the mechanism of the accumulation of phenolic compounds was investigated at the transcriptional level, and cellular antioxidant capacity was measured using a breast cancer cell MCF-7 culture model. The results indicated that the relative expression of the genes encoding phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase and 4-coumarin coenzyme A ligase, three enzymes involved in phenylpropanoid metabolism, was upregulated and that contributed to the synthesis of individual phenolic compounds, including catechin, hydroxybenzoic acid, chlorogenic acid, caffeic acid, sinapic acid, catechin gallate, rutin, cinnamic acid and quercetin. This research constructes the phenol synthesis pathway in wounded broccoli. Moreover, the relative expression of critical genes including superoxide dismutase, peroxidase, catalase, glutathione peroxidase and glutathione reductase involved in the metabolism of reactive oxygen species (ROS) increased, resulting in enhanced antioxidant capacity in wounded broccoli. Cell antioxidant capacity (CAA) of heads, florets, 1/2 florets and shredded florets increased by 52.7%, 59.2%, 64.8% and 86.5%, respectively, compared to whole broccoli. The enhancement of CAA was greater as the intensity of wounding increased, indicating that enhancement of antioxidant activity occurred at the cellular level. This research helps provide a reliable and persuasive theoretical basis for nutritional value assessment at the cellular level in wounded broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Manru Zhao
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jiaoxue Yu
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China
| |
Collapse
|
27
|
Ilahy R, Tlili I, Pék Z, Montefusco A, Siddiqui MW, Homa F, Hdider C, R'Him T, Lajos H, Lenucci MS. Pre- and Post-harvest Factors Affecting Glucosinolate Content in Broccoli. Front Nutr 2020; 7:147. [PMID: 33015121 PMCID: PMC7511755 DOI: 10.3389/fnut.2020.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022] Open
Abstract
Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Zoltán Pék
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Fozia Homa
- Department of Statistics, Mathematics, and Computer Application, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Thouraya R'Him
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Helyes Lajos
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
28
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
29
|
Designing Next-Generation Functional Food and Beverages: Combining Nonthermal Processing Technologies and Postharvest Abiotic Stresses. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09244-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Combined Effects of Water Deficit, Exogenous Ethylene Application and Root Symbioses on Trigonelline and ABA Accumulation in Fenugreek. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Secondary metabolites (SMs) have high economic impact thanks to their exploitability in chemical, pharmaceutical and cosmetic industries. Trigonella foenum-graecum has an importance due to the production of bioactive compounds with pharmaceutical values. Among them, the alkaloid trigonelline is known for its role in the treatment of different human diseases. SM accumulation is influenced by environmental factors but is modulated by the application of exogenous compounds. Ethephon, a precursor of the phytohormone ethylene, was already used to influence SM accumulation. Our work is aimed at evaluating the accumulation of trigonelline and the phytohormone abscisic acid (ABA) when three factors were combined: i) two levels of water regimes (well-watered and water deficit), ii) ethephon treatments and iii) inoculation with an arbuscular mycorrhizal (AM)-based inoculum also leading to nodulation. The content of trigonelline and ABA was significantly affected by symbioses, showing high accumulation in AM-colonized plants irrespective of the water regimes applied. In terms of trigonelline accumulation with respect to ethephon treatments, while symbiotic plants showed a dose-dependent trend, non-symbiotic plants showed a significantly difference only when 550 ppm of ethephon was applied. In conclusion, our work provides new information on the effects of both ethephon and symbioses on plant growth and accumulation of valuable compounds, such as trigonelline, in fenugreek.
Collapse
|
31
|
Akram W, Saeed T, Ahmad A, Yasin NA, Akbar M, Khan WU, Ahmed S, Guo J, Luo W, Wu T, Li G. Liquiritin elicitation can increase the content of medicinally important glucosinolates and phenolic compounds in Chinese kale plants. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1616-1624. [PMID: 31773731 DOI: 10.1002/jsfa.10170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/24/2019] [Accepted: 11/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Brassica oleracea var. alboglabra (Chinese kale) is an important vegetable grown in southern China. This study was aimed at searching for environmentally friendly and affordable approaches to increase the production of medicinally relevant glucosinolates and phenolic compounds in Chinese kale plants. For this purpose, the foliar application of liquiritin at 0 (control), 250, 500 and 750 ppm was tested starting from the four-leaf stage and repeated every two weeks until plants were two months old. RESULTS Foliar application of liquiritin in Chinese kale plants significantly increased glucosinolates and total phenolic content, in a dose-dependent manner. Compared with control plants, 2.3- and 1.9-fold increases in yields of glucosinolates and total phenolic content, respectively, were corroborated in Chinese kale plants treated with 750 ppm of liquiritin. Along with rises in the content of eight different glucosinolates, liquiritin elicitation effectively increased the concentration of glycosilated and acylated flavonoids and hydroxycinnamic acids. The expression of genes involved in glucosinolate and phenolic biosynthesis was significantly higher in liquiritin-treated plants as compared to controls. CONCLUSIONS Liquiritin elicitation is a feasible and environmentally friendly practice for increasing the production of medicinally important glucosinolates and phenolic compounds in Chinese kale, which may improve this plant's value as a nutraceutical food. This study also contributes to understanding the molecular mechanisms underlying liquiritin elicitation. This is the first report documenting the use of liquiritin for an elicitation purpose in plants. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Taiba Saeed
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Aqeel Ahmad
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nasim A Yasin
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Pakistan
| | - Waheed U Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tingquan Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
32
|
Secoiridoids Metabolism Response to Wounding in Common Centaury ( Centaurium erythraea Rafn) Leaves. PLANTS 2019; 8:plants8120589. [PMID: 31835780 PMCID: PMC6963686 DOI: 10.3390/plants8120589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 01/18/2023]
Abstract
Centaurium erythraea Rafn produces and accumulates various biologically active specialized metabolites, including secoiridoid glucosides (SGs), which help plants to cope with unfavorable environmental conditions. Specialized metabolism is commonly modulated in a way to increase the level of protective metabolites, such as SGs. Here, we report the molecular background of the wounding-induced changes in SGs metabolism for the first time. The mechanical wounding of leaves leads to a coordinated up-regulation of SGs biosynthetic genes and corresponding JA-related transcription factors (TFs) after 24 h, which results in the increase of metabolic flux through the biosynthetic pathway and, finally, leads to the elevated accumulation of SGs 96 h upon injury. The most pronounced increase in relative expression was detected for secologanin synthase (CeSLS), highlighting this enzyme as an important point for the regulation of biosynthetic flux through the SG pathway. A similar expression pattern was observed for CeBIS1, imposing itself as the TF that is prominently involved in wound-induced regulation of SGs biosynthesis genes. The high degree of positive correlations between and among the biosynthetic genes and targeted TFs expressions indicate the transcriptional regulation of SGs biosynthesis in response to wounding with a significant role of CeBIS1, which is a known component of the jasmonic acid (JA) signaling pathway.
Collapse
|
33
|
Changes in enzyme activities and amino acids and their relations with phenolic compounds contents in okra treated by LED lights of different colors. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02359-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Guan Y, Hu W, Jiang A, Xu Y, Sa R, Feng K, Zhao M, Yu J, Ji Y, Hou M, Yang X. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules 2019; 24:E3537. [PMID: 31574924 PMCID: PMC6804049 DOI: 10.3390/molecules24193537] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
In order to find an efficient way for broccoli to increase the phenolic content, this study intended primarily to elucidate the effect of methyl jasmonate (MeJA) treatment on the phenolic accumulation in broccoli. The optimum concentration of MeJA was studied first, and 10 μM MeJA was chosen as the most effective concentration to improve the phenolic content in wounded broccoli. Furthermore, in order to elucidate the effect of methyl jasmonate (MeJA) treatment on phenolic biosynthesis in broccoli, the key enzyme activities of phenylpropanoid metabolism, the total phenolic content (TPC), individual phenolic compounds (PC), antioxidant activity (AOX) and antioxidant metabolism-associated enzyme activities were investigated. Results show that MeJA treatment stimulated phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarin coenzyme A ligase (4CL) enzymes activities in phenylpropanoid metabolism, and inhibited the activity of polyphenol oxidase (PPO), and further accelerated the accumulation of the wound-induced rutin, caffeic acid, and cinnamic acid accumulation, which contributed to the result of the total phenolic content increasing by 34.8% and ferric reducing antioxidant power increasing by 154.9% in broccoli. These results demonstrate that MeJA in combination with wounding stress can induce phenylpropanoid metabolism for the wound-induced phenolic accumulation in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Rengaowa Sa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China.
| | - Manru Zhao
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Jiaoxue Yu
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Mengyang Hou
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
35
|
Casajús V, Reyes Jara A, Gergoff G, Gómez Lobato M, Civello P, Martínez G. The time of the day to harvest affects the degreening, antioxidant compounds, and protein content during postharvest storage of broccoli. J Food Biochem 2019; 43:e12904. [PMID: 31353741 DOI: 10.1111/jfbc.12904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023]
Abstract
Harvesting of broccoli at several moments of the day affects the rate of senescence during storage. In this work, broccoli heads were harvested at several moments and then kept at 20°C in order to analyze protein metabolism and antioxidant compounds. Almost no differences were detected in the contents of total and soluble proteins, and free amino acids. Only an increment in free amino acids was detected by day 3 in samples obtained at 8:00 hr. With reference to antioxidants, the contents of ascorbic acid, carotenoids and xanthophylls, phenols, and flavonoids were similar in samples harvested at different moments. However, an increment was detected in carotenoids, phenols, and flavonoids during storage of samples collected at 18:00 hr on day 3 and samples collected at 13:00 hr on day 5. The combination of delay of senescence and increment in antioxidants suggest harvesting at 12:00 or 18:00 hr. PRACTICAL APPLICATION: Broccoli is a vegetable with an important level of nutrients. However, it is also highly perishable and suffers a high rate of senescence and loss of quality during postharvest. In this work, it is demonstrated that the simple practice of harvests in different moments of the day can affect the postharvest behavior of broccoli, and it is suggested to carry out the harvest toward the end of the day.
Collapse
Affiliation(s)
- Victoria Casajús
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina
| | - Andrea Reyes Jara
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gustavo Gergoff
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina.,Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - María Gómez Lobato
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina
| | - Pedro Civello
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gustavo Martínez
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
36
|
Ouassou M, Mukhaimar M, El Amrani A, Kroymann J, Chauveau O. [Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways]. C R Biol 2019; 342:58-80. [PMID: 31088733 DOI: 10.1016/j.crvi.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/26/2022]
Abstract
Indole glucosinolates are plant secondary metabolites derived from the amino acid tryptophan. They are part of a large group of sulfur-containing molecules almost exclusively found among Brassicales, which include the mustard family (Brassicaceae) with many edible plant species of major nutritional importance. These compounds mediate numerous interactions between these plants and their natural enemies and are therefore of major biological and economical interest. This literature review aims at taking stock of recent advances of our knowledge about the biosynthetic pathways of indole glucosinolates, but also about the defense strategies and ecological processes involving these metabolites.
Collapse
Affiliation(s)
- Malika Ouassou
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France; Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Maisara Mukhaimar
- National Agricultural Research Center (NARC)-Jenin/Gaza, Ministry of Agriculture, Jenin, Palestine
| | - Amal El Amrani
- Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Juergen Kroymann
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France
| | - Olivier Chauveau
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
37
|
Campos D, Aguilar‐Galvez A, García‐Ríos D, Chirinos R, Limaymanta E, Pedreschi R. Postharvest storage and cooking techniques affect the stability of glucosinolates and myrosinase activity of Andean mashua tubers (
Tropaeolum tuberosum
). Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Campos
- Instituto de Biotecnología (IBT) Universidad Nacional Agraria La Molina ‐ UNALM Av. La Molina s/n Lima Peru
| | - Ana Aguilar‐Galvez
- Instituto de Biotecnología (IBT) Universidad Nacional Agraria La Molina ‐ UNALM Av. La Molina s/n Lima Peru
| | - Diego García‐Ríos
- Instituto de Biotecnología (IBT) Universidad Nacional Agraria La Molina ‐ UNALM Av. La Molina s/n Lima Peru
| | - Rosana Chirinos
- Instituto de Biotecnología (IBT) Universidad Nacional Agraria La Molina ‐ UNALM Av. La Molina s/n Lima Peru
| | - Evelin Limaymanta
- Instituto de Biotecnología (IBT) Universidad Nacional Agraria La Molina ‐ UNALM Av. La Molina s/n Lima Peru
| | - Romina Pedreschi
- Escuela de Agronomía Pontificia Universidad Católica de Valparaíso Calle San Francisco s/n La Palma Chile
| |
Collapse
|
38
|
Jiang D, Lei J, Cao B, Wu S, Chen G, Chen C. Molecular Cloning and Characterization of Three Glucosinolate Transporter (GTR) Genes from Chinese Kale. Genes (Basel) 2019; 10:genes10030202. [PMID: 30857170 PMCID: PMC6471314 DOI: 10.3390/genes10030202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022] Open
Abstract
Chinese kale is a native vegetable in Southern China and the flowering stalk is the most commonly used edible part due to its high glucosinolate content and other nutritional qualities. The GTR protein played important roles in the glucosinolate transport process. In this study, three BocGTR1 genes were cloned from Chinese kale for the first time. Their gene structure, physicochemical properties, signal peptides, transmembrane structures, functional domains, second and third-order protein structures, and phylogenetic relationships were predicted. The expression levels of BocGTR1a and BocGTR1c were much higher than those of BocGTR1b in various tissues, especially in leaves and buds. In addition, the expression patterns of three genes were examined under various abiotic stresses or hormone treatment, including those induced by wounding, heat stress, methyl jasmonate, salicylic acid, salt, and MgCl2 treatment. BocGTR1a and BocGTR1c were strongly induced by wounding and heat stress. The expression of BocGTR1a and BocGTR1c was significantly silenced in plants transformed by RNAi technology. Total glucosinolate content was significantly decreased in mature leaves and increased in roots of RNAi-transformed plants compared to wild-type plants. In addition, we found that BocGTR1a and BocGTR1c may participate in glucosinolate accumulation in different tissues with a selection for specific glucosinolates. These results indicated that BocGTR1a and BocGTR1c may be the key genes involved in the glucosinolate accumulation in different tissues of Chinese kale.
Collapse
Affiliation(s)
- Ding Jiang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Bihao Cao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Siyuan Wu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guoju Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Vegetable Engineering and Technology Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
39
|
Aguilar-Camacho M, Welti-Chanes J, Jacobo-Velázquez DA. Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. ULTRASONICS SONOCHEMISTRY 2019; 50:289-301. [PMID: 30274889 DOI: 10.1016/j.ultsonch.2018.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 05/23/2023]
Abstract
Postharvest treatments such as wounding, ultrasound (US) and the exogenous application of ethylene (ET) and methyl jasmonate (MJ) have been studied as an effective tool to improve the content of secondary metabolites in fresh produce. The present study evaluated the immediate and late response (storage for 72 h at 15 °C) to US treatment (20 min, frequency 24 kHz, amplitude 100 μm) alone and combined with exogenous MJ (250 ppm) and/or ET (1000 ppm) on glucosinolates, isothiocyanates, phenolic compounds and ascorbic acid content in broccoli florets. US treatment increased the extractability of glucosinolates [glucoraphanin (795%), 4-hydroxy glucobrassicin (153%), glucobrassicin (78.6%)] and phenolics [1-sinapoyl-2-feruloylgentiobiose (57.23%)] as compared with the control (CT). The combined application of MJ and US in broccoli florets, induced a synergistic effect on the accumulation of 4-hydroxy glucobrassicin (187.1%), glucoerucin (111.92%), gluconasturtiin (755.9%), neoglucobrassicin (232.8%), 3-O-caffeoylquinic acid (73.4%), 1-sinapoyl-2-ferulolylgentiobiose (56.0%), and 1,2,2-trisinapoylgentiobiose (136.7%) at 72 h of storage. Interestingly, when the three stressors were applied together the synergistic effect of US + MJ observed on the accumulation of glucosinolates and phenolics was repressed. In general, the ascorbic acid content was not affected by US treatment and decreased in most samples during storage. However, when MJ + ET were applied, the content of total ascorbic acid was significantly reduced in CT + MJ + ET and US + MJ + ET samples after 72 h of storage by 53.4% and 86.6%, respectively, as compared with CT 0 h samples. Based on the results herein obtained, the application of US can be an effective tool to enhance the extractability of certain glucocosinolate and phenolic compounds in broccoli. Moreover, due to the synergistic effect observed on the accumulation of bioactive compounds, the combined application of US and MJ could be a practical approach to yield higher levels of glucosinolates and phenolic compounds in broccoli during storage.
Collapse
Affiliation(s)
- Miguel Aguilar-Camacho
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo Mexico, C.P. 45138 Zapopan, Jal., Mexico.
| |
Collapse
|
40
|
Ortega-Hernández E, Welti-Chanes J, Jacobo-Velázquez DA. Effects of UVB Light, Wounding Stress, and Storage Time on the Accumulation of Betalains, Phenolic Compounds, and Ascorbic Acid in Red Prickly Pear (Opuntia ficus-indica cv. Rojo Vigor). FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2183-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Castillejo N, Martínez-Hernández GB, Lozano-Guerrero AJ, Pedreño-Molina JL, Gómez PA, Aguayo E, Artés F, Artés-Hernández F. Microwave heating modelling of a green smoothie: Effects on glucoraphanin, sulforaphane and S-methyl cysteine sulfoxide changes during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1863-1872. [PMID: 28885683 DOI: 10.1002/jsfa.8665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The heating of a green smoothie during an innovative semi-continuous microwave treatment (MW; 9 kW for 15 s) was modelled. Thermal and dielectric properties of the samples were previously determined. Furthermore, the heating effect on the main chemopreventive compounds of the smoothie and during its subsequent storage up to 30 days at 5 or 15 °C were studied. Such results were compared to conventional pasteurisation (CP; 90 °C for 45 s) while unheated fresh blended samples were used as the control. RESULTS A procedure was developed to predict the temperature distribution in samples inside the MW oven with the help of numerical tools. MW-treated samples showed the highest sulforaphane formation after 20 days, regardless of the storage temperature, while its content was two-fold reduced in CP samples. Storage of the smoothie at 5 °C is crucial for maximising the levels of the bioactive compound S-methyl cysteine sulfoxide. CONCLUSION The proposed MW treatment can be used by the food industry to obtain an excellent homogeneous heating of a green smoothie product retaining high levels of bioactive compounds during subsequent retail/domestic storage up to 1 month at 5 °C. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Ginés Benito Martínez-Hernández
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Antonio José Lozano-Guerrero
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Juan Luis Pedreño-Molina
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Perla A Gómez
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Francisco Artés
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Food Engineering, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
| |
Collapse
|
42
|
Sánchez-Gutiérrez JA, Vázquez-Sánchez M, Álvarez-Bernal D, Mares-Quiñones MD, Valiente-Banuet JI, Medina-Medrano JR, Villar-Luna E. Determination of Phenolic Compounds and the Antioxidant Capacity of Ximenia parviflora Benth. var. parviflora (Olacaceae) Fruit by High-Performance Liquid Chromatography with Diode Array Detection. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1404094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Monserrat Vázquez-Sánchez
- CONACYT - Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán. Jiquilpan, Michoacán
| | - Dioselina Álvarez-Bernal
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán, Jiquilpan, Michoacán, México
| | - María Daniela Mares-Quiñones
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnologico de Monterrey, Monterrey, NL, México
| | - Juan Ignacio Valiente-Banuet
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnologico de Monterrey, Monterrey, NL, México
| | - José Roberto Medina-Medrano
- CONACYT - Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán. Jiquilpan, Michoacán
| | - Edgar Villar-Luna
- CONACYT - Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán. Jiquilpan, Michoacán
| |
Collapse
|
43
|
Miret JA, Munné‐Bosch S, Dijkwel PP. ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:530-544. [PMID: 28703416 PMCID: PMC5787841 DOI: 10.1111/pbi.12793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 05/16/2023]
Abstract
Postharvest senescence and associated stresses limit the shelf life and nutritional value of vegetables. Improved understanding of these processes creates options for better management. After harvest, controlled exposure to abiotic stresses and/or exogenous phytohormones can enhance nutraceutical, organoleptic and commercial longevity traits. With leaf senescence, abscisic acid (ABA) contents progressively rise, but the actual biological functions of this hormone through senescence still need to be clarified. Postharvest senescence of detached green cabbage leaves (Brassica oleracea var. capitata) was characterized under cold (4 °C) and room temperature (25 °C) storage conditions. Hormonal profiling of regions of the leaf blade (apical, medial, basal) revealed a decrease in cytokinins contents during the first days under both conditions, while ABA only increased at 25 °C. Treatments with ABA and a partial agonist of ABA (pyrabactin) for 8 days did not lead to significant effects on water and pigment contents, but increased cell integrity and altered 1-aminocyclopropane-1-carboxylic acid (ACC) and cytokinins contents. Transcriptome analysis showed transcriptional regulation of ABA, cytokinin and ethylene metabolism and signalling; proteasome components; senescence regulation; protection of chloroplast functionality and cell homeostasis; and suppression of defence responses (including glucosinolates and phenylpropanoids metabolism). It is concluded that increasing the concentration of ABA (or its partial agonist pyrabactin) from the start of postharvest suppresses senescence of stored leaves, changes the transcriptional regulation of glucosinolates metabolism and down-regulates biotic stress defence mechanisms. These results suggest a potential for manipulating ABA signalling for improving postharvest quality of leafy vegetables stored at ambient temperature.
Collapse
Affiliation(s)
- Javier A. Miret
- Department of Evolutionary BiologyEcology and Environmental SciencesPlant Physiology Section, Faculty of BiologyBarcelona UniversityBarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary BiologyEcology and Environmental SciencesPlant Physiology Section, Faculty of BiologyBarcelona UniversityBarcelonaSpain
| | - Paul P. Dijkwel
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
44
|
Malka SK, Cheng Y. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. FRONTIERS IN PLANT SCIENCE 2017; 8:2131. [PMID: 29312389 PMCID: PMC5735125 DOI: 10.3389/fpls.2017.02131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
Collapse
Affiliation(s)
- Siva K. Malka
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int J Mol Sci 2017; 18:E2330. [PMID: 29113068 PMCID: PMC5713299 DOI: 10.3390/ijms18112330] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| |
Collapse
|
46
|
Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS. Molecules 2017; 22:molecules22111886. [PMID: 29099789 PMCID: PMC6150195 DOI: 10.3390/molecules22111886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8) assay, morphological changes, flow cytometry, wound healing assay and Western blot analysis were used to investigate the effects of AT-II on cell proliferation, apoptosis and motility of human gastric carcinoma cell lines HGC-27 and AGS. Our results indicated that AT-II could significantly inhibit cell proliferation, motility and induce apoptosis in a dose and time-dependent manner. Western blot analysis showed that the expression level of Bax was upregulated and the expression levels of B-cell lymphoma-2 (Bcl-2), phosphorylated-protein kinase B (p-Akt) and phosphorylated-ERK (p-ERK) were downregulated compared to control group. In conclusion, the findings suggested that AT-II exerted significant anti-tumor effects on gastric carcinoma cells by modulating Akt/ERK signaling pathway, which might shed light on therapy of gastric carcinoma.
Collapse
|
47
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules 2017; 22:E1065. [PMID: 28672860 PMCID: PMC6152207 DOI: 10.3390/molecules22071065] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022] Open
Abstract
Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVAL, UVAH) or UVB (UVBL, UVBH) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v/v) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVBH treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVAL radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4-O-caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVBH Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico.
| |
Collapse
|
48
|
Stability of Bioactive Compounds in Broccoli as Affected by Cutting Styles and Storage Time. Molecules 2017; 22:molecules22040636. [PMID: 28420123 PMCID: PMC6154435 DOI: 10.3390/molecules22040636] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022] Open
Abstract
Broccoli contains bioactive molecules and thus its consumption is related with the prevention of chronic and degenerative diseases. The application of wounding stress to horticultural crops is a common practice, since it is the basis for the fresh-cut produce industry. In this study, the effect of four different cutting styles (CSs) (florets (CS1), florets cut into two even pieces (CS2), florets cut into four even pieces (CS3), and florets processed into chops (CS4)) and storage time (0 and 24 h at 20 °C) on the content of bioactive compounds in broccoli was evaluated. Immediately after cutting, 5-O-caffeoylquinic acid and caffeic acid content increased by 122.4% and 41.6% in CS4 and CS2, respectively. Likewise, after storage, 3-O-caffeoylquinic acid and 5-O-caffeoylquinic acid increased by 46.7% and 98.2%, respectively in CS1. Glucoerucin and gluconasturtiin content decreased by 62% and 50%, respectively in CS3; whereas after storage most glucosinolates increased in CS1. Total isothiocyanates, increased by 133% immediately in CS4, and after storage CS1 showed 65% higher levels of sulforaphane. Total ascorbic acid increased 35% after cutting in CS2, and remained stable after storage. Results presented herein would allow broccoli producers to select proper cutting styles that preserve or increase the content of bioactive molecules.
Collapse
|
49
|
Jacobo-Velázquez DA, Cuéllar-Villarreal MDR, Welti-Chanes J, Cisneros-Zevallos L, Ramos-Parra PA, Hernández-Brenes C. Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Increasing Antioxidant Content of Broccoli Sprouts Using Essential Oils During Cold Storage. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/agri-2016-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Broccoli sprouts are natural functional foods for cancer prevention because of their high content of glucosinolate and antioxidant. Sprouts and mature broccoli are of potential importance in devising chemoprotective strategies in humans. The aim of the investigation was to study the effect of essential oils on broccoli seed germination, increase their antioxidant content and determine the glucosinolate concentration and other phytochemical parameters in 3-day-old sprouts during cold storage at 4°C and 95% RH for 15 days. The results showed that all treatments of essential oils increased germination index, seed germination percentage, seedling length, seedling vigour index, yield and the antioxidant content of broccoli sprout and reduced the microbial load compared to the control. Fortunately, the coliform bacteria was not detected in all treatments. Different essential oils of fennel, caraway, basil, thyme and sage were tested. The thyme oil was the best treatment, which increased the accumulation of the phenolic compounds and glucosinolate compared to the control at different storage periods. In the sprouts treated with thyme oil treatment and the control, at the end of cold storage, 1.98% and 28.06% of total phenolic content, 1.90% and 20.28% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, 1.39% and 58.33% of flavonoids, 1.93% and 36.25% of vitamin C, 2.95% and 22.02% of anthocyanin and 2.18% and 49.12% of glucosinolate were lost, respectively. A slight reduction differences in all detected compound concentrations occurred between the initial content and the end of storage period because of the application of thyme oil compared to the control. Therefore, the total glucosinolate level in the sprout (27.02 μg/g F.W.) was higher than that in the florets (7.37 μg/g F.W.). Glucoraphanin was the most abundant aliphatic glucosinolate present in the sprout and reached the highest value (16.24 μg/g F.W.) followed by glucoerucin (5.9 μg/g F.W.) and glucoiberm(1.2 μg/g F.W.).
Collapse
|