1
|
Wu Q, Bai X, Luo Y, Li L, Nie M, Liu C, Ye X, Zou L, Xiang D. Identification of the global diurnal rhythmic transcripts, transcription factors and time-of-day specific cis elements in Chenopodium quinoa. BMC PLANT BIOLOGY 2023; 23:96. [PMID: 36793005 PMCID: PMC9933291 DOI: 10.1186/s12870-023-04107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Photoperiod is an important environmental cue interacting with circadian clock pathway to optimize the local adaption and yield of crops. Quinoa (Chenopodium quinoa) in family Amaranthaceae has been known as superfood due to the nutritious elements. As quinoa was originated from the low-latitude Andes, most of the quinoa accessions are short-day type. Short-day type quinoa usually displays altered growth and yield status when introduced into higher latitude regions. Thus, deciphering the photoperiodic regulation on circadian clock pathway will help breed adaptable and high yielding quinoa cultivars. RESULTS In this study, we conducted RNA-seq analysis of the diurnally collected leaves of quinoa plants treated by short-day (SD) and long-day conditions (LD), respectively. We identified 19,818 (44% of global genes) rhythmic genes in quinoa using HAYSTACK analysis. We identified the putative circadian clock architecture and investigated the photoperiodic regulatory effects on the expression phase and amplitude of global rhythmic genes, core clock components and transcription factors. The global rhythmic transcripts were involved in time-of-day specific biological processes. A higher percentage of rhythmic genes had advanced phases and strengthened amplitudes when switched from LD to SD. The transcription factors of CO-like, DBB, EIL, ERF, NAC, TALE and WRKY families were sensitive to the day length changes. We speculated that those transcription factors may function as key mediators for the circadian clock output in quinoa. Besides, we identified 15 novel time-of-day specific motifs that may be key cis elements for rhythm-keeping in quinoa. CONCLUSIONS Collectively, this study lays a foundation for understanding the circadian clock pathway and provides useful molecular resources for adaptable elites breeding in quinoa.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Li Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Mengping Nie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengluo Road 2025, Longquanyi District, Chengdu, 610106 Sichuan China
| |
Collapse
|
2
|
Hashida Y, Tezuka A, Nomura Y, Kamitani M, Kashima M, Kurita Y, Nagano AJ. Fillable and unfillable gaps in plant transcriptome under field and controlled environments. PLANT, CELL & ENVIRONMENT 2022; 45:2410-2427. [PMID: 35610174 PMCID: PMC9544781 DOI: 10.1111/pce.14367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The differences between plants grown in field and in controlled environments have long been recognized. However, few studies have addressed the underlying molecular mechanisms. To evaluate plant responses to fluctuating environments using laboratory equipment, we developed SmartGC, a high-performance growth chamber that reproduces the fluctuating irradiance, temperature and humidity of field environments. We analysed massive transcriptome data of rice plants grown under field and SmartGC conditions to clarify the differences in plant responses to field and controlled environments. Rice transcriptome dynamics in SmartGC mimicked those in the field, particularly during the morning and evening but those in conventional growth chamber conditions did not. Further analysis revealed that fluctuation of irradiance affects transcriptome dynamics in the morning and evening, while fluctuation of temperature affects transcriptome dynamics only in the morning. We found upregulation of genes related to biotic and abiotic stress, and their expression was affected by environmental factors that cannot be mimicked by SmartGC. Our results reveal fillable and unfillable gaps in the transcriptomes of rice grown in field and controlled environments and can accelerate the understanding of plant responses to field environments for both basic biology and agricultural applications.
Collapse
Affiliation(s)
- Yoichi Hashida
- Faculty of AgricultureTakasaki University of Health and WelfareTakasakiGunmaJapan
| | - Ayumi Tezuka
- Research Institute for Food and AgricultureRyukoku UniversityOtsuShigaJapan
| | - Yasuyuki Nomura
- Research Institute for Food and AgricultureRyukoku UniversityOtsuShigaJapan
| | - Mari Kamitani
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
| | - Makoto Kashima
- Research Institute for Food and AgricultureRyukoku UniversityOtsuShigaJapan
- College of Science and EngineeringAoyama Gakuin UniversitySagamiharaKanagawaJapan
| | - Yuko Kurita
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
| | - Atsushi J. Nagano
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
| |
Collapse
|
3
|
Xiang Y, Sapir T, Rouillard P, Ferrand M, Jiménez-Gómez JM. Interaction between photoperiod and variation in circadian rhythms in tomato. BMC PLANT BIOLOGY 2022; 22:187. [PMID: 35395725 PMCID: PMC8994279 DOI: 10.1186/s12870-022-03565-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust the timing of their biological processes to the time of the year. In some crops such as rice, barley or soybean, mutations in circadian clock genes have altered photoperiod sensitivity, enhancing their cultivability in specific seasons and latitudes. However, how changes in circadian rhythms interact with the perception of photoperiod in crops remain poorly studied. In tomato, the appearance during domestication of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) delayed both the phase and period of its circadian rhythms. The fact that variation in period and phase are separated in tomato provides an optimal tool to study how these factors affect the perception of photoperiod. RESULTS Here we develop tomato near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and show that they recreate the changes in phase and period that occurred during its domestication. We perform transcriptomic profiling of these near isogenic lines under two different photoperiods, and observe that EID1, but not LNK2, has a large effect on how the tomato transcriptome responds to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms. CONCLUSIONS Our study shows that changes in phase that occurred during tomato domestication determine photoperiod perception in this species, while changes in period have little effect.
Collapse
Affiliation(s)
- Yanli Xiang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, 9052, Gent, Belgium
| | - Thomas Sapir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Pauline Rouillard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marina Ferrand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - José M Jiménez-Gómez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Moseley RC, Motta F, Tuskan GA, Haase SB, Yang X. Inference of Gene Regulatory Network Uncovers the Linkage between Circadian Clock and Crassulacean Acid Metabolism in Kalanchoë fedtschenkoi. Cells 2021; 10:2217. [PMID: 34571864 PMCID: PMC8471846 DOI: 10.3390/cells10092217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
The circadian clock drives time-specific gene expression, enabling biological processes to be temporally controlled. Plants that conduct crassulacean acid metabolism (CAM) photosynthesis represent an interesting case of circadian regulation of gene expression as stomatal movement is temporally inverted relative to stomatal movement in C3 plants. The mechanisms behind how the circadian clock enabled physiological differences at the molecular level is not well understood. Recently, the rescheduling of gene expression was reported as a mechanism to explain how CAM evolved from C3. Therefore, we investigated whether core circadian clock genes in CAM plants were re-phased during evolution, or whether networks of phase-specific genes were simply re-wired to different core clock genes. We identified candidate core clock genes based on gene expression features and then applied the Local Edge Machine (LEM) algorithm to infer regulatory relationships between this new set of core candidates and known core clock genes in Kalanchoë fedtschenkoi. We further inferred stomata-related gene targets for known and candidate core clock genes and constructed a gene regulatory network for core clock and stomata-related genes. Our results provide new insight into the mechanism of circadian control of CAM-related genes in K. fedtschenkoi, facilitating the engineering of CAM machinery into non-CAM plants for sustainable crop production in water-limited environments.
Collapse
Affiliation(s)
- Robert C. Moseley
- Department of Biology, Duke University, Durham, NC 27708, USA; (R.C.M.); (S.B.H.)
| | - Francis Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven B. Haase
- Department of Biology, Duke University, Durham, NC 27708, USA; (R.C.M.); (S.B.H.)
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Wang L, Zhou A, Li J, Yang M, Bu F, Ge L, Chen L, Huang W. Circadian rhythms driving a fast-paced root clock implicate species-specific regulation in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1537-1554. [PMID: 34009694 DOI: 10.1111/jipb.13138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Plants have a hierarchical circadian structure comprising multiple tissue-specific oscillators that operate at different speeds and regulate the expression of distinct sets of genes in different organs. However, the identity of the genes differentially regulated by the circadian clock in different organs, such as roots, and how their oscillations create functional specialization remain unclear. Here, we profiled the diurnal and circadian landscapes of the shoots and roots of Medicago truncatula and identified the conserved regulatory sequences contributing to transcriptome oscillations in each organ. We found that the light-dark cycles strongly affect the global transcriptome oscillation in roots, and many clock genes oscillate only in shoots. Moreover, many key genes involved in nitrogen fixation are regulated by circadian rhythms. Surprisingly, the root clock runs faster than the shoot clock, which is contrary to the hierarchical circadian structure showing a slow-paced root clock in both detached and intact Arabidopsis thaliana (L.) Heynh. roots. Our result provides important clues about the species-specific circadian regulatory mechanism, which is often overlooked, and possibly coordinates the timing between shoots and roots independent of the current prevailing model.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Anqi Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mingkang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Bu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Wang X, Xu Y, Zhou M, Wang W. Assessing Global Circadian Rhythm Through Single-Time-Point Transcriptomic Analysis. Methods Mol Biol 2021; 2328:215-225. [PMID: 34251629 DOI: 10.1007/978-1-0716-1534-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plant circadian clock has emerged as a central hub integrating various endogenous signals and exogenous stimuli to coordinate diverse plant physiological processes. The intimate relationship between crop circadian clock and key agronomic traits has been increasingly appreciated. However, due to the lack of fundamental genetic resources, more complex genome structures and the high cost of large-scale time-course circadian expression profiling, our understanding of crop circadian clock is still very limited. To study plant circadian clock, conventional methods rely on time-course experiments, which can be expensive and time-consuming. Different from these conventional approaches, the molecular timetable method can estimate the global rhythm using single-time-point transcriptome datasets, which has shown great promises in accelerating studies of crop circadian clock. Here we describe the application of the molecular timetable method in soybean and provide key technical caveats as well as related R Markdown scripts.
Collapse
Affiliation(s)
- Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yufeng Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Dantas LLB, Calixto CPG, Dourado MM, Carneiro MS, Brown JWS, Hotta CT. Alternative Splicing of Circadian Clock Genes Correlates With Temperature in Field-Grown Sugarcane. FRONTIERS IN PLANT SCIENCE 2019; 10:1614. [PMID: 31921258 PMCID: PMC6936171 DOI: 10.3389/fpls.2019.01614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 05/05/2023]
Abstract
Alternative Splicing (AS) is a mechanism that generates different mature transcripts from precursor mRNAs (pre-mRNAs) of the same gene. In plants, a wide range of physiological and metabolic events are related to AS, as well as fast responses to changes in temperature. AS is present in around 60% of intron-containing genes in Arabidopsis, 46% in rice, and 38% in maize and it is widespread among the circadian clock genes. Little is known about how AS influences the circadian clock of C4 plants, like commercial sugarcane, a C4 crop with a complex hybrid genome. This work aims to test if the daily dynamics of AS forms of circadian clock genes are regulated by environmental factors, such as temperature, in the field. A systematic search for AS in five sugarcane clock genes, ScLHY, ScPRR37, ScPRR73, ScPRR95, and ScTOC1 using different organs of sugarcane sampled during winter, with 4 months old plants, and during summer, with 9 months old plants, revealed temperature- and organ-dependent expression of at least one alternatively spliced isoform in all genes. Expression of AS isoforms varied according to the season. Our results suggest that AS events in circadian clock genes are correlated with temperature.
Collapse
Affiliation(s)
- Luíza L. B. Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane P. G. Calixto
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
| | - Maira M. Dourado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Monalisa S. Carneiro
- Departmento de Biotecnologia, Produção Vegetal e Animal, Centro de Ciências Agrícolas, Universidade Federal de São Carlos, Araras, Brazil
| | - John W. S. Brown
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Carlos T. Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Li M, Cao L, Mwimba M, Zhou Y, Li L, Zhou M, Schnable PS, O'Rourke JA, Dong X, Wang W. Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc Natl Acad Sci U S A 2019; 116:23840-23849. [PMID: 31676549 PMCID: PMC6876155 DOI: 10.1073/pnas.1708508116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant circadian clock evolved to increase fitness by synchronizing physiological processes with environmental oscillations. Crop fitness was artificially selected through domestication and breeding, and the circadian clock was identified by both natural and artificial selections as a key to improved fitness. Despite progress in Arabidopsis, our understanding of the crop circadian clock is still limited, impeding its rational improvement for enhanced fitness. To unveil the interactions between the crop circadian clock and various environmental cues, we comprehensively mapped abiotic stress inputs to the soybean circadian clock using a 2-module discovery pipeline. Using the "molecular timetable" method, we computationally surveyed publicly available abiotic stress-related soybean transcriptomes to identify stresses that have strong impacts on the global rhythm. These findings were then experimentally confirmed using a multiplexed RNA sequencing technology. Specific clock components modulated by each stress were further identified. This comprehensive mapping uncovered inputs to the plant circadian clock such as alkaline stress. Moreover, short-term iron deficiency targeted different clock components in soybean and Arabidopsis and thus had opposite effects on the clocks of these 2 species. Comparing soybean varieties with different iron uptake efficiencies suggests that phase modulation might be a mechanism to alleviate iron deficiency symptoms in soybean. These unique responses in soybean demonstrate the need to directly study crop circadian clocks. Our discovery pipeline may serve as a broadly applicable tool to facilitate these explorations.
Collapse
Affiliation(s)
- Meina Li
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Lijun Cao
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Musoki Mwimba
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708
- Department of Biology, Duke University, Durham, NC 27708
| | - Yan Zhou
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
| | - Mian Zhou
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
- College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | | | - Jamie A O'Rourke
- Department of Agronomy, Iowa State University, Ames, IA 50011
- Corn Insects and Crop Genetics Research Unit, Agricultural Research Service, US Department of Agriculture, Ames, IA 50011
| | - Xinnian Dong
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Duke University, Durham, NC 27708;
- Department of Biology, Duke University, Durham, NC 27708
| | - Wei Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011;
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871 Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| |
Collapse
|
10
|
Moseley RC, Tuskan GA, Yang X. Comparative Genomics Analysis Provides New Insight Into Molecular Basis of Stomatal Movement in Kalanchoë fedtschenkoi. FRONTIERS IN PLANT SCIENCE 2019; 10:292. [PMID: 30930922 PMCID: PMC6425862 DOI: 10.3389/fpls.2019.00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/22/2019] [Indexed: 05/03/2023]
Abstract
CO2 uptake and water loss in plants are regulated by microscopic pores on the surface of leaves, called stomata. This enablement of gas exchange by the opening and closing of stomata is one of the most essential processes in plant photosynthesis and transpiration, affecting water-use efficiency (WUE) and thus drought susceptibility. In plant species with crassulacean acid metabolism (CAM) photosynthesis, diel stomatal movement pattern is inverted relative to C3 and C4 photosynthesis species, resulting in much higher WUE and drought tolerance. However, little is known about the molecular basis of stomatal movement in CAM species. The goal of this study is to identify candidate genes that could play a role in stomatal movement in an obligate CAM species, Kalanchoë fedtschenkoi. By way of a text-mining approach, proteins were identified in various plant species, spanning C3, C4, and CAM photosynthetic types, which are orthologous to proteins known to be involved in stomatal movement. A comparative analysis of diel time-course gene expression data was performed between K. fedtschenkoi and two C3 species (i.e., Arabidopsis thaliana and Solanum lycopersicum) to identify differential gene expression between the dusk and dawn phases of the 24-h cycle. A rescheduled catalase gene known to be involved in stomatal movement was identified, suggesting a role for H2O2 in CAM-like stomatal movement. Overall, these results provide new insights into the molecular regulation of stomatal movement in CAM plants, facilitating genetic improvement of drought resistance in agricultural crops through manipulation of stomata-related genes.
Collapse
Affiliation(s)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Xiaohan Yang,
| |
Collapse
|
11
|
Clark S, Yu F, Gu L, Min XJ. Expanding Alternative Splicing Identification by Integrating Multiple Sources of Transcription Data in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:689. [PMID: 31191588 PMCID: PMC6546887 DOI: 10.3389/fpls.2019.00689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 05/17/2023]
Abstract
Tomato (Solanum lycopersicum) is an important vegetable and fruit crop. Its genome was completely sequenced and there are also a large amount of available expressed sequence tags (ESTs) and short reads generated by RNA sequencing (RNA-seq) technologies. Mapping transcripts including mRNA sequences, ESTs, and RNA-seq reads to the genome allows identifying pre-mRNA alternative splicing (AS), a post-transcriptional process generating two or more RNA isoforms from one pre-mRNA transcript. We comprehensively analyzed the AS landscape in tomato by integrating genome mapping information of all available mRNA and ESTs with mapping information of RNA-seq reads which were collected from 27 published projects. A total of 369,911 AS events were identified from 34,419 genomic loci involving 161,913 transcripts. Within the basic AS events, intron retention is the prevalent type (18.9%), followed by alternative acceptor site (12.9%) and alternative donor site (7.3%), with exon skipping as the least type (6.0%). Complex AS types having two or more basic event accounted for 54.9% of total AS events. Within 35,768 annotated protein-coding gene models, 23,233 gene models were found having pre-mRNAs generating AS isoform transcripts. Thus the estimated AS rate was 65.0% in tomato. The list of identified AS genes with their corresponding transcript isoforms serves as a catalog for further detailed examination of gene functions in tomato biology. The post-transcriptional information is also expected to be useful in improving the predicted gene models in tomato. The sequence and annotation information can be accessed at plant alternative splicing database (http://proteomics.ysu.edu/altsplice).
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, United States
| | - Feng Yu
- Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, United States
| | - Lianfeng Gu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Jia Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, United States
- *Correspondence: Xiang Jia Min,
| |
Collapse
|
12
|
Moseley RC, Mewalal R, Motta F, Tuskan GA, Haase S, Yang X. Conservation and Diversification of Circadian Rhythmicity Between a Model Crassulacean Acid Metabolism Plant Kalanchoë fedtschenkoi and a Model C 3 Photosynthesis Plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1757. [PMID: 30546378 PMCID: PMC6279919 DOI: 10.3389/fpls.2018.01757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/12/2018] [Indexed: 05/04/2023]
Abstract
Crassulacean acid metabolism (CAM) improves photosynthetic efficiency under limited water availability relative to C3 photosynthesis. It is widely accepted that CAM plants have evolved from C3 plants and it is hypothesized that CAM is under the control of the internal circadian clock. However, the role that the circadian clock plays in the evolution of CAM is not well understood. To identify the molecular basis of circadian control over CAM evolution, rhythmic gene sets were identified in a CAM model plant species (Kalanchoë fedtschenkoi) and a C3 model plant species (Arabidopsis thaliana) through analysis of diel time-course gene expression data using multiple periodicity detection algorithms. Based on protein sequences, ortholog groups were constructed containing genes from each of these two species. The ortholog groups were categorized into five gene sets based on conservation and diversification of rhythmic gene expression. Interestingly, minimal functional overlap was observed when comparing the rhythmic gene sets of each species. Specifcally, metabolic processes were enriched in the gene set under circadian control in K. fedtschenkoi and numerous genes were found to have retained or gained rhythmic expression in K. fedtsechenkoi. Additonally, several rhythmic orthologs, including CAM-related orthologs, displayed phase shifts between species. Results of this analysis point to several mechanisms by which the circadian clock plays a role in the evolution of CAM. These genes provide a set of testable hypotheses for future experiments.
Collapse
Affiliation(s)
| | - Ritesh Mewalal
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Francis Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Steve Haase
- Department of Biology, Duke University, Durham, NC, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
13
|
Koda S, Onda Y, Matsui H, Takahagi K, Uehara-Yamaguchi Y, Shimizu M, Inoue K, Yoshida T, Sakurai T, Honda H, Eguchi S, Nishii R, Mochida K. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2017; 8:2055. [PMID: 29234348 PMCID: PMC5712366 DOI: 10.3389/fpls.2017.02055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/16/2017] [Indexed: 05/08/2023]
Abstract
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Collapse
Affiliation(s)
- Satoru Koda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | | | - Kotaro Takahagi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yukiko Uehara-Yamaguchi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Minami Shimizu
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | - Hiroshi Honda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Shinto Eguchi
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Ryuei Nishii
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| |
Collapse
|
14
|
Higashi T, Aoki K, Nagano AJ, Honjo MN, Fukuda H. Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light-Dark Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:1114. [PMID: 27512400 PMCID: PMC4961695 DOI: 10.3389/fpls.2016.01114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Although, the circadian clock is a universal biological system in plants and it orchestrates important role of plant production such as photosynthesis, floral induction and growth, there are few such studies on cultivated species. Lettuce is one major cultivated species for both open culture and plant factories and there is little information concerning its circadian clock system. In addition, most of the relevant genes have not been identified. In this study, we detected circadian oscillation in the lettuce transcriptome using time-course RNA sequencing (RNA-Seq) data. Constant light (LL) and light-dark (LD) conditions were used to detect circadian oscillation because the circadian clock has some basic properties: one is self-sustaining oscillation under constant light and another is entrainment to environmental cycles such as light and temperature. In the results, 215 contigs were detected as common oscillating contigs under both LL and LD conditions. The 215 common oscillating contigs included clock gene-like contigs CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)-like, TOC1 (TIMING OF CAB EXPRESSION 1)-like and LHY (LATE ELONGATED HYPOCOTYL)-like, and their expression patterns were similar to those of Arabidopsis. Functional enrichment analysis by GO (gene ontology) Slim and GO Fat showed that the GO terms of response to light stimulus, response to stress, photosynthesis and circadian rhythms were enriched in the 215 common oscillating contigs and these terms were actually regulated by circadian clocks in plants. The 215 common oscillating contigs can be used to evaluate whether the gene expression pattern related to photosynthesis and optical response performs normally in lettuce.
Collapse
Affiliation(s)
- Takanobu Higashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan
| | - Atsushi J. Nagano
- Faculty of Agriculture, Ryukoku UniversityOtsu, Japan
- Core Research for Evolutional Science and Technology – Japan Science and Technology AgencyKawaguchi, Japan
- Center for Ecological Research, Kyoto UniversityOtsu, Japan
| | - Mie N. Honjo
- Center for Ecological Research, Kyoto UniversityOtsu, Japan
| | - Hirokazu Fukuda
- Graduate School of Engineering, Osaka Prefecture UniversitySakai, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| |
Collapse
|