1
|
Wang H, Zhao S, Sun B, Osman FM, Qi Z, Ding D, Liu X, Ding J, Zhang Z. Carboxylic acid accumulation and secretion contribute to the alkali-stress tolerance of halophyte Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1366108. [PMID: 38567134 PMCID: PMC10985159 DOI: 10.3389/fpls.2024.1366108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Leymus chinensis is a dominant halophytic grass in alkalized grasslands of Northeast China. To explore the alkali-tolerance mechanism of L. chinensis, we applied a widely targeted metabolomic approach to analyze metabolic responses of its root exudates, root tissues and leaves under alkali-stress conditions. L. chinensis extensively secreted organic acids, phenolic acids, free fatty acids and other substances having -COOH or phosphate groups when grown under alkali-stress conditions. The buffering capacity of these secreted substances promoted pH regulation in the rhizosphere during responses to alkali stress. L. chinensis leaves exhibited enhanced accumulations of free fatty acids, lipids, amino acids, organic acids, phenolic acids and alkaloids, which play important roles in maintaining cell membrane stability, regulating osmotic pressure and providing substrates for the alkali-stress responses of roots. The accumulations of numerous flavonoids, saccharides and alcohols were extensively enhanced in the roots of L. chinensis, but rarely enhanced in the leaves, under alkali-stress conditions. Enhanced accumulations of flavonoids, saccharides and alcohols increased the removal of reactive oxygen species and alleviated oxygen damage caused by alkali stress. In this study, we revealed the metabolic response mechanisms of L. chinensis under alkali-stress conditions, emphasizing important roles for the accumulation and secretion of organic acids, amino acids, fatty acids and other substances in alkali tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhian Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Cui X, Wang B, Chen Z, Guo J, Zhang T, Zhang W, Shi L. Comprehensive physiological, transcriptomic, and metabolomic analysis of the key metabolic pathways in millet seedling adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14122. [PMID: 38148213 DOI: 10.1111/ppl.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.
Collapse
Affiliation(s)
- Xiaomeng Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bianyin Wang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Zhaoyang Chen
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wenying Zhang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Lianxuan Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
Gao J, Duan M, Hasi G, Yang J, Yan C, Kang Y, Qi Z. Comparison of two contrasting Leymus chinensis accessions reveals the roles of the cell wall and auxin in rhizome development. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154003. [PMID: 37301035 DOI: 10.1016/j.jplph.2023.154003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
Leymus chinensis, a perennial native forage grass, is widely distributed in the steppes of Inner Mongolia as the dominant species. The main reproductive strategy of this grass is clonal propagation, which occurs via the proliferation of subterranean horizontal stems known as rhizomes. To elucidate the mechanism underlying rhizome development in this grass, we collected 60 accessions of L. chinensis and evaluated their rhizome development. One accession, which we named SR-74 (Strong Rhizomes), had significantly better rhizome development capacity than the accession WR-16 (Weak Rhizomes) in terms of rhizome number, total and primary rhizome length, and number of rhizome seedlings. Rhizome elongation was positively correlated with the number of internodes in the rhizome, which affected plant biomass. Compared to WR-16, SR-74 had higher rhizome tip hardness, higher abundance of transcripts participating in the biosynthesis of cell wall components, and higher levels of the metabolites L-phenylalanine, trans-cinnamic acid, 3-coumaric acid, ferulic acid, and coniferin. These metabolites in the phenylpropanoid biosynthesis pathway are precursors of lignin. In addition, SR-74 rhizomes contained higher amounts of auxin and auxin metabolites, including L-Trp, IPA, IBA, IAA and IAA-Asp, as well as upregulated expression of the auxin biosynthesis and signaling genes YUCCA6, YUCCA8, YUCCA10, YUCCA11, PIN1, PIN2, UGT1, UGT2, UGT4, UGT10, GH3, IAA7, IAA23, and IAA30. We propose a network between auxin signaling and the cell wall underlying rhizome development in L. chinensis.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Menglu Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Gaowa Hasi
- Grassland Work Station of East Ujimqin Banner of Xilin Gol League of Inner Mongolia, East Ujimqin Banner, 026300, China
| | - Jia Yang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Chunxia Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| |
Collapse
|
4
|
Li Y, Jiang D, Liu XY, Li M, Tang YF, Mi J, Ren GX, Liu CS. Multi-Omics Analysis Provides Crucial Insights into the Drought Adaptation of Glycyrrhiza uralensis Fisch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5391-5402. [PMID: 36971245 DOI: 10.1021/acs.jafc.2c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Drought adaptation of plants is closely related to resistance and tolerance to drought stress as well as the ability to recover after the elimination of the stress. Glycyrrhiza uralensis Fisch is a commonly applied herb whose growth and development are greatly affected by drought. Here, we provide the first comprehensive analysis of the transcriptomic, epigenetic, and metabolic responses of G. uralensis to drought stress and rewatering. The hyper-/hypomethylation of genes may lead to up-/downregulated gene expression, and epigenetic changes can be regarded as an important regulatory mechanism of G. uralensis under drought stress and rewatering. Moreover, integrated transcriptome and metabolome analysis revealed that genes and metabolites involved in pathways of antioxidation, osmoregulation, phenylpropanoid biosynthesis, and flavonoid biosynthesis may regulate the drought adaptation of G. uralensis. This work provides crucial insights into the drought adaptation of G. uralensis and offers epigenetic resources for cultivating G. uralensis with high drought adaptation.
Collapse
Affiliation(s)
- Yuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin-Yu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi-Fei Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiu Mi
- University of Tibetan Medicine, Tibet 850000, China
| | - Guang-Xi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chun-Sheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
5
|
Das A, Dedon N, Enders DJ, Fjellheim S, Preston JC. Testing the chilling- before drought-tolerance hypothesis in Pooideae grasses. Mol Ecol 2023; 32:772-785. [PMID: 36420966 PMCID: PMC10107940 DOI: 10.1111/mec.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above-freezing cold (chilling) tolerance evolved early in the subfamily. By contrast, drought tolerance is hypothesized to have evolved multiple times independently in response to global aridification that occurred after the split of Pooideae tribes. To independently test predictions of the chilling-before-drought hypothesis in Pooideae, we assessed conservation of whole plant and gene expression traits in response to chilling vs. drought. We demonstrated that both trait responses are more similar across tribes in cold as compared to drought, suggesting that chilling responses evolved before, and drought responses after, tribe diversification. Moreover, we found significantly more overlap between drought and chilling responsive genes within a species than between drought responsive genes across species, providing evidence that chilling tolerance genes acted as precursors for the novel acquisition of increased drought tolerance multiple times independently, partially through the cooption of chilling responsive genes.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Natalie Dedon
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Daniel J Enders
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
6
|
Liu Y, Li Y, Lu Q, Sun L, Du S, Liu T, Hou M, Ge G, Wang Z, Jia Y. Effects of Lactic Acid Bacteria Additives on the Quality, Volatile Chemicals and Microbial Community of Leymus chinensis Silage During Aerobic Exposure. Front Microbiol 2022; 13:938153. [PMID: 36118219 PMCID: PMC9478463 DOI: 10.3389/fmicb.2022.938153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Silage exposed to air is prone to deterioration and production of unpleasant volatile chemicals that can seriously affect livestock intake and health. The aim of this study was to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and a combination of LP and LB (PB) on the quality, microbial community and volatile chemicals of Leymus chinensis silage at 0, 4, and 8 days after aerobic exposure. During aerobic exposure, LP had higher WSC and LA contents but had the least aerobic stability, with more harmful microorganisms such as Penicillium and Monascus and produced more volatile chemicals such as Isospathulenol and 2-Furancarbinol. LB slowed down the rise in pH, produced more acetic acid and effectively improved aerobic stability, while the effect of these two additives combined was intermediate between that of each additive alone. Correlation analysis showed that Actinomyces, Sphingomonas, Penicillium, and Monascus were associated with aerobic deterioration, and Weissella, Pediococcus, Botryosphaeria, and Monascus were associated with volatile chemicals. In conclusion, LB preserved the quality of L. chinensis silage during aerobic exposure, while LP accelerated aerobic deterioration.
Collapse
Affiliation(s)
- Yichao Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuyu Li
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiang Lu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tingyu Liu
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, China
| | - Meiling Hou
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Yushan Jia,
| |
Collapse
|
7
|
Liu Q, Xie S, Zhao X, Liu Y, Xing Y, Dao J, Wei B, Peng Y, Duan W, Wang Z. Drought Sensitivity of Sugarcane Cultivars Shapes Rhizosphere Bacterial Community Patterns in Response to Water Stress. Front Microbiol 2021; 12:732989. [PMID: 34745035 PMCID: PMC8568056 DOI: 10.3389/fmicb.2021.732989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.
Collapse
Affiliation(s)
- Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yue Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Beilei Wei
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yunchang Peng
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Das A, Prakash A, Dedon N, Doty A, Siddiqui M, Preston JC. Variation in climatic tolerance, but not stomatal traits, partially explains Pooideae grass species distributions. ANNALS OF BOTANY 2021; 128:83-95. [PMID: 33772589 PMCID: PMC8318108 DOI: 10.1093/aob/mcab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Grasses in subfamily Pooideae live in some of the world's harshest terrestrial environments, from frigid boreal zones to the arid windswept steppe. It is hypothesized that the climate distribution of species within this group is driven by differences in climatic tolerance, and that tolerance can be partially explained by variation in stomatal traits. METHODS We determined the aridity index (AI) and minimum temperature of the coldest month (MTCM) for 22 diverse Pooideae accessions and one outgroup, and used comparative methods to assess predicted relationships for climate traits versus fitness traits, stomatal diffusive conductance to water (gw) and speed of stomatal closure following drought and/or cold. KEY RESULTS Results demonstrate that AI and MTCM predict variation in survival/regreening following drought/cold, and gw under drought/cold is positively correlated with δ 13C-measured water use efficiency (WUE). However, the relationship between climate traits and fitness under drought/cold was not explained by gw or speed of stomatal closure. CONCLUSIONS These findings suggest that Pooideae distributions are at least partly determined by tolerance to aridity and above-freezing cold, but that variation in tolerance is not uniformly explained by variation in stomatal traits.
Collapse
Affiliation(s)
- Aayudh Das
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Anoob Prakash
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Natalie Dedon
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Alex Doty
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Muniba Siddiqui
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Jill C Preston
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Jones C, De Vega J, Worthington M, Thomas A, Gasior D, Harper J, Doonan J, Fu Y, Bosch M, Corke F, Arango J, Cardoso JA, de la Cruz Jimenez J, Armstead I, Fernandez-Fuentes N. A Comparison of Differential Gene Expression in Response to the Onset of Water Stress Between Three Hybrid Brachiaria Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:637956. [PMID: 33815444 PMCID: PMC8017340 DOI: 10.3389/fpls.2021.637956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Brachiaria (Trin.) Griseb. (syn. Urochloa P. Beauv.) is a C4 grass genus belonging to the Panicoideae. Native to Africa, these grasses are now widely grown as forages in tropical areas worldwide and are the subject of intensive breeding, particularly in South America. Tolerance to abiotic stresses such as aluminum and drought are major breeding objectives. In this study, we present the transcriptomic profiling of leaves and roots of three Brachiaria interspecific hybrid genotypes with the onset of water stress, Br12/3659-17 (gt-17), Br12/2360-9 (gt-9), and Br12/3868-18 (gt-18), previously characterized as having good, intermediate and poor tolerance to drought, respectively, in germplasm evaluation programs. RNA was extracted from leaf and root tissue of plants at estimated growing medium water contents (EWC) of 35, 15, and 5%. Differentially expressed genes (DEGs) were compared between different EWCs, 35/15, 15/5, and 35/5 using DESeq2. Overall, the proportions of DEGs enriched in all three genotypes varied in a genotype-dependent manner in relation to EWC comparison, with intermediate and sensitive gt-9 and gt-18 being more similar to each other than to drought tolerant gt-17. More specifically, GO terms relating to carbohydrate and cell wall metabolism in the leaves were enriched by up-regulated DEGs in gt-9 and gt-18, but by down-regulated DEGs in gt-17. Across all genotypes, analysis of DEG enzyme activities indicated an excess of down-regulated putative apoplastic peroxidases in the roots as water stress increased. This suggests that changes in root cell-wall architecture may be an important component of the response to water stress in Brachiaria.
Collapse
Affiliation(s)
- Charlotte Jones
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Margaret Worthington
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John Doonan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Fiona Corke
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Jacobo Arango
- International Center for Tropical Agriculture, Cali, Colombia
| | | | - Juan de la Cruz Jimenez
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
10
|
Liu G, Zenda T, Liu S, Wang X, Jin H, Dong A, Yang Y, Duan H. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Genes Genomics 2020; 42:937-955. [PMID: 32623576 DOI: 10.1007/s13258-020-00962-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Drought is the major abiotic stress factor that negatively influences growth and yield in cereal grain crops such as maize (Zea mays L.). A multitude of genes and pathways tightly modulate plant growth, development and responses to environmental stresses including drought. Therefore, crop breeding efforts for enhanced drought resistance require improved knowledge of plant drought responses. OBJECTIVE Here, we sought to elucidate the molecular and physiological mechanisms underpinning maize drought stress tolerance. METHODS We therefore applied a 12-day water-deficit stress treatment to maize plants of two contrasting (drought tolerant ND476 and drought sensitive ZX978) hybrid cultivars at the late vegetative (V12) growth stage and performed a large-scale RNA sequencing (RNA-seq) transcriptome analysis of the leaf tissues. RESULTS A comparative analysis of the two genotypes leaf transcriptomes and physiological parameters revealed the key differentially expressed genes (DEGs) and metabolic pathways that respond to drought in a genotype-specific manner. A total of 3114 DEGs were identified, with 21 DEGs being specifically expressed in tolerant genotype ND476 in response to drought stress. Of these, genes involved in secondary metabolites biosynthesis, transcription factor regulation, detoxification and stress defense were highly expressed in ND476. Physiological analysis results substantiated our RNA-seq data, with ND476 exhibiting better cell water retention, higher soluble protein content and guaiacol peroxidase activity, along with low lipid peroxidation extent than the sensitive cultivar ZX978 under drought conditions. CONCLUSION Our findings enrich the maize genetic resources and enhance our further understanding of the molecular mechanisms regulating drought stress tolerance in maize. Additionally, the DEGs screened in this study may provide a foundational basis for our future targeted cloning studies.
Collapse
Affiliation(s)
- Guo Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xuan Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Hongyu Jin
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China. .,North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
11
|
De la Rosa L, Zambrana E, Ramirez-Parra E. Molecular bases for drought tolerance in common vetch: designing new molecular breeding tools. BMC PLANT BIOLOGY 2020; 20:71. [PMID: 32054459 PMCID: PMC7020375 DOI: 10.1186/s12870-020-2267-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/27/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Common vetch (Vicia sativa L.) is a forage grain legume of high protein content and high nitrogen fixation, relevant in sustainable agriculture systems. Drought is the main limiting factor of this crop yield. Genetic resources collections are essential to provide genetic variability for breeding. The analysis of drought associated parameters has allowed us to identify drought tolerant and sensitive ecotypes in a vetch core collection. RESULTS To understand the mechanisms involved in drought response we analysed transcriptomic differences between tolerant and sensitive accessions. Polymorphic variants (SNPs and SSRs) in these differential expressed genes (DEGs) have also been analysed for the design of drought-associated markers. A total of 1332 transcripts were commonly deregulated in both genotypes under drought. To know the drought adaptive response, we also analysed DEGs between accessions. A total of 2646 transcripts are DEG between sensitive and tolerant ecotypes, in watered and drought conditions, including important genes involved in redox homeostasis, cell wall modifications and stress-response. The integration of this functional and genetic information will contribute to understand the molecular mechanisms of drought response and the adaptive mechanisms of drought tolerance in common vetch. The identification of polymorphic variants in these DEGs has also been screened for the design of drought-associated markers that could be used in future breeding program strategies. CONCLUSIONS Our studies shed light for the first time in common vetch about the genes and pathways associated with drought tolerance. In addition, we identify over 100 potential drought associated polymorphism, as SNPs or SSRs, which are differently present in drought and tolerant genotypes. The use of these molecular markers for trait prediction would enable the development of genomic tools for future engineering strategies by screening of germplasm crop collections for traits related with crop drought resilience, adaptability or yield in vetch.
Collapse
Affiliation(s)
- Lucía De la Rosa
- Centro Nacional de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28800 Alcalá de Henares, Spain
| | - Encarnación Zambrana
- Centro Nacional de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28800 Alcalá de Henares, Spain
| | - Elena Ramirez-Parra
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
12
|
Zhao P, Hou S, Guo X, Jia J, Yang W, Liu Z, Chen S, Li X, Qi D, Liu G, Cheng L. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC PLANT BIOLOGY 2019; 19:564. [PMID: 31852429 PMCID: PMC6921572 DOI: 10.1186/s12870-019-2159-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. RESULTS In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. CONCLUSIONS Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.
Collapse
Affiliation(s)
- Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Management Science And Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Shenglin Hou
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences, Shijiazhuang, China
| | - Xiufang Guo
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhujiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Li X, Liu S, Yuan G, Zhao P, Yang W, Jia J, Cheng L, Qi D, Chen S, Liu G. Comparative transcriptome analysis provides insights into the distinct germination in sheepgrass (Leymus chinensis) during seed development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:446-458. [PMID: 30999132 DOI: 10.1016/j.plaphy.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 05/12/2023]
Abstract
Sheepgrass (Leymus chinensis ((Trin.) Tzvel)) is an important perennial forage grass that is widely distributed in the Eurasia steppe. The seed germination percentage show significant variation among the different germplasm in sheepgrass. However, the underlying molecular mechanisms of distinct germination during seed development are still mostly unknown. Here, we performed comparative transcriptomic analyses of high seed germination percentage (H) and low seed germination percentage (L) at 14, 28, and 42 days after pollination. After comparing 3 consecutive development stages, 9255, 5366, and 4306 genes were found to be significantly differently expressed between H and L. Pathway analysis indicated that transcripts related to starch and sucrose metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, amino sugar and nucleotide sugar metabolism, and photosynthesis were significantly changed between the two germplasm at three stages. ABA and GA metabolism- and signaling transduction-related genes were differentially expressed between two germplasm at development stages, suggesting that the reduced signaling of GA and ABA is likely to be related to seed germination and dormancy in sheepgrass. We also identified 81 transcription factor (TF) families, and some TFs genes such as NAC48, NAC78, WRKY80, ZnFP, C3H14 and ILR3 were significantly differential expressed in two germplasm. Our results provide insights into seed development, germination and dormancy in sheepgrass at the transcriptional level.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shu Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guangxiao Yuan
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Pincang Zhao
- College of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Animal Science of Heilongjiang Province, Heilongjiang, Qiqihar, China
| | - Junting Jia
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Dinkins RD, Nagabhyru P, Young CA, West CP, Schardl CL. Transcriptome Analysis and Differential Expression in Tall Fescue Harboring Different Endophyte Strains in Response to Water Deficit. THE PLANT GENOME 2019; 12:180071. [PMID: 31290925 DOI: 10.3835/plantgenome2018.09.0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two tall fescue [Lolium arundinaceum (Schreb.) Darbysh. = Schedonorus arundinaceus (Schreb.) Dumort. = Festuca arundinacea var. arundinacea Schreb.] plant genotypes with an Epichloë coenophiala (Morgan-Jones & W. Gams) C.W. Bacon & Schardl common toxic endophyte (CTE), one with a nontoxic strain (NTE19) and one with another Epichloë species (FaTG-4) were evaluated and compared with their respective endophyte-free clones for responses to water-deficit stress in the greenhouse. One of the plant genotypes (P27) showed a positive effect of its CTE strain on tiller production after stress and resumed watering. In transcriptome analysis of the pseudostems (leaf sheath whorls), differentially expressed genes (DEGs) were defined as having at least twofold expression difference and false discovery rate (FDR) < 0.05 in comparisons of water treatment (stressed or watered), endophyte presence or absence, or both. Stress affected 38% of the plant transcripts including those for the expected stress-response pathways. The DEGs affected by endophyte in stressed plants were unique to individual plant genotypes. In unstressed plants, endophyte presence tended to reduce expression of genes putatively for defense against fungi, but in unstressed P27 endophyte presence there was enhanced expression of dehydrin and heat shock protein genes. Our results indicated subtle and variable effects of endophytes on tall fescue gene expression; where the endophyte confers protection, its effects on plant gene expression may help prime the plant for stress resistance.
Collapse
|
16
|
Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach. PLoS One 2019; 14:e0216068. [PMID: 31059518 PMCID: PMC6502313 DOI: 10.1371/journal.pone.0216068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Drought is a severe environmental stress. It is estimated that about 50% of the world rice production is affected mainly by drought. Apart from conventional breeding strategies to develop drought-tolerant crops, innovative computational approaches may provide insights into the underlying molecular mechanisms of stress response and identify drought-responsive markers. Here we propose a network-based computational approach involving a meta-analytic study of seven drought-tolerant rice genotypes under drought stress. RESULTS Co-expression networks enable large-scale analysis of gene-pair associations and tightly coupled clusters that may represent coordinated biological processes. Considering differentially expressed genes in the co-expressed modules and supplementing external information such as resistance/tolerance QTLs, transcription factors, network-based topological measures, we identify and prioritize drought-adaptive co-expressed gene modules and potential candidate genes. Using the candidate genes that are well-represented across the datasets as 'seed' genes, two drought-specific protein-protein interaction networks (PPINs) are constructed with up- and down-regulated genes. Cluster analysis of the up-regulated PPIN revealed ABA signalling pathway as a central process in drought response with a probable crosstalk with energy metabolic processes. Tightly coupled gene clusters representing up-regulation of core cellular respiratory processes and enhanced degradation of branched chain amino acids and cell wall metabolism are identified. Cluster analysis of down-regulated PPIN provides a snapshot of major processes associated with photosynthesis, growth, development and protein synthesis, most of which are shut down during drought. Differential regulation of phytohormones, e.g., jasmonic acid, cell wall metabolism, signalling and posttranslational modifications associated with biotic stress are elucidated. Functional characterization of topologically important, drought-responsive uncharacterized genes that may play a role in important processes such as ABA signalling, calcium signalling, photosynthesis and cell wall metabolism is discussed. Further transgenic studies on these genes may help in elucidating their biological role under stress conditions. CONCLUSION Currently, a large number of resources for rice functional genomics exist which are mostly underutilized by the scientific community. In this study, a computational approach integrating information from various resources such as gene co-expression networks, protein-protein interactions and pathway-level information is proposed to provide a systems-level view of complex drought-responsive processes across the drought-tolerant genotypes.
Collapse
Affiliation(s)
- Sanchari Sircar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
- * E-mail:
| |
Collapse
|
17
|
Hasan MMU, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, Shen H, Chen Y, Wang X. Comparative Transcriptomic Analysis of Biological Process and Key Pathway in Three Cotton ( Gossypium spp.) Species Under Drought Stress. Int J Mol Sci 2019; 20:E2076. [PMID: 31035558 PMCID: PMC6539811 DOI: 10.3390/ijms20092076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Drought is one of the most important abiotic stresses that seriously affects cotton growth, development, and production worldwide. However, the molecular mechanism, key pathway, and responsible genes for drought tolerance incotton have not been stated clearly. In this research, high-throughput next generation sequencing technique was utilized to investigate gene expression profiles of three cotton species (Gossypium hirsutum, Gossypium arboreum, and Gossypium barbadense L.) under drought stress. A total of 6968 differentially expressed genes (DEGs) were identified, where 2053, 742, and 4173 genes were tested as statistically significant; 648, 320, and 1998 genes were up-regulated, and 1405, 422, and 2175 were down-regulated in TM-1, Zhongmian-16, and Pima4-S, respectively. Total DEGs were annotated and classified into functional groups under gene ontology analysis. The biological process was present only in tolerant species(TM-1), indicating drought tolerance condition. The Kyoto encyclopedia of genes and genomes showed the involvement of plant hormone signal transduction and metabolic pathways enrichment under drought stress. Several transcription factors associated with ethylene-responsive genes (ICE1, MYB44, FAMA, etc.) were identified as playing key roles in acclimatizing to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to abscisic acid (ABA) responses (NCED, PYL, PP2C, and SRK2E), reactive oxygen species (ROS) related in small heat shock protein and 18.1 kDa I heat shock protein, YLS3, and ODORANT1 genes. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in cotton.
Collapse
Affiliation(s)
- Md Mosfeq-Ul Hasan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Examination Controller Section, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Fanglu Ma
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Sajid
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zakaria H Prodhan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Yadong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Medina S, Vicente R, Nieto-Taladriz MT, Aparicio N, Chairi F, Vergara-Diaz O, Araus JL. The Plant-Transpiration Response to Vapor Pressure Deficit (VPD) in Durum Wheat Is Associated With Differential Yield Performance and Specific Expression of Genes Involved in Primary Metabolism and Water Transport. FRONTIERS IN PLANT SCIENCE 2019; 9:1994. [PMID: 30697225 PMCID: PMC6341309 DOI: 10.3389/fpls.2018.01994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/21/2018] [Indexed: 05/23/2023]
Abstract
The regulation of plant transpiration was proposed as a key factor affecting transpiration efficiency and agronomical adaptation of wheat to water-limited Mediterranean environments. However, to date no studies have related this trait to crop performance in the field. In this study, the transpiration response to increasing vapor pressure deficit (VPD) of modern Spanish semi-dwarf durum wheat lines was evaluated under controlled conditions at vegetative stage, and the agronomical performance of the same set of lines was assessed at grain filling as well as grain yield at maturity, in Mediterranean environments ranging from water stressed to good agronomical conditions. A group of linear-transpiration response (LTR) lines exhibited better performance in grain yield and biomass compared to segmented-transpiration response (STR) lines, particularly in the wetter environments, whereas the reverse occurred only in the most stressed trial. LTR lines generally exhibited better water status (stomatal conductance) and larger green biomass (vegetation indices) during the reproductive stage than STR lines. In both groups, the responses to growing conditions were associated with the expression levels of dehydration-responsive transcription factors (DREB) leading to different performances of primary metabolism-related enzymes. Thus, the response of LTR lines under fair to good conditions was associated with higher transcription levels of genes involved in nitrogen (GS1 and GOGAT) and carbon (RCBL) metabolism, as well as water transport (TIP1.1). In conclusion, modern durum wheat lines differed in their response to water loss, the linear transpiration seemed to favor uptake and transport of water and nutrients, and photosynthetic metabolism led to higher grain yield except for very harsh drought conditions. The transpiration response to VPD may be a trait to further explore when selecting adaptation to specific water conditions.
Collapse
Affiliation(s)
- Susan Medina
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima, Peru
| | - Rubén Vicente
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | | | - Nieves Aparicio
- Agricultural Technology Institute of Castilla and León (ITACYL), Valladolid, Spain
| | - Fadia Chairi
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | - Omar Vergara-Diaz
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
19
|
Meng HL, Zhang W, Zhang GH, Wang JJ, Meng ZG, Long GQ, Yang SC. Unigene-based RNA-seq provides insights on drought stress responses in Marsdenia tenacissima. PLoS One 2018; 13:e0202848. [PMID: 30500823 PMCID: PMC6268015 DOI: 10.1371/journal.pone.0202848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Marsdenia tenacissima is a well-known anti-cancer medicinal plant used in traditional Chinese medicine, which often grows on the karst landform and the water conservation capacity of land is very poorly and drought occurrences frequently. We found M. tenacissima has strong drought resistance because of continuousdrought16 d, the leaves of M. tenacissima were fully curly and dying. But the leaves were fully almost recovering after re-watering 24h. The activity of SOD and POD were almost doubled under drought stress. The content of osmotic regulating substance proline and soluble sugar were three times than control group. But after re-watering, these indexes were declined rapidly. Three cDNA libraries of control, drought stress, and re-watering treatments were constructed. There were 43,129,228, 47,116,844, and 42,815,454 clean reads with Q20 values of 98.06, 98.04, and 97.88respectively.SRA accession number of raw data was PRJNA498187 on NCBI. A total of 8672, 6043, and 6537 differentially expressed genes (DEGs) were identified in control vs drought stress, control vs re-watering, and drought stress vs re-watering, respectively. In addition, 1039, 1016, and 980 transcription factors (TFs) were identified, respectively. Among them, 363, 267, and 299 TFs were identified as DEGs in drought stress, re-watering, and drought stress and re-watering, respectively. These differentially expressed TFs mainly belonged to the bHLH, bZIP, C2H2, ERF, MYB, MYB-related, and NAC families. A comparative analysis found that 1174 genes were up-regulated and 2344 were down-regulated under drought stress and this pattern was the opposite to that found after re-watering. Among the up-regulated genes, 64 genes were homologous to known functional genes that directly protect plants against drought stress. Furthermore, 44 protein kinases and 38 TFs with opposite expression patterns under drought stress and re-watering were identified, which are possibly candidate regulators for drought stress resistance in M. tenacissima. Our study is the first to characterize the M. tenacissima transcriptome in response to drought stress, and will serve as a useful resource for future studies on the functions of candidate protein kinases and TFs involved in M. tenacissima drought stress resistance.
Collapse
Affiliation(s)
- Heng-Ling Meng
- The Life Science and Technology College, Honghe University, Mengzi, Yunnan, People’s Republic of China
| | - Wei Zhang
- The Life Science and Technology College, Honghe University, Mengzi, Yunnan, People’s Republic of China
| | - Guang-Hui Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
| | - Jian-Jun Wang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
| | - Zhen-Gui Meng
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
| | - Guang-Qiang Long
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
- * E-mail: (GQL); (SCY)
| | - Sheng-Chao Yang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
- * E-mail: (GQL); (SCY)
| |
Collapse
|
20
|
Analysis of bHLH genes from foxtail millet (Setaria italica) and their potential relevance to drought stress. PLoS One 2018; 13:e0207344. [PMID: 30412624 PMCID: PMC6226204 DOI: 10.1371/journal.pone.0207344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023] Open
Abstract
Foxtail millet is very a drought-tolerant crop. Basic helix-loop-helix (bHLH) transcription factors are involved in many drought-stress responses, but foxtail millet bHLH genes have been scarcely examined. We identified 149 foxtail millet bHLH genes in a genome-wide analysis and performed Swiss-Prot, GO, and KEGG pathway analyses for these genes. Phylogenetic analyses placed the genes into 25 clades, with some remaining orphans. We identified homologs based on gene trees and Swiss-Prot annotation. We also inferred that some homologs underwent positive selection in foxtail millet ancestors, and selected motifs differed among homologs. Expression of eight foxtail millet bHLH genes varied with drought stress. One of these genes was localized to a QTL that contributes to drought tolerance in foxtail millet. We also perform a cis-acting regulatory element analysis on foxtail millet bHLH genes and some drought-induced genes. Foxtail millet bHLH genes were inferred to have a possible key role in drought tolerance. This study clarifies both the function of foxtail millet bHLH genes and drought tolerance in foxtail millet.
Collapse
|
21
|
Vinson CC, Mota APZ, Oliveira TN, Guimaraes LA, Leal-Bertioli SCM, Williams TCR, Nepomuceno AL, Saraiva MAP, Araujo ACG, Guimaraes PM, Brasileiro ACM. Early responses to dehydration in contrasting wild Arachis species. PLoS One 2018; 13:e0198191. [PMID: 29847587 PMCID: PMC5976199 DOI: 10.1371/journal.pone.0198191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/04/2022] Open
Abstract
Wild peanut relatives (Arachis spp.) are genetically diverse and were selected throughout evolution to a range of environments constituting, therefore, an important source of allelic diversity for abiotic stress tolerance. In particular, A. duranensis and A. stenosperma, the parents of the reference Arachis A-genome genetic map, show contrasting transpiration behavior under limited water conditions. This study aimed to build a comprehensive gene expression profile of these two wild species under dehydration stress caused by the withdrawal of hydroponic nutrient solution. For this purpose, roots of both genotypes were collected at seven time-points during the early stages of dehydration and used to construct cDNA paired-end libraries. Physiological analyses indicated initial differences in gas exchange parameters between the drought-tolerant genotype of A. duranensis and the drought-sensitive genotype of A. stenosperma. High-quality Illumina reads were mapped against the A. duranensis reference genome and resulted in the identification of 1,235 and 799 Differentially Expressed Genes (DEGs) that responded to the stress treatment in roots of A. duranensis and A. stenosperma, respectively. Further analysis, including functional annotation and identification of biological pathways represented by these DEGs confirmed the distinct gene expression behavior of the two contrasting Arachis species genotypes under dehydration stress. Some species-exclusive and common DEGs were then selected for qRT-PCR analysis, which corroborated the in silico expression profiling. These included genes coding for regulators and effectors involved in drought tolerance responses, such as activation of osmosensing molecular cascades, control of hormone and osmolyte content, and protection of macromolecules. This dataset of transcripts induced during the dehydration process in two wild Arachis genotypes constitute new tools for the understanding of the distinct gene regulation processes in these closely related species but with contrasting drought responsiveness. In addition, our findings provide insights into the nature of drought tolerance in wild germoplasm, which might be explored as novel sources of diversity and useful wild alleles to develop climate-resilient crop varieties.
Collapse
Affiliation(s)
- Christina Cleo Vinson
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP, Final W5 Norte, Brasília, DF–Brazil
- Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF–Brazil
| | - Ana Paula Zotta Mota
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP, Final W5 Norte, Brasília, DF–Brazil
- Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS—Brazil
| | - Thais Nicolini Oliveira
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP, Final W5 Norte, Brasília, DF–Brazil
- Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS—Brazil
| | - Larissa Arrais Guimaraes
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP, Final W5 Norte, Brasília, DF–Brazil
| | | | | | | | | | - Ana Claudia Guerra Araujo
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP, Final W5 Norte, Brasília, DF–Brazil
| | | | - Ana C. M. Brasileiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP, Final W5 Norte, Brasília, DF–Brazil
| |
Collapse
|
22
|
Zhang M, Liu Y, Shi H, Guo M, Chai M, He Q, Yan M, Cao D, Zhao L, Cai H, Qin Y. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics 2018; 19:159. [PMID: 29471787 PMCID: PMC5824455 DOI: 10.1186/s12864-018-4511-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Soybean, a major legume crop native to East Asia, presents a wealth of resources for utilization. The basic leucine zipper (bZIP) transcription factors play important roles in various biological processes including developmental regulation and responses to environmental stress stimuli. Currently, little information is available regarding the bZIP family in the legume crop soybean. RESULTS Using a genome-wide domain analysis, we identified 160 GmbZIP genes in soybean genome, named from GmbZIP1 to GmbZIP160. These 160GmbZIP genes, distributed unevenly across 20 chromosomes, were grouped into 12 subfamilies based on phylogenetic analysis. Gene structure and conserved motif analyses showed that GmbZIP within the same subfamily shared similar intron-exon organizations and motif composition. Syntenic and phylogenetic analyses identified 40 Arabidopsis bZIP genes and 83 soybean bZIP genes as orthologs. By investigating the expression profiling of GmbZIP in different tissues and under drought and flooding stresses, we showed that a majority of GmbZIP (83.44%) exhibited transcript abundance in all examined tissues and 75.6% displayed transcript changes after drought and flooding treatment, suggesting that GmbZIP may play a broad role in soybean development and response to water stress. CONCLUSIONS One hundred sixty GmbZIP genes were identified in soybean genome. Our results provide insights for the evolutionary history of bZIP family in soybean and shed light on future studies on the function of bZIP genes in response to water stress in soybean.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Hang Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Mingliang Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Maokai Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Du Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of crop science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| |
Collapse
|
23
|
Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kheni J, Angadi UB, Iquebal MA, Golakia BA, Rai A, Kumar D. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep 2018; 8:3382. [PMID: 29467369 PMCID: PMC5821703 DOI: 10.1038/s41598-018-21560-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/04/2018] [Indexed: 01/12/2023] Open
Abstract
Pearl millet, (Pennisetum glaucum L.), an efficient (C4) crop of arid/semi-arid regions is known for hardiness. Crop is valuable for bio-fortification combating malnutrition and diabetes, higher caloric value and wider climatic resilience. Limited studies are done in pot-based experiments for drought response at gene-expression level, but field-based experiment mimicking drought by withdrawal of irrigation is still warranted. We report de novo assembly-based transcriptomic signature of drought response induced by irrigation withdrawal in pearl millet. We found 19983 differentially expressed genes, 7595 transcription factors, gene regulatory network having 45 hub genes controlling drought response. We report 34652 putative markers (4192 simple sequence repeats, 12111 SNPs and 6249 InDels). Study reveals role of purine and tryptophan metabolism in ABA accumulation mediating abiotic response in which MAPK acts as major intracellular signal sensing drought. Results were validated by qPCR of 13 randomly selected genes. We report the first web-based genomic resource ( http://webtom.cabgrid.res.in/pmdtdb/ ) which can be used for candidate genes-based SNP discovery programs and trait-based association studies. Looking at climatic change, nutritional and pharmaceutical importance of this crop, present investigation has immense value in understanding drought response in field condition. This is important in germplasm management and improvement in endeavour of pearl millet productivity.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tushar J Antala
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M K Mandavia
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Meenu Chopra
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rukam S Tomar
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Jashminkumar Kheni
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - M A Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - B A Golakia
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| |
Collapse
|
24
|
Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. PHYSIOLOGIA PLANTARUM 2017; 161:502-514. [PMID: 28786221 DOI: 10.1111/ppl.12614] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 05/26/2023]
Abstract
Abiotic stresses such as salt and drought represent adverse environmental conditions that significantly damage plant growth and agricultural productivity. In this study, the mechanism of the plant growth-promoting rhizo-bacteria (PGPR)-stimulated tolerance against abiotic stresses has been explored. Results suggest that PGPR strains, Arthrobacter protophormiae (SA3) and Dietzia natronolimnaea (STR1), can facilitate salt stress tolerance in wheat crop, while Bacillus subtilis (LDR2) can provide tolerance against drought stress in wheat. These PGPR strains enhance photosynthetic efficiency under salt and drought stress conditions. Moreover, all three PGPR strains increase indole-3-acetic acid (IAA) content of wheat under salt and drought stress conditions. The SA3 and LDR2 inoculations counteracted the increase of abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylate (ACC) under both salt and drought stress conditions, whereas STR1 had no significant impact on the ABA and ACC content. The impact of PGPR inoculations on these physiological parameters were further confirmed by gene expression analysis as we observed enhanced levels of the TaCTR1 gene in SA3-, STR1- and LDR2-treated wheat seedlings as compared to uninoculated drought and salt stressed plants. PGPR inoculations enhanced expression of TaDREB2 gene encoding for a transcription factor, which has been shown to be important for improving the tolerance of plants to abiotic stress conditions. Our study suggest that PGPR confer abiotic stress tolerance in wheat by enhancing IAA content, reducing ABA/ACC content, modulating expression of a regulatory component (CTR1) of ethylene signaling pathway and DREB2 transcription factor.
Collapse
Affiliation(s)
- Deepti Barnawal
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP-226015, Lucknow, India
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, A Central University, Lucknow, India
| | - Nidhi Bharti
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP-226015, Lucknow, India
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Shiv S Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP-226015, Lucknow, India
| | - Alok Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP-226015, Lucknow, India
| | - Chandan S Chanotiya
- Central Instrument Facility, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP-226015, Lucknow, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP-226015, Lucknow, India
| |
Collapse
|
25
|
RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.). PLoS One 2017; 12:e0177417. [PMID: 28531235 PMCID: PMC5439701 DOI: 10.1371/journal.pone.0177417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023] Open
Abstract
Crested wheatgrass [Agropyron cristatum L. (Gaertn.)] is widely used for early spring grazing in western Canada and the development of late maturing cultivars which maintain forage quality for a longer period is desired. However, it is difficult to manipulate the timing of floral transition, as little is known about molecular mechanism of plant maturity in this species. In this study, RNA-Seq and differential gene expression analysis were performed to investigate gene expression for floral initiation and development in crested wheatgrass. Three cDNA libraries were generated and sequenced to represent three successive growth stages by sampling leaves at the stem elongation stage, spikes at boot and anthesis stages. The sequencing generated 25,568,846; 25,144,688 and 25,714,194 qualified Illumina reads for the three successive stages, respectively. De novo assembly of all the reads generated 311,671 transcripts with a mean length of 487 bp, and 152,849 genes with an average sequence length of 669 bp. A total of 48,574 (31.8%) and 105,222 (68.8%) genes were annotated in the Swiss-Prot and NCBI non-redundant (nr) protein databases, respectively. Based on the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway database, 9,723 annotated sequences were mapped onto 298 pathways, including plant circadian clock pathway. Specifically, 113 flowering time-associated genes, 123 MADS-box genes and 22 CONSTANS-LIKE (COL) genes were identified. A COL homolog DN52048-c0-g4 which was clustered with the flowering time genes AtCO and OsHd1 in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.), respectively, showed specific expression in leaves and could be a CONSTANS (CO) candidate gene. Taken together, this study has generated a new set of genomic resources for identifying and characterizing genes and pathways involved in floral transition and development in crested wheatgrass. These findings are significant for further understanding of the molecular basis for late maturity in this grass species.
Collapse
|
26
|
Wang J, Ma L, Shen Z, Sun D, Zhong P, Bai Z, Zhang H, Cao Y, Bao Y, Fu C. Lignification of Sheepgrass Internodes at Different Developmental Stages and Associated Alteration of Cell Wall Saccharification Efficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:414. [PMID: 28396679 PMCID: PMC5366342 DOI: 10.3389/fpls.2017.00414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/10/2017] [Indexed: 05/30/2023]
Abstract
Sheepgrass (Leymus chinensis) is a high-quality cool-season forage crop used as pasture and hay for livestock feeds. The presence of lignin in cell walls, however, impairs forage digestibility of such lignocellulosic feedstock. Here, the structural characterization and cell wall composition of sheepgrass internodes were studied, and a progressive increase in cell wall lignification was observed with internode maturation. Lignin composition analysis further revealed a gradual accumulation of guaiacyl and syringyl lignin units during internode development. Consistently, the transcript abundance of lignin-related genes was upregulated in mature internodes, suggesting their potential roles in lignin biosynthesis. Furthermore, the effects of cell wall composition and lignification extent on biomass saccharification efficiency were examined in sheepgrass. The results showed that lignin content, guaiacyl and syringyl lignin unit levels inversely correlated with cell wall digestibility, indicating that lignin is a crucial obstacle for utilizing sheepgrass feedstock. The baseline information obtained in this work will facilitate establishment, grazing management, harvesting and feedstock utilization of sheepgrass in future.
Collapse
Affiliation(s)
- Jianli Wang
- Grass and Science Institute of Heilongjiang Academy of Agricultural SciencesHarbin, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Lichao Ma
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Dequan Sun
- Grass and Science Institute of Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Peng Zhong
- Rural Energy Research Institute of Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Zetao Bai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Hailing Zhang
- Grass and Science Institute of Heilongjiang Academy of Agricultural SciencesHarbin, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Yingping Cao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Yan Bao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| |
Collapse
|
27
|
Li S, Yu X, Cheng Z, Yu X, Ruan M, Li W, Peng M. Global Gene Expression Analysis Reveals Crosstalk between Response Mechanisms to Cold and Drought Stresses in Cassava Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1259. [PMID: 28769962 PMCID: PMC5513928 DOI: 10.3389/fpls.2017.01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/04/2017] [Indexed: 05/21/2023]
Abstract
Abiotic stress negatively impacts cassava (Manihot esculenta) growth and yield. Several molecular mechanisms of plant response to cold and drought have been identified and described in the literature, however, little is known about the crosstalk of the responses of cassava to these two stresses. To elucidate this question, transcriptome analysis of cassava seedlings under cold or PEG-simulated drought stress treatment was performed. Our results showed that 6103 and 7462 transcripts were significantly regulated by cold and drought stress, respectively. Gene Ontology annotation revealed that the abscisic and jasmonic acid signaling pathways shared between the two stresses responses. We further identified 2434 common differentially expressed genes (DEGs), including 1130 up-regulated and 841 down-regulated DEGs by the two stresses. These co-induced or co-suppressed genes are grouped as stress signal perception and transduction, transcription factors (TFs), metabolism as well as transport facilitation according to the function annotation. Furthermore, a large proportion of well characterized protein kinases, TF families and ubiquitin proteasome system related genes, such as RLKs, MAPKs, AP2/ERFBPs, WRKYs, MYBs, E2 enzymes and E3 ligases, including three complexes of interacting proteins were shown as key points of crosstalk between cold and drought stress signaling transduction pathways in a hierarchical manner. Our research provides valuable information and new insights for genetically improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Mengbin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wenbin Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Ming Peng,
| |
Collapse
|