1
|
Muthusamy M, Pandian S, Shin EK, An HK, Sohn SI. Unveiling the imprinted dance: how parental genomes orchestrate seed development and hybrid success. FRONTIERS IN PLANT SCIENCE 2024; 15:1455685. [PMID: 39399543 PMCID: PMC11466797 DOI: 10.3389/fpls.2024.1455685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds. Imprinting is crucial for regulating nutrient allocation, maintaining seed development, resolving parental conflict, and facilitating evolutionary adaptation. Disruptions in imprinted gene expression, mediated by epigenetic regulators and parental ploidy levels, can lead to endosperm-based hybridization barriers and hybrid dysfunction, ultimately reducing genetic diversity in plant populations. Conversely, imprinting helps maintain genetic stability within plant populations. Imprinted genes likely influence seed development in various ways, including ensuring proper endosperm development, influencing seed dormancy, and regulating seed size. However, the functions of most imprinted genes, the evolutionary significance of imprinting, and the long-term consequences of imprinting disruptions on plant development and adaptation need further exploration. Thus, it is clear that research on imprinting has immense potential for improving our understanding of plant development and ultimately enhancing key agronomic traits. This review decodes the possible genetic and epigenetic regulatory factors underpinning genomic imprinting and their positive and negative consequences on seed development. This study also forecasts the potential implications of exploiting gene imprinting for crop improvement programs.
Collapse
Affiliation(s)
| | | | | | | | - Soo-In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of
Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Sha G, Cheng J, Wang X, Xue Q, Zhang H, Zhai R, Yang C, Wang Z, Xu L. PbbHLH137 interacts with PbGIF1 to regulate pear fruit development by promoting cell expansion to increase fruit size. PHYSIOLOGIA PLANTARUM 2024; 176:e14451. [PMID: 39075941 DOI: 10.1111/ppl.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024]
Abstract
The regulation of fruit development is a complex process and a core issue in the fruit tree industry. To investigate the role of PbGIF1 in pear fruit development, we identified a transcription factor PbbHLH137 that regulates pear (Pyrus bretschneideri) fruit development by screening a yeast library constructed from fruit cDNA. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and split luciferase complementation (split-LUC) assays were performed to confirm the PbbHLH137-PbGIF1 interaction. By tracing the complete fruit development process, we found that PbbHLH137 expression was closely related to fruit size and highly involved at the late pear fruit development stage. Transgenic experiments showed that heterologous expression of PbbHLH137 or PbGIF1 promoted fruit enlargement. PbbHLH137 promoted mainly the expansion of fruit cell volume, whereas PbGIF1 mainly increased the number of cells. Further LUC experiments demonstrated that PbGIF1 promoted the transcriptional activation ability of PbbHLH137. Our work identified PbbHLH137 as a transcription factor that regulates fruit development, and showed that PbGIF1 played an ongoing role during fruit development, making it a candidate gene for genetic improvement of pear fruit development.
Collapse
Affiliation(s)
- Guangya Sha
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jingjing Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xue Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Qiyang Xue
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Haiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
3
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. PLANT MOLECULAR BIOLOGY 2024; 114:65. [PMID: 38816532 PMCID: PMC11372841 DOI: 10.1007/s11103-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Alina Y Lushnenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA
| | - Lia R Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Olivia Boskovic
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Ethan G Lilly
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25755, USA.
| |
Collapse
|
4
|
Wang W, Zhang T, Liu C, Liu C, Jiang Z, Zhang Z, Ali S, Li Z, Wang J, Sun S, Chen Q, Zhang Q, Xie L. A DNA demethylase reduces seed size by decreasing the DNA methylation of AT-rich transposable elements in soybean. Commun Biol 2024; 7:613. [PMID: 38773248 PMCID: PMC11109123 DOI: 10.1038/s42003-024-06306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Understanding how to increase soybean yield is crucial for global food security. The genetic and epigenetic factors influencing seed size, a major crop yield determinant, are not fully understood. We explore the role of DNA demethylase GmDMEa in soybean seed size. Our research indicates that GmDMEa negatively correlates with soybean seed size. Using CRISPR-Cas9, we edited GmDMEa in the Dongnong soybean cultivar, known for small seeds. Modified plants had larger seeds and greater yields without altering plant architecture or seed nutrition. GmDMEa preferentially demethylates AT-rich transposable elements, thus activating genes and transcription factors associated with the abscisic acid pathway, which typically decreases seed size. Chromosomal substitution lines confirm that these modifications are inheritable, suggesting a stable epigenetic method to boost seed size in future breeding. Our findings provide insights into epigenetic seed size control and suggest a strategy for improving crop yields through the epigenetic regulation of crucial genes. This work implies that targeted epigenetic modification has practical agricultural applications, potentially enhancing food production without compromising crop quality.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunyu Liu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenfeng Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhaohan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shahid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shanwen Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China.
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China.
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Linan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Wang H, Chen W, Xu Z, Chen M, Yu D. Functions of WRKYs in plant growth and development. TRENDS IN PLANT SCIENCE 2023; 28:630-645. [PMID: 36628655 DOI: 10.1016/j.tplants.2022.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
As sessile organisms, plants must overcome various stresses. Accordingly, they have evolved several plant-specific growth and developmental processes. These plant processes may be related to the evolution of plant-specific protein families. The WRKY transcription factors originated in eukaryotes and expanded in plants, but are not present in animals. Over the past two decades, there have been many studies on WRKYs in plants, with much of the research concentrated on their roles in stress responses. Nevertheless, recent findings have revealed that WRKYs are also required for seed dormancy and germination, postembryonic morphogenesis, flowering, gametophyte development, and seed production. Thus, WRKYs may be important for plant adaptations to a sessile lifestyle because they simultaneously regulate stress resistance and plant-specific growth and development.
Collapse
Affiliation(s)
- Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Mifen Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
6
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Dhaka N, Jain R, Yadav A, Yadav P, Kumar N, Sharma MK, Sharma R. Transcriptome analysis reveals cell cycle-related transcripts as key determinants of varietal differences in seed size of Brassica juncea. Sci Rep 2022; 12:11713. [PMID: 35810218 PMCID: PMC9271088 DOI: 10.1038/s41598-022-15938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neeraj Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
8
|
Radiographic Imaging as a Quality Index Proxy for Brachiaria brizantha Seeds. PLANTS 2022; 11:plants11081014. [PMID: 35448742 PMCID: PMC9029597 DOI: 10.3390/plants11081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
Efficient methodologies for automated seed quality evaluations are important for the seed industry. Advanced seed technology research requires the use of adequate methods to ensure good seed performance under adverse environmental conditions; thus, providing producers with detailed, quick, and accurate information on structural seed integrity and ensuring vigorous production. To address this problem, this study aimed to determine Brachiaria brizantha (Marandu cv., Piatã cv. and Xaraés cv.) seed quality through radiographic imaging analyses associated with vigor tests and anatomical characterizations. Brachiaria seed cultivars displaying different physical and physiological attributes were selected and subjected to the 1000-seed weight test, water content determinations, X-ray analyses, germination tests, and anatomical characterizations. The X-ray analyses made it possible to establish a relationship between the X-ray images and other determined variables. Furthermore, the X-ray images can indicate evidence of internal and external damage that could later compromise germination. The Marandu and Piatã cultivars presented the highest germination percentages, germination speed indices, normal seedling development, and cellular structure preservation compared to the Xaraés cultivar. To summarize, X-ray analyses are efficient methods used for the selection of higher physical quality cultivars and can aid in the decision-making processes of companies and seed producers worldwide.
Collapse
|
9
|
Mathur S, Paritosh K, Tandon R, Pental D, Pradhan AK. Comparative Analysis of Seed Transcriptome and Coexpression Analysis Reveal Candidate Genes for Enhancing Seed Size/Weight in Brassica juncea. Front Genet 2022; 13:814486. [PMID: 35281836 PMCID: PMC8907137 DOI: 10.3389/fgene.2022.814486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of Brassica juncea, small-seeded EH-2 and large-seeded PJ. The anatomical analyses revealed significant differences in cell number and cell size in the outer layer of the seed coat between EH-2 and PJ. Pairwise comparisons at each developmental stage identified 5,974 differentially expressed genes (DEGs) between the two lines, of which 954 genes belong to different families of transcription factors. Two modules were found to be significantly correlated with an increased seed size using weighted gene coexpression network analysis. The DEG and coexpression datasets were integrated with the thousand seed weight (Tsw) quantitative trait loci (QTL) mapped earlier in the EPJ (EH-2 × PJ) doubled haploid (DH) population, which identified forty potential key components controlling seed size. The candidate genes included genes regulating the cell cycle, cell wall biogenesis/modification, solute/sugar transport, and hormone signaling. The results provide a valuable resource to widen the current understanding of regulatory mechanisms underlying seed size in B. juncea.
Collapse
Affiliation(s)
- Shikha Mathur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, New Delhi, India
| | - Deepak Pental
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- *Correspondence: Akshay K. Pradhan,
| |
Collapse
|
10
|
Liu LM, Zhang HQ, Cheng K, Zhang YM. Integrated Bioinformatics Analyses of PIN1, CKX, and Yield-Related Genes Reveals the Molecular Mechanisms for the Difference of Seed Number Per Pod Between Soybean and Cowpea. FRONTIERS IN PLANT SCIENCE 2021; 12:749902. [PMID: 34912354 PMCID: PMC8667476 DOI: 10.3389/fpls.2021.749902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
There is limited advancement on seed number per pod (SNPP) in soybean breeding, resulting in low yield in China. To address this issue, we identified PIN1 and CKX gene families that regulate SNPP in Arabidopsis, analyzed the differences of auxin and cytokinin pathways, and constructed interaction networks on PIN1, CKX, and yield-related genes in soybean and cowpea. First, the relative expression level (REL) of PIN1 and the plasma membrane localization and phosphorylation levels of PIN1 protein were less in soybean than in cowpea, which make auxin transport efficiency lower in soybean, and its two interacted proteins might be involved in serine hydrolysis, so soybean has lower SNPP than cowpea. Then, the CKX gene family, along with its positive regulatory factor ROCK1, had higher REL and less miRNA regulation in soybean flowers than in cowpea ones. These lead to higher cytokinin degradation level, which further reduces the REL of PIN1 and decreases soybean SNPP. We found that VuACX4 had much higher REL than GmACX4, although the two genes essential in embryo development interact with the CKX gene family. Next, a tandem duplication experienced by legumes led to the differentiation of CKX3 into CKX3a and CKX3b, in which CKX3a is a key gene affecting ovule number. Finally, in the yield-related gene networks, three cowpea CBP genes had higher RELs than two soybean CBP genes, low RELs of three soybean-specific IPT genes might lead to a decrease in cytokinin synthesis, and some negative and positive SNPP regulation were found, respectively, in soybean and cowpea. These networks may explain the SNPP difference in the two crops. We deduced that ckx3a or ckx3a ckx6 ckx7 mutants, interfering CYP88A, and over-expressed DELLA increase SNPP in soybean. This study reveals the molecular mechanism for the SNPP difference in the two crops, and provides an important idea for increasing soybean yield.
Collapse
|
11
|
Wang P, Xuan X, Su Z, Wang W, Abdelrahman M, Jiu S, Zhang X, Liu Z, Wang X, Wang C, Fang J. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.). BMC PLANT BIOLOGY 2021; 21:442. [PMID: 34587914 PMCID: PMC8480016 DOI: 10.1186/s12870-021-03188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Stone-hardening stage is crucial to the development of grape seed and berry quality. A significant body of evidence supports the important roles of MicroRNAs in grape-berry development, but their specific molecular functions during grape stone-hardening stage remain unclear. RESULTS Here, a total of 161 conserved and 85 species-specific miRNAs/miRNAs* (precursor) were identified in grape berries at stone-hardening stage using Solexa sequencing. Amongst them, 30 VvmiRNAs were stone-hardening stage-specific, whereas 52 exhibited differential expression profiles during berry development, potentially participating in the modulation of berry development as verified by their expression patterns. GO and KEGG pathway analysis showed that 13 VvmiRNAs might be involved in the regulation of embryo development, another 11 in lignin and cellulose biosynthesis, and also 28 in the modulation of hormone signaling, sugar, and proline metabolism. Furthermore, the target genes for 4 novel VvmiRNAs related to berry development were validated using RNA Ligase-Mediated (RLM)-RACE and Poly(A) Polymerase-Mediated (PPM)-RACE methods, and their cleavage mainly occurred at the 9th-11th sites from the 5' ends of miRNAs at their binding regions. In view of the regulatory roles of GA in seed embryo development and stone-hardening in grape, we investigated the expression modes of VvmiRNAs and their target genes during GA-induced grape seedless-berry development, and we validated that GA induced the expression of VvmiR31-3p and VvmiR8-5p to negatively regulate the expression levels of CAFFEOYL COENZYME A-3-O-METHYLTRANSFERASE (VvCCoAOMT), and DDB1-CUL4 ASSOCIATED FACTOR1 (VvDCAF1). The series of changes might repress grape stone hardening and embryo development, which might be a potential key molecular mechanism in GA-induced grape seedless-berry development. Finally, a schematic model of miRNA-mediated grape seed and stone-hardening development was proposed. CONCLUSION This work identified 30 stone-hardening stage-specific VvmiRNAs and 52 significant differential expression ones, and preliminary interpreted the potential molecular mechanism of GA-induced grape parthenocarpy. GA negatively manipulate the expression of VvCCoAOMT and VvDCAF1 by up-regulation the expression of VvmiR31-3p and VvmiR8-5p, thereby repressing seed stone and embryo development to produce grape seedless berries.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenran Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528, Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001, Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Schneider M, Gonzalez N, Pauwels L, Inzé D, Baekelandt A. The PEAPOD Pathway and Its Potential To Improve Crop Yield. TRENDS IN PLANT SCIENCE 2021; 26:220-236. [PMID: 33309102 DOI: 10.1016/j.tplants.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 05/18/2023]
Abstract
A key strategy to increase plant productivity is to improve intrinsic organ growth. Some of the regulatory networks underlying organ growth and development, as well as the interconnections between these networks, are highly conserved. An example of such a growth-regulatory module with a highly conserved role in final organ size and shape determination in eudicot species is the PEAPOD (PPD)/KINASE-INDUCIBLE DOMAIN INTERACTING (KIX)/STERILE APETALA (SAP) module. We review the proteins constituting the PPD pathway and their roles in different plant developmental processes, and explore options for future research. We also speculate on strategies to exploit knowledge about the PPD pathway for targeted yield improvement to engineer crop traits of agronomic interest, such as leaf, fruit, and seed size.
Collapse
Affiliation(s)
- Michele Schneider
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Biologie du Fruit et Pathologie (BFP), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
13
|
Liu Z, Li N, Zhang Y, Li Y. Transcriptional repression of GIF1 by the KIX-PPD-MYC repressor complex controls seed size in Arabidopsis. Nat Commun 2020; 11:1846. [PMID: 32296056 PMCID: PMC7160150 DOI: 10.1038/s41467-020-15603-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Seed size is a key agronomic trait that greatly determines plant yield. Elucidating the molecular mechanism underlying seed size regulation is also an important question in developmental biology. Here, we show that the KIX-PPD-MYC-GIF1 pathway plays a crucial role in seed size control in Arabidopsis thaliana. Disruption of KIX8/9 and PPD1/2 causes large seeds due to increased cell proliferation and cell elongation in the integuments. KIX8/9 and PPD1/2 interact with transcription factors MYC3/4 to form the KIX-PPD-MYC complex in Arabidopsis. The KIX-PPD-MYC complex associates with the typical G-box sequence in the promoter of GRF-INTERACTING FACTOR 1 (GIF1), which promotes seed growth, and represses its expression. Genetic analyses support that KIX8/9, PPD1/2, MYC3/4, and GIF1 function in a common pathway to control seed size. Thus, our results reveal a genetic and molecular mechanism by which the transcription factors MYC3/4 recruit KIX8/9 and PPD1/2 to the promoter of GIF1 and repress its expression, thereby determining seed size in Arabidopsis. Seed size is an important determinant of plant yield. Here, Liu et al. show that a KIX-PPD repressor complex and MYC transcription factors interact with the G-box motif in the promoter of GRF-INTERACTING FACTOR 1 to regulate seed size by influencing cell proliferation and elongation in the integument.
Collapse
Affiliation(s)
- Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100039, Beijing, China.
| |
Collapse
|
14
|
Yu F, Wan W, Lv MJ, Zhang JL, Meng LS. Molecular Mechanism Underlying the Effect of the Intraspecific Alternation of Seed Size on Plant Drought Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:703-711. [PMID: 31904950 DOI: 10.1021/acs.jafc.9b06491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In crop plants, the yield loss caused by drought exceeds the losses resulting from other adverse environment stresses. In numerous plant species, seedling establishment is positively correlated with the initial seed size under drought stress conditions. In intra- and interspecies, plants with large seeds can withstand water deficiency stresses, whereas those with small seeds are efficient colonizers as a result of their ability to produce more seeds. Therefore, larger initial seeds confer more drought resistance on germinating seedlings. Although this phenomenon has been observed by evolutionary biologists and ecologists, the correlation of initial seed size with the drought resistance of seedlings/plants is not well-reviewed and characterized. Furthermore, the related molecular mechanisms are unknown. Understanding these mechanisms will benefit future breeding or design strategies to increase crop yields. In the present review, we focus on recent research to analyze the genetic factors of plants/crops involved in the regulation of seed size and drought tolerance and their corresponding signal transduction pathways. Several signaling pathways that determine plant drought tolerance through influencing the initial seed size are identified. Such pathways include those that are involved in mitogen-activated protein kinase, abscisic acid, brassinosteroids, and several transcription factors and sugar signaling pathways.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Wen Wan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Meng-Jiao Lv
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Lai-Sheng Meng
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| |
Collapse
|
15
|
Lv MJ, Wan W, Yu F, Meng LS. New Insights into the Molecular Mechanism Underlying Seed Size Control under Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9697-9704. [PMID: 31403787 DOI: 10.1021/acs.jafc.9b02497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, seed size is an important parameter and agricultural trait in many aspects of evolutionary fitness. The loss of water-deficiency-induced crop yield is the largest among all natural hazards. Under water-deficient stress, the most prevalent response to terminal stress is to accelerate the early arrest of floral development and, thereby, to accelerate fruit/seed production, which consequently reduces seed size. This phenomenon is well-known, but its molecular mechanism is not well-reviewed and characterized. However, increasing evidence have indicated that water-deficient stress is always coordinated with three genetic signals (i.e., seed size regulators, initial seed size, and fruit number) that decide the final seed size. Here, our review presents new insights into the mechanism underlying cross-talk water-deficient stress signaling with three genetic signals controlling final seed size. These new insights may aid in preliminary screening, identifying novel genetic factors and future design strategies, or breeding to increase crop yield.
Collapse
Affiliation(s)
- Meng-Jiao Lv
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Wen Wan
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Fei Yu
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Lai-Sheng Meng
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| |
Collapse
|
16
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
17
|
Meng LS, Li C, Xu MK, Sun XD, Wan W, Cao XY, Zhang JL, Chen KM. Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light-mediated stomatal development. PLANT, CELL & ENVIRONMENT 2018; 41:1645-1656. [PMID: 29645276 DOI: 10.1111/pce.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss-of-function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light-signaling mutant, and that AN3 protein is light regulated. Self-activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target-gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light-controlling stomatal development. Together, these components for regulating stomatal development form an AN3-COP1-E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Cong Li
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, People's Republic of China
| | - Meng-Ke Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Xu-Dong Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, People's Republic of China
| | - Wen Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Xiao-Ying Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Jin-Lin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou City, 730020, People's Republic of China
| | - Kun-Ming Chen
- School of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shanxi, 712100, People's Republic of China
| |
Collapse
|
18
|
Meng LS, Xu MK, Li D, Zhou MM, Jiang JH. Soluble Sugar Accumulation Can Influence Seed Size via AN3-YDA Gene Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4121-4132. [PMID: 28489361 DOI: 10.1021/acs.jafc.7b00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In higher plants, seed size is central to many aspects in evolutionary fitness and is a crucial agricultural trait. In this study, Arabidopsis an3 (angustifolia3) mutants present with increased seed size. Target-gene analysis revealed that YDA, which encodes a mitogen-activated protein kinase kinase kinase, is a target gene of AN3. Indeed, the loss of YDA function decreases seed size. Furthermore, AN3 and YDA mutations both disrupt normal sucrose and glucose contents and cause altered seed size in an3 or yda mutants. With these results, we provide a molecular model in which soluble sugar accumulation might affect seed size regulation via the AN3-YDA gene cascade. Our findings guide the synthesis of a model that predicts the integration of soluble sugar accumulation at AN3 to control the establishment of seed size.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Meng-Ke Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Dan Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Ming-Ming Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University , Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
19
|
He Z, Zeng J, Ren Y, Chen D, Li W, Gao F, Cao Y, Luo T, Yuan G, Wu X, Liang Y, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P, Li S. OsGIF1 Positively Regulates the Sizes of Stems, Leaves, and Grains in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1730. [PMID: 29051769 PMCID: PMC5633614 DOI: 10.3389/fpls.2017.01730] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/21/2017] [Indexed: 05/03/2023]
Abstract
Growth-regulating factor (GRF) interacting factors (GIFs) are involved in several developmental processes in Arabidopsis. We previously showed that upregulation of OsGIF1 expression improves rice grain size. However, whether OsGIF1 is involved in other developmental processes remains unclear. Here, we report pleiotropic effects of OsGIF1 on rice organ size regulation. Overexpression and functional knock-out via a CRISPR/Cas9 strategy revealed that OsGIF1 not only positively regulates the sizes of rice leaf, stem, and grain but also influences rice reproduction. Expression profiles based on both qRT-PCR and GUS (β-glucuronidase) histochemical staining suggested that OsGIF1 is differentially expressed across various rice tissues, consistent with its roles in regulating the development of multiple rice organs. Additionally, we found that OsGIF1-GFP localized preferentially in the nucleus, which supports its proposed role as a transcriptional cofactor. Further histological analysis suggested that OsGIF1 affected rice organ size possibly by regulating cell size. Our results suggest that OsGIF1 plays important roles in vegetative and reproductive developmental processes, with important implications for rice breeding.
Collapse
Affiliation(s)
- Zhongshan He
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jing Zeng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yun Ren
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Wenjie Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Fengyan Gao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Ye Cao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Tao Luo
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Xianghong Wu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Ping Li, Shuangcheng Li,
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, China
- *Correspondence: Ping Li, Shuangcheng Li,
| |
Collapse
|
20
|
Meng LS, Li YQ, Liu MQ, Jiang JH. The Arabidopsis ANGUSTIFOLIA3- YODA Gene Cascade Induces Anthocyanin Accumulation by Regulating Sucrose Levels. FRONTIERS IN PLANT SCIENCE 2016; 7:1728. [PMID: 27920784 PMCID: PMC5118565 DOI: 10.3389/fpls.2016.01728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 05/09/2023]
Abstract
Anthocyanin accumulation specifically depends on sucrose (Suc) signaling/levels. However, the gene cascades specifically involved in the Suc signaling/level-mediated anthocyanin biosynthetic pathway are still unknown. Arabidopsis ANGUSTIFOLIA3 (AN3), a transcription coactivator, is involved in the regulation of leaf shape and drought tolerance. Recently, an AN3-CONSTITUTIVE PHOTOMORPHOGENIC 1 gene cascade has been reported to regulate the light signaling-mediated anthocyanin accumulation. Target gene analysis indicates that AN3 is associated with the YODA (YDA) promoter, a mitogen-activated protein kinase kinase kinase, in vivo for inducing anthocyanin accumulation. Indeed, loss-of-function mutants of YDA showed significantly increased anthocyanin accumulation. YDA mutation can also suppress the decrease in an3-4 anthocyanin accumulation. Further analysis indicates that the mutations of AN3 and YDA disrupt the normal Suc levels because of the changes of invertase activity in mutants of an3 or yda, which in turn induces the alterations of anthocyanin accumulation in mutants of an3 or yda via unknown regulatory mechanisms.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal UniversityXuzhou, China
- Centre for Transformational Biotechnology of Medicinal and Food Plants, Jiangsu Normal University – Edinburgh UniversityXuzhou, China
- *Correspondence: Lai-Sheng Meng, Ji-Hong, Jiang
| | - Ying-Qiu Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal UniversityXuzhou, China
- Centre for Transformational Biotechnology of Medicinal and Food Plants, Jiangsu Normal University – Edinburgh UniversityXuzhou, China
| | - Meng-Qian Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal UniversityXuzhou, China
- Centre for Transformational Biotechnology of Medicinal and Food Plants, Jiangsu Normal University – Edinburgh UniversityXuzhou, China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal UniversityXuzhou, China
- Centre for Transformational Biotechnology of Medicinal and Food Plants, Jiangsu Normal University – Edinburgh UniversityXuzhou, China
- *Correspondence: Lai-Sheng Meng, Ji-Hong, Jiang
| |
Collapse
|