1
|
Aguilar-Benitez D, Gutierrez N, Casimiro-Soriguer I, Torres AM. A high-density linkage map and fine QTL mapping of architecture, phenology, and yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2025; 16:1457812. [PMID: 40260430 PMCID: PMC12009772 DOI: 10.3389/fpls.2025.1457812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/27/2025] [Indexed: 04/23/2025]
Abstract
Faba bean is a key protein feed and food worldwide that still requires accurate genomic tools to facilitate molecular marker-assisted breeding. Efficient quantitative trait locus (QTL) mapping in faba bean is restricted by the low or medium density of most of the available genetic maps. In this study, a recombinant inbred line faba bean population including 124 lines from the cross Vf6 x Vf27, highly segregating for autofertility, flowering time, plant architecture, dehiscence, and yield-related traits, was genotyped using the 'Vfaba_v2' SNP array. Genotypic data were used to generate a high-density genetic map that, after quality control and filtering, included 2,296 SNP markers. The final map consisted of 1,674 bin markers distributed across the six faba bean chromosomes, covering 2,963.87 cM with an average marker distance of 1.77 cM. A comparison of the physical and genetic maps revealed a good correspondence between chromosomes and linkage groups. QTL analysis of 66 segregating traits, previously phenotyped in different environments and years, identified 99 significant QTLs corresponding to 35 of the traits. Most QTLs were stable over the years and QTLs for highly correlated traits were mapped to the same or adjacent genomic regions. Colocalization of QTLs occurred in 13 major regions, joining three or more overlapping QTLs. Some of the pleiotropic QTL regions, especially in chromosome VI, shared the same significant marker for different traits related to pollen quantity and size, number of ovules per ovary, seeds per pod, and pod set. Finally, several putative candidate genes for yield-related traits, recently identified using a genome-wide association study, fall inside the colocalizing groups described in this study, indicating that, apart from refining the position of the QTLs and the detection of candidates, the dense new map provides a valuable tool for validation of causative loci derived from association studies and will help advance breeding programs in this crop.
Collapse
|
2
|
Trubanová N, Isobe S, Shirasawa K, Watanabe A, Kelesidis G, Melzer R, Schilling S. Genome-specific association study (GSAS) for exploration of variability in hemp (Cannabis sativa). Sci Rep 2025; 15:8371. [PMID: 40069221 PMCID: PMC11897341 DOI: 10.1038/s41598-025-92168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Hemp (Cannabis sativa L.) is a versatile crop with substantial potential for creating productive, sustainable, and resilient agricultural systems. However, in contrast to other crops such as cereals, hemp is highly heterozygous, resulting in both challenges and opportunities for agriculture, breeding, and research. Here, we utilise the heterozygosity of hemp to explore the genetic basis of phenotypic variability in a population generated from a single self-pollinated hemp plant. The S1 population shows extensive variability in plant growth, development, and reproductive patterns. Using reduced representation sequencing, selection of alleles heterozygous in the parent plant, and a model originally developed for genome-wide association studies (GWAS), we were able to identify statistically significant single nucleotide variants (SNVs) and haplotypes associated with phenotypic traits of interest, such as flowering time or biomass yield. This new approach, which we term genome-specific association study (GSAS), enables the mapping of traits in a single generation without the need for a large number of diverse cultivars or samples. GSAS might be applicable to other highly heterozygous vegetable and fruit crops, informing the breeding of new cultivars with enhanced uniformity and improved performance in traits relevant to various applications.
Collapse
Affiliation(s)
- Nina Trubanová
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Akiko Watanabe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - George Kelesidis
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Institute of Plant Breeding and Genetic Resources (IPBGR), Hellenic Agricultural Organization (ELGO) - DIMITRA, Thessaloniki, Greece
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- UCD Earth Institute, University College Dublin, Dublin, Ireland.
| | - Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- UCD Earth Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Id-Lahoucine S, Casellas J, Suárez-Vega A, Fonseca PAS, Schenkel FS, Sargolzaei M, Cánovas A. Unravelling transmission ratio distortion across the bovine genome: identification of candidate regions for reproduction defects. BMC Genomics 2023; 24:383. [PMID: 37422635 DOI: 10.1186/s12864-023-09455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Biological mechanisms affecting gametogenesis, embryo development and postnatal viability have the potential to alter Mendelian inheritance expectations resulting in observable transmission ratio distortion (TRD). Although the discovery of TRD cases have been around for a long time, the current widespread and growing use of DNA technologies in the livestock industry provides a valuable resource of large genomic data with parent-offspring genotyped trios, enabling the implementation of TRD approach. In this research, the objective is to investigate TRD using SNP-by-SNP and sliding windows approaches on 441,802 genotyped Holstein cattle and 132,991 (or 47,910 phased) autosomal SNPs. RESULTS The TRD was characterized using allelic and genotypic parameterizations. Across the whole genome a total of 604 chromosomal regions showed strong significant TRD. Most (85%) of the regions presented an allelic TRD pattern with an under-representation (reduced viability) of carrier (heterozygous) offspring or with the complete or quasi-complete absence (lethality) for homozygous individuals. On the other hand, the remaining regions with genotypic TRD patterns exhibited the classical recessive inheritance or either an excess or deficiency of heterozygote offspring. Among them, the number of most relevant novel regions with strong allelic and recessive TRD patterns were 10 and 5, respectively. In addition, functional analyses revealed candidate genes regulating key biological processes associated with embryonic development and survival, DNA repair and meiotic processes, among others, providing additional biological evidence of TRD findings. CONCLUSIONS Our results revealed the importance of implementing different TRD parameterizations to capture all types of distortions and to determine the corresponding inheritance pattern. Novel candidate genomic regions containing lethal alleles and genes with functional and biological consequences on fertility and pre- and post-natal viability were also identified, providing opportunities for improving breeding success in cattle.
Collapse
Affiliation(s)
- Samir Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Joaquim Casellas
- Departament de Ciència Animal I Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Aroa Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Pablo A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Select Sires, Inc, Plain City, OH, 43064, USA
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Kaur B, Garcha KS, Sandhu JS, Sharma M, Dhatt AS. Interspecific hybridization for transfer of hull-less seed trait from Cucurbita pepo to C. moschata. Sci Rep 2023; 13:4627. [PMID: 36944656 PMCID: PMC10030865 DOI: 10.1038/s41598-023-29935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Hull-less seed trait is preferred by nut and oil industries worldwide for snacking and oil extraction as it evades the expensive decorticating (dehulling) process. This seed trait is available in C. pepo only, which has small seed cavity, sensitive to various biotic and abiotic stresses, and restricted to temperate regions for cultivation. Contrarily, the related species C. moschata has wider adaptability, disease tolerance and high seed yield. Therefore, attempt was made to transfer this trait into C. moschata through conventional pollination and ovule culture using four parents of hull-less C. pepo and six of hulled C. moschata. Through conventional approach, few viable F1 seeds (12-23) were obtained by using C. pepo as female parent, but in three crosses (HLP36 × HM1343, HLP36 × HM1022 and HLP44 × HM1022) only, whereas, its use as male parent was not successful. This incompatibility issue of reciprocals was resolved through ovule culture of C. moschata genotypes HM1343 and HM6711 after 17 to 19 days of pollination with C. pepo genotypes HLP53 and HLP72, respectively. The hybridity of interspecific crosses was confirmed through SSR markers (alleles inherited from both the parents), morphological characters and micromorphological leaf traits (differed from both the parents). The successful transfer through interspecific hybridization was further established with the presence of hull-less seed in fruits of F2 populations. Outcome of this study would pave the way for enhancing the productivity and multi-season cultivation of snack-seeded pumpkin even in subtropical and tropical regions.
Collapse
Affiliation(s)
- Barinder Kaur
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Karmvir Singh Garcha
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ajmer Singh Dhatt
- Directorate of Research, Punjab Agricultural University, Ludhiana, 141004, India.
| |
Collapse
|
5
|
Carioscia SA, Weaver KJ, Bortvin AN, Pan H, Ariad D, Bell AD, McCoy RC. A method for low-coverage single-gamete sequence analysis demonstrates adherence to Mendel's first law across a large sample of human sperm. eLife 2022; 11:e76383. [PMID: 36475543 PMCID: PMC9844984 DOI: 10.7554/elife.76383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Recently published single-cell sequencing data from individual human sperm (n=41,189; 969-3377 cells from each of 25 donors) offer an opportunity to investigate questions of inheritance with improved statistical power, but require new methods tailored to these extremely low-coverage data (∼0.01× per cell). To this end, we developed a method, named rhapsodi, that leverages sparse gamete genotype data to phase the diploid genomes of the donor individuals, impute missing gamete genotypes, and discover meiotic recombination breakpoints, benchmarking its performance across a wide range of study designs. We then applied rhapsodi to the sperm sequencing data to investigate adherence to Mendel's Law of Segregation, which states that the offspring of a diploid, heterozygous parent will inherit either allele with equal probability. While the vast majority of loci adhere to this rule, research in model and non-model organisms has uncovered numerous exceptions whereby 'selfish' alleles are disproportionately transmitted to the next generation. Evidence of such 'transmission distortion' (TD) in humans remains equivocal in part because scans of human pedigrees have been under-powered to detect small effects. After applying rhapsodi to the sperm data and scanning for evidence of TD, our results exhibited close concordance with binomial expectations under balanced transmission. Together, our work demonstrates that rhapsodi can facilitate novel uses of inferred genotype data and meiotic recombination events, while offering a powerful quantitative framework for testing for TD in other cohorts and study systems.
Collapse
Affiliation(s)
- Sara A Carioscia
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Kathryn J Weaver
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Hao Pan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Ariad
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Avery Davis Bell
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
6
|
Loitongbam B, Singh PK, Sah RP, Verma OP, Singh B, Bisen P, Kulhari S, Rathi SR, Upadhyay S, Singh NK, Sahu R, Singh RK. Identification of QTLs for zinc deficiency tolerance in a recombinant inbred population of rice (Oryza sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6309-6319. [PMID: 35531753 DOI: 10.1002/jsfa.11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Deficiency of Zn is a major soil constraint in rice plant growth and yield. Edaphic factors such as Zn deficiency in soil in relation to plant performance are still poorly understood. Here, we report promising quantitative trait loci (QTL) conferring tolerance to Zn deficiency, which were identified through biparental mapping. The experiment was conducted using the 236 F7 recombinant inbred line mapping population derived from the cross of Kinandang Patong (Zn deficiency sensitive) and A69-1 (Zn deficiency tolerant). RESULTS A total of six QTLs (qLB-2B, qLB-4B, qPM-4B, qPM-6B, qRZC-4B, qSZC-4B) on chromosomes 2, 4 and 6 were identified for environment 1, whereas five QTLs (qLB-2 N, qLB-4 N, qPM-4 N, qRZC-4 N, qSZC-4 N) on chromosomes 2 and 4 were detected for environment 2. Among these, five major (51.30, 48.70, 28.60, 56.00, 52.00 > 10 R2 ) and one minor (5.40 < 10 R2 ) QTLs for environment 1 and four major (51.48, 50.20, 53.00, 48.00 > 10 R2 ) and one minor (4.44 < 10) QTLs for environment 2 for Zn deficiency tolerance with a logarithm of odd threshold value higher than 3 were identified. The QTLs (qLB-4B, qPM-4B, qRZC-4B, qSZC-4B, qLB-4 N, qPM-4 N, qRZC-4 N, qSZC-4 N) for leaf bronzing, plant mortality root zinc concentration and shoot zinc concentration identified on chromosome 4 were found to be the most promising and highly reproducible across the locations that explained phenotypic variation from 48.00% to 56.00% with the same marker interval RM6748-RM303. CONCLUSION The new QTLs and its linked markers identified in the present study can be utilized for Zn deficiency tolerance in elite cultivars using marker-assisted backcrossing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bapsila Loitongbam
- College of Agriculture, Central Agricultural University (Imphal), Pasighat, India
- Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Pawan Kumar Singh
- Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Rameswar Prasad Sah
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - Om Prakash Verma
- Acharya Narendra Deva University of Agriculture & Technology (NDUAT), Ayodhya, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, New Delhi, (ICAR), New Delhi, India
| | - Prashant Bisen
- Narayan Institute of Agricultural Sciences, Gopa Narayan Singh University, Rohtas-Bihar, India
| | - Sandhya Kulhari
- Agriculture Research Station, Agriculture University, Kota, India
| | - Sanket R Rathi
- Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Sameer Upadhyay
- Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, New Delhi, (ICAR), New Delhi, India
| | - Rabin Sahu
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| |
Collapse
|
7
|
Bu L, Zhong D, Lu L, Loker ES, Yan G, Zhang SM. Compatibility between snails and schistosomes: insights from new genetic resources, comparative genomics, and genetic mapping. Commun Biol 2022; 5:940. [PMID: 36085314 PMCID: PMC9463173 DOI: 10.1038/s42003-022-03844-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
The freshwater snail Biomphalaria glabrata is an important intermediate host of the parasite Schistosoma mansoni that causes human intestinal schistosomiasis. To better understand vector snail biology and help advance innovative snail control strategies, we have developed a new snail model consisting of two homozygous B. glabrata lines (iM line and iBS90) with sharply contrasting schistosome-resistance phenotypes. We produced and compared high-quality genome sequences for iM line and iBS90 which were assembled from 255 (N50 = 22.7 Mb) and 346 (N50 = 19.4 Mb) scaffolds, respectively. Using F2 offspring bred from the two lines and the newly generated iM line genome, we constructed 18 linkage groups (representing the 18 haploid chromosomes) covering 96% of the genome and identified three new QTLs (quantitative trait loci), two involved in snail resistance/susceptibility and one relating to body pigmentation. This study provides excellent genomic resources for unveiling complex vector snail biology, reveals genomic difference between resistant and susceptible lines, and offers novel insights into genetic mechanism of the compatibility between snail and schistosome.
Collapse
Affiliation(s)
- Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Achakkagari SR, Kyriakidou M, Gardner KM, De Koeyer D, De Jong H, Strömvik MV, Tai HH. Genome sequencing of adapted diploid potato clones. FRONTIERS IN PLANT SCIENCE 2022; 13:954933. [PMID: 36003817 PMCID: PMC9394749 DOI: 10.3389/fpls.2022.954933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cultivated potato is a vegetatively propagated crop, and most varieties are autotetraploid with high levels of heterozygosity. Reducing the ploidy and breeding potato at the diploid level can increase efficiency for genetic improvement including greater ease of introgression of diploid wild relatives and more efficient use of genomics and markers in selection. More recently, selfing of diploids for generation of inbred lines for F1 hybrid breeding has had a lot of attention in potato. The current study provides genomics resources for nine legacy non-inbred adapted diploid potato clones developed at Agriculture and Agri-Food Canada. De novo genome sequence assembly using 10× Genomics and Illumina sequencing technologies show the genome sizes ranged from 712 to 948 Mbp. Structural variation was identified by comparison to two references, the potato DMv6.1 genome and the phased RHv3 genome, and a k-mer based analysis of sequence reads showed the genome heterozygosity range of 1 to 9.04% between clones. A genome-wide approach was taken to scan 5 Mb bins to visualize patterns of heterozygous deleterious alleles. These were found dispersed throughout the genome including regions overlapping segregation distortions. Novel variants of the StCDF1 gene conferring earliness of tuberization were found among these clones, which all produce tubers under long days. The genomes will be useful tools for genome design for potato breeding.
Collapse
Affiliation(s)
| | - Maria Kyriakidou
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Kyle M. Gardner
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - David De Koeyer
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Hielke De Jong
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Martina V. Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Helen H. Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| |
Collapse
|
9
|
Zhang C, Wang J, Xiao X, Wang D, Yuan Z, Zhang X, Sun W, Yu S. Fine Mapping of Two Interacting Loci for Transmission Ratio Distortion in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:866276. [PMID: 35422832 PMCID: PMC9002327 DOI: 10.3389/fpls.2022.866276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Transmission ratio distortion (TRD) denotes the observed allelic or genotypic frequency deviation from the expected Mendelian segregation ratios in the offspring of a heterozygote. TRD can severely hamper gene flow between and within rice species. Here, we report the fine mapping and characterization of two loci (TRD4.1 and TRD4.2) for TRD using large F2 segregating populations, which are derived from rice chromosome segment substitution lines, each containing a particular genomic segment introduced from the japonica cultivar Nipponbare (NIP) into the indica cultivar Zhenshan (ZS97). The two loci exhibited a preferential transmission of ZS97 alleles in the derived progeny. Reciprocal crossing experiments using near-isogenic lines harboring three different alleles at TRD4.1 suggest that the gene causes male gametic selection. Moreover, the transmission bias of TRD4.2 was diminished in heterozygotes when they carried homozygous TRD4.1 ZS97. This indicates an epistatic interaction between these two loci. TRD4.2 was mapped into a 35-kb region encompassing one candidate gene that is specifically expressed in the reproductive organs in rice. These findings broaden the understanding of the genetic mechanisms of TRD and offer an approach to overcome the barrier of gene flow between the subspecies in rice, thus facilitating rice improvement by introgression breeding.
Collapse
Affiliation(s)
- Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jilin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiongfeng Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Chandnani R, Kim C, Patel JD, Guo H, Shehzad T, Wallace JG, He D, Zhang Z, Adhikari J, Khanal S, Chee PW, Paterson AH. Identification of small effect quantitative trait loci of plant architectural, flowering, and early maturity traits in reciprocal interspecific introgression population in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:981682. [PMID: 36061803 PMCID: PMC9433993 DOI: 10.3389/fpls.2022.981682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 05/13/2023]
Abstract
Plant architecture, flowering time and maturity traits are important determinants of yield and fiber quality of cotton. Genetic dissection of loci determining these yield and quality components is complicated by numerous loci with alleles conferring small differences. Therefore, mapping populations segregating for smaller numbers and sizes of introgressed segments is expected to facilitate dissection of these complex quantitative traits. At an advanced stage in the development of reciprocal advanced backcross populations from crosses between elite Gossypium hirsutum cultivar 'Acala Maxxa' (GH) and G. barbadense 'Pima S6' (GB), we undertook mapping of plant architectural traits, flowering time and maturity. A total of 284 BC4F1 and BC4F2 progeny rows, 120 in GH and 164 in GB background, were evaluated for phenotype, with only 4 and 3 (of 7) traits showing significant differences among progenies. Genotyping by sequencing yielded 3,186 and 3,026 SNPs, respectively, that revealed a total of 27 QTLs in GH background and 22 in GB, for plant height, days to flowering, residual flowering at maturity and maturity. More than of 90% QTLs identified in both backgrounds had small effects (%PV < 10), supporting the merit of this population structure to reduce background noise and small effect QTLs. Germplasm developed in this study may serve as potential pre-breeding material to develop improved cotton cultivars.
Collapse
Affiliation(s)
- Rahul Chandnani
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Jinesh D. Patel
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Hui Guo
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Jason G. Wallace
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Daohua He
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jeevan Adhikari
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Sameer Khanal
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Peng W. Chee
- NESPAL Molecular Cotton Breeding Laboratory, The University of Georgia, Tifton, GA, United States
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
- *Correspondence: Andrew H. Paterson,
| |
Collapse
|
11
|
Shehzad M, Zhou Z, Ditta A, Khan M, Cai X, Xu Y, Maqbool A, Khalofah A, Shaban M, Naeem M, Ansari MJ, Wang K, Liu F. Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2 population of upland cotton. PLoS One 2021; 16:e0247593. [PMID: 33770112 PMCID: PMC7997035 DOI: 10.1371/journal.pone.0247593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Segregation distortion (SD) is a genetic mechanism commonly found in segregating or stable populations. The principle behind this puzzles many researchers. The F2 generation developed from wild Gossypium darwinii and G. hirsutum CCRI12 species was used to investigate the possible transcription factors within the segregation distortion regions (SDRs). The 384 out of 2763 markers were distorted in 29 SDRs on 18 chromosomes. Good collinearity was observed among genetic and physical maps of G. hirsutum and G. barbadense syntenic blocks. Total 568 genes were identified from SDRs of 18 chromosomes. Out of these genes, 128 belonged to three top-ranked salt-tolerant gene families. The DUF597 contained 8 uncharacterized genes linked to Pkinase (PF00069) gene family in the phylogenetic tree, while 15 uncharacterized genes clustered with the zinc finger gene family. Two hundred thirty four miRNAs targeted numerous genes, including ghr-miR156, ghr-miR399 and ghr-miR482, while others targeted top-ranked stress-responsive transcription factors. Moreover, these genes were involved in the regulation of numerous stress-responsive cis-regulatory elements. The RNA sequence data of fifteen upregulated genes were verified through the RT-qPCR. The expression profiles of two highly upregulated genes (Gh_D01G2015 and Gh_A01G1773) in salt-tolerant G. darwinii showed antagonistic expression in G. hirsutum. The results indicated that salt-tolerant genes have been possibly transferred from the wild G. darwinii species. A detailed functional analysis of these genes can be carried out which might be helpful in the future for gene cloning, transformation, gene editing and the development of salt-resistant cotton varieties.
Collapse
Affiliation(s)
- Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Allah Ditta
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- Plant Breeding, and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Punjab, Pakistan
| | - Majid Khan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Amir Maqbool
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shaban
- Department of Plant Breeding and Genetics, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, India
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- * E-mail: (KW); (FL)
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- * E-mail: (KW); (FL)
| |
Collapse
|
12
|
Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Sci Rep 2020; 10:19174. [PMID: 33154532 PMCID: PMC7645761 DOI: 10.1038/s41598-020-76197-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/23/2020] [Indexed: 01/12/2023] Open
Abstract
Anthracnose susceptibility and ill-adapted flowering time severely affect Lupinus luteus yield, which has high seed protein content, is excellent for sustainable agriculture, but requires genetic improvement to fulfil its potential. This study aimed to (1) develop a genetic map; (2) define collinearity and regions of synteny with Lupinus angustifolius; and (3) map QTLs/candidate genes for anthracnose resistant and flowering time. A few linkage groups/genomic regions tended to be associated with segregation distortion, but did not affect the map. The developed map showed collinearity, and syntenic regions with L. angustifolius. Major QTLs were mapped in syntenic regions. Alleles from the wild parent and cultivar, explained 75% of the phenotypic variance for anthracnose resistance and 83% for early flowering, respectively. Marker sequences flanking the QTLs showed high homology with the Lanr1 gene and Flowering-locus-T of L. angustifolius. This suggests orthologous genes for both traits in the L. luteus genome. The findings are remarkable, revealing the potential to combine early flowering/anthracnose resistant in fulfilling yield capacity in L. luteus, and can be a major strategy in the genetic improvement and usage of this species for sustainable protein production. Allele sequences and PCR-marker tagging of these genes are being applied in marker assisted selection.
Collapse
|
13
|
Maximising recombination across macadamia populations to generate linkage maps for genome anchoring. Sci Rep 2020; 10:5048. [PMID: 32193408 PMCID: PMC7081209 DOI: 10.1038/s41598-020-61708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
The Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.
Collapse
|
14
|
Coulton A, Przewieslik-Allen AM, Burridge AJ, Shaw DS, Edwards KJ, Barker GLA. Segregation distortion: Utilizing simulated genotyping data to evaluate statistical methods. PLoS One 2020; 15:e0228951. [PMID: 32074141 PMCID: PMC7029859 DOI: 10.1371/journal.pone.0228951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/26/2020] [Indexed: 11/18/2022] Open
Abstract
Segregation distortion is the phenomenon in which genotypes deviate from expected Mendelian ratios in the progeny of a cross between two varieties or species. There is not currently a widely used consensus for the appropriate statistical test, or more specifically the multiple testing correction procedure, used to detect segregation distortion for high-density single-nucleotide polymorphism (SNP) data. Here we examine the efficacy of various multiple testing procedures, including chi-square test with no correction for multiple testing, false-discovery rate correction and Bonferroni correction using an in-silico simulation of a biparental mapping population. We find that the false discovery rate correction best approximates the traditional p-value threshold of 0.05 for high-density marker data. We also utilize this simulation to test the effect of segregation distortion on the genetic mapping process, specifically on the formation of linkage groups during marker clustering. Only extreme segregation distortion was found to effect genetic mapping. In addition, we utilize replicate empirical mapping populations of wheat varieties Avalon and Cadenza to assess how often segregation distortion conforms to the same pattern between closely related wheat varieties.
Collapse
Affiliation(s)
- Alexander Coulton
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
- * E-mail:
| | | | - Amanda J. Burridge
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Daniel S. Shaw
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Gary L. A. Barker
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| |
Collapse
|
15
|
Garavello M, Cuenca J, Dreissig S, Fuchs J, Navarro L, Houben A, Aleza P. Analysis of Crossover Events and Allele Segregation Distortion in Interspecific Citrus Hybrids by Single Pollen Genotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:615. [PMID: 32523591 PMCID: PMC7261893 DOI: 10.3389/fpls.2020.00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/17/2023]
Abstract
In citrus, a classical method of studying crossovers and segregation distortion (SD) is the genetic analysis of progenies. A new strategy combining fluorescence-activated cell sorting and whole genome amplification of haploid pollen nuclei with a large set of molecular markers, offers the opportunity to efficiently determine the frequency of crossovers and the identification of SD without the need to generate segregating populations. Here we have analyzed meiotic crossover events in a pollen nuclei population from "Eureka" lemon and the allelic SD was evaluated in a pollen nuclei population from a clementine × sweet orange hybrid ("CSO"). Data obtained from the "CSO" pollen nuclei population were compared to those obtained from genotyping of a segregating population ("RTSO") arising from a hand-made sexual hybridization between diploid non apomictic selected tangor (mandarin × sweet orange; "RTO" tangor) as female parent pollinated with "CSO" tangor as male parent. The analysis of crossovers rates on chromosome 1 revealed the presence of up to five crossovers events on one arm and four on the corresponding other arm, with an average of 1.97 crossovers per chromosome while no crossover events were observed in five "Eureka" lemon pollen nuclei. The rate of SD observed in "CSO" pollen nuclei (13.8%) was slightly lower than that recovered in the "RTSO" population (20.7%). In the pollen nuclei population, SD was found on linkage group (LG) 2, while the "RTSO" population showed SD on LGs 2 and 7. Potential male gametic selection mechanisms were distinguished in pollen grains, while in the population, mechanisms of gametophytic selection and/or zygotic selection were observed. This methodology is a very useful tool to facilitate research focused on the reproductive biology of citrus and study the mechanisms that affect crossovers and SD.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- Concordia Agricultural Experiment Station, National Agricultural Technology Institute, Entre Ríos, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Pablo Aleza,
| |
Collapse
|
16
|
Desta ZA, Kolano B, Shamim Z, Armstrong SJ, Rewers M, Sliwinska E, Kushwaha SK, Parkin IAP, Ortiz R, de Koning DJ. Field cress genome mapping: Integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes. Sci Rep 2019; 9:17028. [PMID: 31745130 PMCID: PMC6863836 DOI: 10.1038/s41598-019-53320-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Field cress (Lepidium campestre L.), despite its potential as a sustainable alternative oilseed plant, has been underutilized, and no prior attempts to characterize the genome at the genetic or molecular cytogenetic level have been conducted. Genetic maps are the foundation for anchoring and orienting annotated genome assemblies and positional cloning of candidate genes. Our principal goal was to construct a genetic map using integrated approaches of genetic, comparative and cytogenetic map analyses. In total, 503 F2 interspecific hybrid individuals were genotyped using 7,624 single nucleotide polymorphism markers. Comparative analysis demonstrated that ~57% of the sequenced loci in L. campestre were congruent with Arabidopsis thaliana (L.) genome and suggested a novel karyotype, which predates the ancestral crucifer karyotype. Aceto-orcein chromosome staining and fluorescence in situ hybridization (FISH) analyses confirmed that L. campestre, L. heterophyllum Benth. and their hybrids had a chromosome number of 2n = 2x = 16. Flow cytometric analysis revealed that both species possess 2C roughly 0.4 picogram DNA. Integrating linkage and comparative maps with cytogenetic map analyses assigned two linkage groups to their particular chromosomes. Future work could incorporate FISH utilizing A. thaliana mapped BAC clones to allow the chromosomes of field cress to be identified reliably.
Collapse
Affiliation(s)
- Zeratsion Abera Desta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden.
| | - Bozena Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Zeeshan Shamim
- Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
- School of Biosciences, University of Birmingham, Birmingham, B 15 2TT, United Kingdom
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Birmingham, B 15 2TT, United Kingdom
| | - Monika Rewers
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland
| | - Sandeep Kumar Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE 75007, Uppsala, Sweden
| |
Collapse
|
17
|
Wu D, Koch J, Coggeshall M, Carlson J. The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species. PLANT MOLECULAR BIOLOGY 2019; 99:251-264. [PMID: 30604323 DOI: 10.1007/s11103-018-0815-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny with coffee than tomato. Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n = 46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid spread of the emerald ash borer (EAB, Agrilus planipennis), an invasive pest from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few genomic resources for genetic studies and improvement of green ash are available. In this study, a total of 5712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al., PLoS ONE 10:e0145031, 2015; Lane et al., BMC Genom 17:702, 2016). A first genetic linkage map of green ash was constructed from 90 individuals in a full-sib family, combining 2719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1201 markers in 23 linkage groups spanning 2008.87 cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.
Collapse
Affiliation(s)
- Di Wu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jennifer Koch
- USDA Forest Service, Northern Research Station, Project NRS-16, 359 Main Road, Delaware, OH, 43015, USA
| | - Mark Coggeshall
- Department of Forestry, Center for Agroforestry, University of Missouri, Columbia, MO, 65211, USA
- USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, Project NRS-14, 715 W. State Street, West Lafayette, IN, 47907, USA
| | - John Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Yang Y, Xuan L, Yu C, Wang Z, Xu J, Fan W, Guo J, Yin Y. High-density genetic map construction and quantitative trait loci identification for growth traits in (Taxodium distichum var. distichum × T. mucronatum) × T. mucronatum. BMC PLANT BIOLOGY 2018; 18:263. [PMID: 30382825 PMCID: PMC6474422 DOI: 10.1186/s12870-018-1493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/19/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND 'Zhongshanshan' is the general designation for the superior interspecific hybrid clones of Taxodium species, which is widely grown for economic and ecological purposes in southern China. Growth is the priority objective in 'Zhongshanshan' tree improvement. A high-density linkage map is vital to efficiently identify key quantitative trait loci (QTLs) that affect growth. RESULTS In total, 403.16 Gb of data, containing 2016,336 paired-end reads, was obtained after preprocessing. The average sequencing depth was 28.49 in T. distichum var. distichum, 25.18 in T. mucronatum, and 11.12 in each progeny. In total, 524,662 high-quality SLAFs were detected, of which 249,619 were polymorphic, and 6166 of the polymorphic markers met the requirements for use in constructing a genetic map. The final map harbored 6156 SLAF markers on 11 linkage groups, and was 1137.86 cM in length, with an average distance of 0.18 cM between adjacent markers. Separate QTL analyses of traits in different years by CIM detected 7 QTLs. While combining multiple-year data, 13 QTLs were detected by ICIM. 5 QTLs were repeatedly detected by the two methods, and among them, 3 significant QTLs (q6-2, q4-2 and q2-1) were detected in at least two traits. Bioinformatic analysis discoveried a gene annotated as a leucine-rich repeat receptor-like kinase gene within q4-2. CONCLUSIONS This map is the most saturated one constructed in a Taxodiaceae species to date, and would provide useful information for future comparative mapping, genome assembly, and marker-assisted selection.
Collapse
Affiliation(s)
- Ying Yang
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lei Xuan
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chaoguang Yu
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ziyang Wang
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianhua Xu
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wencai Fan
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jinbo Guo
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yunlong Yin
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|