1
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Li Y, Jiang D, Liu XY, Li M, Tang YF, Mi J, Ren GX, Liu CS. Multi-Omics Analysis Provides Crucial Insights into the Drought Adaptation of Glycyrrhiza uralensis Fisch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5391-5402. [PMID: 36971245 DOI: 10.1021/acs.jafc.2c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Drought adaptation of plants is closely related to resistance and tolerance to drought stress as well as the ability to recover after the elimination of the stress. Glycyrrhiza uralensis Fisch is a commonly applied herb whose growth and development are greatly affected by drought. Here, we provide the first comprehensive analysis of the transcriptomic, epigenetic, and metabolic responses of G. uralensis to drought stress and rewatering. The hyper-/hypomethylation of genes may lead to up-/downregulated gene expression, and epigenetic changes can be regarded as an important regulatory mechanism of G. uralensis under drought stress and rewatering. Moreover, integrated transcriptome and metabolome analysis revealed that genes and metabolites involved in pathways of antioxidation, osmoregulation, phenylpropanoid biosynthesis, and flavonoid biosynthesis may regulate the drought adaptation of G. uralensis. This work provides crucial insights into the drought adaptation of G. uralensis and offers epigenetic resources for cultivating G. uralensis with high drought adaptation.
Collapse
Affiliation(s)
- Yuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin-Yu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi-Fei Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiu Mi
- University of Tibetan Medicine, Tibet 850000, China
| | - Guang-Xi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chun-Sheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
3
|
Ferrari M, Muto A, Bruno L, Cozza R. DNA Methylation in Algae and Its Impact on Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:241. [PMID: 36678953 PMCID: PMC9861306 DOI: 10.3390/plants12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Epigenetics, referring to heritable gene regulatory information that is independent of changes in DNA sequences, is an important mechanism involved both in organism development and in the response to environmental events. About the epigenetic marks, DNA methylation is one of the most conserved mechanisms, playing a pivotal role in organism response to several biotic and abiotic stressors. Indeed, stress can induce changes in gene expression through hypo- or hyper-methylation of DNA at specific loci and/or in DNA methylation at the genome-wide level, which has an adaptive significance and can direct genome evolution. Exploring DNA methylation in responses to abiotic stress could have important implications for improving stress tolerance in algae. This article summarises the DNA methylation pattern in algae and its impact on abiotic stress, such as heavy metals, nutrients and temperature. Our discussion provides information for further research in algae for a better comprehension of the epigenetic response under abiotic stress, which could favour important implications to sustain algae growth under abiotic stress conditions, often related to high biosynthesis of interesting metabolites.
Collapse
|
4
|
Luo Z, Xiong J, Xia H, Wang L, Hou G, Li Z, Li J, Zhou H, Li T, Luo L. Pentatricopeptide Repeat Gene-Mediated Mitochondrial RNA Editing Impacts on Rice Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:926285. [PMID: 35928709 PMCID: PMC9343880 DOI: 10.3389/fpls.2022.926285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 05/27/2023]
Abstract
Mitochondrial RNA editing plays crucial roles in the plant development and environmental adaptation. Pentatricopeptide repeat (PPR) genes, which are involved in the regulating mitochondrial RNA editing, are potential gene resources in the improvement of rice drought tolerance. In this study, we investigated genome-wide mitochondrial RNA editing in response to drought between upland and lowland rice. Responses of mitochondrial RNA editing to drought exhibit site-specific and genotype-specific patterns. We detected 22 and 57 ecotype-differentiated editing sites under well-watered and drought-treated conditions, respectively. Interestingly, the RNA editing efficiency was positively correlated with many agronomic traits, while it was negatively correlated with drought tolerance. We further selected two mitochondrial-localized PPR proteins, PPR035 and PPR406, to validate their functions in drought tolerance. PPR035 regulated RNA editing at rps4-926 and orfX-406, while PPR406 regulated RNA editing at orfX-355. The defectiveness in RNA editing at these sites had no apparent penalties in rice respiration and vegetative growth. Meanwhile, the knockout mutants of ppr035 and ppr406 show enhanced drought- and salt tolerance. PPR035 and PPR406 were under the balancing selection in upland rice and highly differentiated between upland and lowland rice ecotypes. The upland-dominant haplotypes of PPR035 and PPR406 shall contribute to the better drought tolerance in upland rice. They have great prospective in the improvement of rice drought tolerance.
Collapse
Affiliation(s)
- Zhi Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jie Xiong
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lei Wang
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Guihua Hou
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zhaoyang Li
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jing Li
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hengling Zhou
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tianfei Li
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lijun Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Collaborative Innovation Center of Agri-Seeds (SCCAS), Shanghai Agrobiological Gene Center, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
5
|
Li B, Yang C, An B, Wang H, Albaqami M, Abou-Elwafa SF, Xu L, Xu Y. Comparative transcriptomic and epigenetic analyses reveal conserved and divergent regulatory pathways in barley response to temperature stresses. PHYSIOLOGIA PLANTARUM 2022; 174:e13727. [PMID: 35657636 DOI: 10.1111/ppl.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation and histone modification enable plants to rapidly adapt to adverse temperature stresses, including low temperature (LT) and high temperature (HT) stress. In this study, we conducted physiological, epigenetic, and transcriptomic analyses of barley seedlings grown under control (22°C), mild low temperature (MLT, 14°C) and HT (38°C) conditions to elucidate the underlying molecular mechanisms. Compared to MLT, HT implies greater deleterious effects on barley seedlings' growth. The methylation-sensitive amplification polymorphism analysis showed that MLT induced more DNA methylation and HT more DNA demethylation compared to control. Besides, the higher levels of H3K9ac and H3K4me3 under HT compared to MLT stresses might lead to the loosening of chromatin and, subsequently, the activation of gene expression. Consistently, the transcriptome analysis revealed that there were more differentially expressed genes (DEGs) in plants subjected to HT stress than MLT stress compared to control. The common and unique pathways of these DEGs between MLT and HT were also analyzed. Transcription factors, such as ERF, bHLH, NAC, HSF, and MYB, were most involved in MLT and HT stress. The underlying gene regulation networks of epigenetic modulation-related genes were further explored by weight gene co-expression network analysis. Our study provides new insights into the understanding of epigenetic regulation responses to temperature stress in barley, which will lead to improved strategies for the development of cold- and heat-tolerant barley varieties for sustainable barley production in a climate-changing world.
Collapse
Affiliation(s)
- Bo Li
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bingzhuang An
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hongpan Wang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Le Xu
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
Yang A, Qi X, Wang QM, Wang H, Wang Y, Li L, Liu W, Qiao Y. The branch-thorn occurrence of Lycium ruthenicum is associated with leaf DNA hypermethylation in response to soil water content. Mol Biol Rep 2021; 49:1925-1934. [PMID: 34860320 DOI: 10.1007/s11033-021-07004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lycium ruthenicum is an eco-economic shrub which can exist in two forms, thorny and thornless under varying soil moisture conditions. The aim of this study was to determine if the two forms of L. ruthenicum were influenced by soil water content (SWC) and to test the three-way link among SWC, occurrence of branch-thorn and DNA methylation modification. METHODS AND RESULTS Here, pot experiment was carried out to reveal the influence of SWC on the occurrence of branch-thorn and then paraffin sections, scanning electron microscope and methylation-sensitive amplification polymorphism(MSAP) analysis were used to determine the three-way link among SWC, branch-thorn occurrence and DNA methylation. The results showed that (a) soil drought promoted the development of thorn primordium into branch-thorn and (b) branch-thorn covered axillary bud to protect it against drought and other stresses; (c) the branch-thorn occurrence response to drought was correlated with hypermethylation of CCGG sites and (d) thorny and thornless plants of a clone were distinguished successfully based on the MSAP profiles of their leaves. CONCLUSIONS Branch-thorns of the L. ruthenicum clone, which occurred in response to drought, covered axillary buds to protect them against drought and other stresses; thorn primordium of the clone did not develop into branch-thorn under the adequate soil moisture condition. The occurrence and absence of the branch-thorns were correlated with the hyper- and hypo-methylation, respectively. We proposed that the branch-thorn plasticity might be an adjustment strategy for the environment, which seems to support the theory of "Use in, waste out".
Collapse
Affiliation(s)
- Ailin Yang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinyu Qi
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qin-Mei Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Hao Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yucheng Wang
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Lujia Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wen Liu
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yang Qiao
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| |
Collapse
|
7
|
Elevated CO 2 alters transgene methylation not only in promoterregion but also in codingregion of Bt rice under different N-fertilizer levels. Sci Rep 2020; 10:18138. [PMID: 33097753 PMCID: PMC7584594 DOI: 10.1038/s41598-020-75121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/09/2020] [Indexed: 11/08/2022] Open
Abstract
The earth has been undergoing climate change, especially in recent years, driven by increasing concentration of atmospheric carbon dioxide (CO2) and rising earth-surface temperature, which could reduce N allocation to Bt toxin for transgenic Bt crops (Bt crops), but the N fertilization is considered to be an effective method to enhance the C-N balance in Bt crops in the case of elevated CO2 in future. DNA methylation not only in promoterregion but also in codingregion of transgene plays a critical role in transgene expression regulation and silencing of transgenic crops. Recent research has emphasized the risks of increased transgene silencing of Bacillus thuringiensis (Bt) rice under elevated CO2. In this study, the effects of elevated CO2 (vs. ambient CO2) on exogenous Bt toxins and transgene expression in promoterregion and codingregion of Bt rice during tillering stage (cv. HH1 expressing fused Cry1Ab/Cry1Ac) were evaluated under three nitrogen (N) fertilizer rate (1/4, 1 and 2 N levels). The aboveground and belowground biomass, and foliar Bt protein content of Bt rice were all significantly increased with the augmentation of N-fertilizer. And elevated CO2 significantly increased belowground biomass, total soluble protein content, transgene methylation levels in promoterregion (P1), and in total of promoterregion(P1) and codingregion (P2 + P3) (i.e., P1 + P2 + P3) at 1 N level, and it also increased transgene methylation levels in codingregion (P2), and in total of promoterregion and codingregion (P1 + P2 + P3) at 2 N level. In addition, elevated CO2 decreased foliar Bt protein content at 1 N level. The transgene methylation levels in promoterregion and codingregion were negatively correlated with Bt-transgene expression level. The methylation level of cytosines located at CG sites was higher than those at CHG and CHH sites in P1, P2 and P3 fragments regardless of the CO2 or N-fertilizer level. The correlation of transgene mehtylation in promoterregion with transgene expression is even stronger than that in codingregion. These data indicate that N fertilization supply will increase the Bt toxin content in transgenic Bt rice, especially under elevated CO2.
Collapse
|
8
|
Gahlaut V, Samtani H, Khurana P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 2020; 112:4796-4807. [PMID: 32890700 DOI: 10.1016/j.ygeno.2020.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023]
Abstract
DNA methylation is a potential epigenetic mechanism that regulates genome stability, development, and stress mitigation in plants. It is mediated by cytosine-5 DNA methyltransferases (C5-MTases). We identified 52 wheat C5-MTases; and based on domain structure and phylogenetics, these 52 C5-MTases were classified into four sub-families including MET, CMT, DRM and DNMT2; and were distributed on 18 chromosomes. Cis-acting regulatory elements analysis identified abiotic stress-responsive, phytohormone-responsive, development-related and light-related elements in the promoters of TaC5-MTases. We also examined the transcript abundance of TaC5-MTases in different tissues, developmental stages and under abiotic stresses. Notably, most of the TaC5-MTases (TaCMT2, TaCMT3b, TaCMT3c, TaMET1, TaDRM10, TaDNMT2) showed differential regulation of their transcript abundance during drought and heat stress. Overall, the above results provide significant insights into the expression and the probable functions of TaC5-MTases and will also expedite future research programs to explore the mechanisms of epigenetic regulation in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
9
|
Rajkumar MS, Shankar R, Garg R, Jain M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 2020; 112:3537-3548. [PMID: 32278023 DOI: 10.1016/j.ygeno.2020.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation governs gene regulation in plants in response to environmental conditions. Here, we analyzed role of DNA methylation under desiccation and salinity stresses in three (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) rice cultivars via bisulphite sequencing. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stresses, respectively, were correlated with higher expression of few abiotic stress response related genes. Most of the differentially methylated and differentially expressed genes (DMR-DEGs) were cultivar-specific, suggesting an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. DMR-DEGs harboring differentially methylated cytosines due to DNA polymorphisms between the sensitive and tolerant cultivars in their promoter regions and/or coding regions were identified, suggesting the role of epialleles in abiotic stress responses.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rama Shankar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2019; 39:MB-2019-s11032-019-0954-y. [PMID: 32803201 PMCID: PMC7413041 DOI: 10.1007/s11032-019-0954-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
Salinity is one of the most important abiotic stress affecting the world rice production. The cultivation of salinity-tolerant cultivars is the most cost-effective and environmentally friendly approach for salinity control. In recent years, CRISPR/Cas9 systems have been widely used for target-site genome editing; however, their application for the improvement of elite rice cultivars has rarely been reported. Here, we report the improvement of the rice salinity tolerance by engineering a Cas9-OsRR22-gRNA expressing vector, targeting the OsRR22 gene in rice. Nine mutant plants were identified from 14 T0 transgenic plants. Sequencing showed that these plants had six mutation types at the target site, all of which were successfully transmitted to the next generations. Mutant plants without transferred DNA (T-DNA) were obtained via segregation in the T1 generations. Two T2 homozygous mutant lines were further examined for their salinity tolerance and agronomic traits. The results showed that, at the seedling stage, the salinity tolerance of T2 homozygous mutant lines was significantly enhanced compared to wild-type plants. Furthermore, no significantly different agronomic traits were found between T2 homozygous mutant lines and wild-type plants. Our results indicate CRISPR/ Cas9 as a useful approach to enhance the salinity tolerance of rice.
Collapse
Affiliation(s)
- Anning Zhang
- Huazhong Agricultural University, Wuhan 430070, People’s Republic
of China
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Yi Liu
- Huazhong Agricultural University, Wuhan 430070, People’s Republic
of China
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Feiming Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Zhihao Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Fenyun Zhang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Xingxing Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Jiahong Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Jinjuan Tang
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
- e-mail:
| | - Lijun Luo
- Huazhong Agricultural University, Wuhan 430070, People’s Republic
of China
- Shanghai Agrobiological Gene Center, Shanghai 201106, People’s
Republic of China
- e-mail:
| |
Collapse
|
11
|
Begcy K, Dresselhaus T. Epigenetic responses to abiotic stresses during reproductive development in cereals. PLANT REPRODUCTION 2018; 31:343-355. [PMID: 29943158 PMCID: PMC6244825 DOI: 10.1007/s00497-018-0343-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/22/2018] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Overview of current understanding of epigenetic alterations after abiotic stresses during reproductive development in cereals. Abiotic stresses, including heat, drought, cold, flooding, and salinity, negatively impact crop productivity. Various stages during reproductive development are especially sensitive to environmental stresses, which may lead to complete sterility and severe yield losses. Plants exhibit diverse responses to ameliorate stress damage. Changes in DNA methylation, histone modification as well as regulation of small RNA and long noncoding RNA pathways have been shown to represent key modulators in plant stress responses. During reproductive development in cereals, various protein complexes controlling histone and DNA methylation have been identified, revealing conserved and novel mechanisms regulating abiotic stress responses in cereals and other plant species. New findings highlight the role of transposable elements during stress periods. Here, we review our current understanding of epigenetic stress responses during male and female gametophyte formation (germline development), fertilization, early seed devolvement, and seed maturation in cereals. An integrative model of epigenetic responses during reproductive development in cereals is proposed, emphasizing the role of DNA methylation and histone modifications during abiotic stresses.
Collapse
Affiliation(s)
- Kevin Begcy
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053, Regensburg, Germany.
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
12
|
Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare). EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Xiong J, Tao T, Luo Z, Yan S, Liu Y, Yu X, Liu G, Xia H, Luo L. RNA Editing Responses to Oxidative Stress between a Wild Abortive Type Male-Sterile Line and Its Maintainer Line. FRONTIERS IN PLANT SCIENCE 2017; 8:2023. [PMID: 29234339 PMCID: PMC5712406 DOI: 10.3389/fpls.2017.02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/14/2017] [Indexed: 05/13/2023]
Abstract
RNA editing of mitochondrial gene transcripts plays a central role during plant development and evolutionary adaptation. RNA editing has previously been reported to differ between the rice cytoplasmic male sterile (CMS) line and its maintainer line, which has been suggested as a cause for their different performances under environmental stress. To specifically test this hypothesis, a wild abortive (WA) CMS line (Huhan-1A) and its maintainer line (Huhan-1B) were utilized to investigate performances in response to oxidative stress, as well as RNA editing efficiencies on transcripts of six selected mitochondrial genes. Compared to the maintainer line, Huhan-1A represented both lower plant height and total antioxidant capacity, possessed higher total soluble protein and chlorophyll contents, accumulated less H2O2 content on the 3rd day after treatment (DAT), and exhibited higher survival ratio after re-watering. Furthermore, a total of 90 editing sites were detected on transcripts of six mitochondrial genes (atp9, nad2, nad7, nad9, ccmB, and ccmC) in both Huhan-1A and Huhan-1B on the 0, 1st, and 3rd DAT. Forty-eight sites were furthermore determined as stress-responsive sites (SRS). Generally, in response to oxidative stress, SRS in Huhan-1A increased the resulting editing efficiencies, while SRS in Huhan-1B decreased the resulting editing efficiencies. In addition, 33 and 22 sites at ccmB and ccmC were differentially edited between Huhan-1A and Huhan-1B, respectively, on the 0, 1st, and 3rd DAT. Editing efficiencies of ccmB and ccmC were generally lower in Huhan-1A (ccmB, 37.3-47.8%; ccmC, 41.2-52.3%) than those in Huhan-1B (ccmB, 82.6-86.5%; ccmC, 81.0-82.9%). Deficiencies of RNA editing in Huhan-1A at ccmB and ccmC could lead to the loss of transmembrane domains in their protein structures. Consequently, differences in RNA editing at ccmB and ccmC between the WA-CMS line and its maintainer line partially explained their different performances under stress. Moreover, we detected differences in expressions of pentatricopeptide repeat (PPR) genes between both lines, as well as significant correlations with RNA editing. Our study indicated potential associations of RNA editing and PPR genes in rice tolerance to abiotic stresses. However, the underlying molecular mechanisms of stress-adaptation, which are attributed to RNA editing on transcripts of mitochondrial genes, require further investigation.
Collapse
Affiliation(s)
- Jie Xiong
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tao Tao
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Zhi Luo
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Shuaigang Yan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Yi Liu
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
- *Correspondence: Hui Xia
| | - Lijun Luo
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
- Lijun Luo
| |
Collapse
|