1
|
Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111786. [PMID: 37419328 DOI: 10.1016/j.plantsci.2023.111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh 173213, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
2
|
Li Z, Zhang Z, Liu Y, Ma Y, Lv X, Zhang D, Gu Q, Ke H, Wu L, Zhang G, Ma Z, Wang X, Sun Z. Identification and Expression Analysis of EPSPS and BAR Families in Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3366. [PMID: 37836107 PMCID: PMC10574212 DOI: 10.3390/plants12193366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Weeds seriously affect the yield and quality of crops. Because manual weeding is time-consuming and laborious, the use of herbicides becomes an effective way to solve the harm caused by weeds in fields. Both 5-enolpyruvyl shikimate-3-phosphate synthetase (EPSPS) and acetyltransferase genes (bialaphos resistance, BAR) are widely used to improve crop resistance to herbicides. However, cotton, as the most important natural fiber crop, is not tolerant to herbicides in China, and the EPSPS and BAR family genes have not yet been characterized in cotton. Therefore, we explore the genes of these two families to provide candidate genes for the study of herbicide resistance mechanisms. In this study, 8, 8, 4, and 5 EPSPS genes and 6, 6, 5, and 5 BAR genes were identified in allotetraploid Gossypium hirsutum and Gossypium barbadense, diploid Gossypium arboreum and Gossypium raimondii, respectively. Members of the EPSPS and BAR families were classified into three subgroups based on the distribution of phylogenetic trees, conserved motifs, and gene structures. In addition, the promoter sequences of EPSPS and BAR family members included growth and development, stress, and hormone-related cis-elements. Based on the expression analysis, the family members showed tissue-specific expression and differed significantly in response to abiotic stresses. Finally, qRT-PCR analysis revealed that the expression levels of GhEPSPS3, GhEPSPS4, and GhBAR1 were significantly upregulated after exogenous spraying of herbicides. Overall, we characterized the EPSPS and BAR gene families of cotton at the genome-wide level, which will provide a basis for further studying the functions of EPSPS and BAR genes during growth and development and herbicide stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| |
Collapse
|
3
|
Marker-Free Rice (Oryza sativa L. cv. IR 64) Overexpressing PDH45 Gene Confers Salinity Tolerance by Maintaining Photosynthesis and Antioxidant Machinery. Antioxidants (Basel) 2022; 11:antiox11040770. [PMID: 35453455 PMCID: PMC9025255 DOI: 10.3390/antiox11040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Helicases function as key enzymes in salinity stress tolerance, and the role and function of PDH45 (pea DNA helicase 45) in stress tolerance have been reported in different crops with selectable markers, raising public and regulatory concerns. In the present study, we developed five lines of marker-free PDH45-overexpressing transgenic lines of rice (Oryza sativa L. cv. IR64). The overexpression of PDH45 driven by CaMV35S promoter in transgenic rice conferred high salinity (200 mM NaCl) tolerance in the T1 generation. Molecular attributes such as PCR, RT-PCR, and Southern and Western blot analyses confirmed stable integration and expression of the PDH45 gene in the PDH45-overexpressing lines. We observed higher endogenous levels of sugars (glucose and fructose) and hormones (GA, zeatin, and IAA) in the transgenic lines in comparison to control plants (empty vector (VC) and wild type (WT)) under salt treatments. Furthermore, photosynthetic characteristics such as net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 (Ci), and chlorophyll (Chl) content were significantly higher in transgenic lines under salinity stress as compared to control plants. However, the maximum primary photochemical efficiency of PSII, as an estimated from variable to maximum chlorophyll a fluorescence (Fv/Fm), was identical in the transgenics to that in the control plants. The activities of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (GPX), were significantly higher in transgenic lines in comparison to control plants, which helped in keeping the oxidative stress burden (MDA and H2O2) lesser on transgenic lines, thus protecting the growth and photosynthetic efficiency of the plants. Overall, the present research reports the development of marker-free PDH45-overexpressing transgenic lines for salt tolerance that can potentially avoid public and biosafety concerns and facilitate the commercialization of genetically engineered crop plants.
Collapse
|
4
|
Kumar D, Rajwanshi R, Singh P, Yusuf MA, Sarin NB. Pyramiding of γ-TMT and gly I transgenes in Brassica juncea enhances salinity and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13618. [PMID: 35199363 DOI: 10.1111/ppl.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We previously generated Brassica juncea lines overexpressing either glyoxalase I (gly I) or γ-tocopherol methyltransferase (γ-TMT) involved in the glyoxalase system and tocopherol biosynthesis, respectively. These transgenic plants showed tolerance to multiple abiotic stresses. As tolerance is a complex trait that can be improved by pyramiding of several characteristics in a single genotype, we generated in this study B. juncea plants coexpressing gly I and γ-TMT by crossing the previously generated stable transgenic lines. The performance of the newly generated B. juncea lines coexpressing gly I and γ-TMT was compared with that of wild-type and the single transgenic lines under non-stressed and NaCl and mannitol stress conditions. Our results show a more robust antioxidant response of B. juncea plants coexpressing gly I and γ-TMT compared to the other lines in terms of higher chlorophyll retention, relative water content, antioxidant enzyme and proline levels, and photosynthetic efficiency and lower oxidative damage. The differences in response to the stress of the different lines were reflected in their yield parameters. Overall, we demonstrate that the pyramiding of multiple genes involved in antioxidant pathways could be a viable and useful approach for achieving higher abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravi Rajwanshi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Preeti Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Aslam Yusuf
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Bioengineering, Integral University, Lucknow, India
| | | |
Collapse
|
5
|
Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:39-49. [PMID: 33590621 DOI: 10.1111/plb.13246] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/03/2021] [Indexed: 05/28/2023]
Abstract
The free radical nitric oxide (NO) and the phenolic phytohormone salicylic acid (SA) are signal molecules which exert key functions at biochemical and physiological levels. Abiotic stresses, especially in early plant development, impose the biggest threats to agricultural systems and crop yield. These stresses impair plant growth and subsequently cause a reduction in root development, affecting nutrient uptake and crop productivity. The molecules NO and SA have been identified as robust tools for efficiently mitigating the negative effects of abiotic stress in plants. SA is engaged in an array of tasks under adverse environmental situations. The function of NO depends on its cellular concentration; at a low level, it acts as a signal molecule, while at a high level, it triggers nitro-oxidative stress. The crosstalk between NO and SA involving different signalling molecules and regulatory factors modulate plant function during stressful situations. Crosstalk between these two signalling molecules induces plant tolerance to abiotic stress and needs further investigation. This review aims to highlight signalling aspects of NO and SA in higher plants and critically discusses the roles of these two molecules in alleviating abiotic stress.
Collapse
Affiliation(s)
- V Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - V P Singh
- Department of Botany, C.M.P. Degree College, A Constitute PG College of University of Allahabad, Prayagraj, India
| | - D K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - S Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - F J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
6
|
Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol 2019; 39:395-407. [DOI: 10.1080/07388551.2019.1566204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Lavanya Tayi
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, India
| | | | | | | |
Collapse
|