1
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
2
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
3
|
Kondhare KR, Patil AB, Giri AP. Auxin: An emerging regulator of tuber and storage root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110854. [PMID: 33775360 DOI: 10.1016/j.plantsci.2021.110854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Many tuber and storage root crops owing to their high nutritional values offer high potential to overcome food security issues. The lack of information regarding molecular mechanisms that govern belowground storage organ development (except a tuber crop, potato) has limited the application of biotechnological strategies for improving storage crop yield. Phytohormones like gibberellin and cytokinin are known to play a crucial role in governing potato tuber development. Another phytohormone, auxin has been shown to induce tuber initiation and growth, and its crosstalk with gibberellin and strigolactone in a belowground modified stem (stolon) contributes to the overall potato tuber yield. In this review, we describe the crucial role of auxin biology in development of potato tubers. Considering the emerging reports from commercially important storage root crops (sweet potato, cassava, carrot, sugar beet and radish), we propose the function of auxin and related gene regulatory network in storage root development. The pattern of auxin content of stolon during various stages of potato tuber formation appears to be consistent with its level in various developmental stages of storage roots. We have also put-forward the potential of three-way interaction between auxin, strigolactone and mycorrhizal fungi in tuber and storage root development. Overall, we propose that auxin gene regulatory network and its crosstalk with other phytohormones in stolons/roots could govern belowground tuber and storage root development.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Aruna B Patil
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Xu D, Lu Z, Qiao G, Qiu W, Wu L, Han X, Zhuo R. Auxin-Induced SaARF4 Downregulates SaACO4 to Inhibit Lateral Root Formation in Sedum alfredii Hance. Int J Mol Sci 2021; 22:1297. [PMID: 33525549 PMCID: PMC7865351 DOI: 10.3390/ijms22031297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.
Collapse
Affiliation(s)
- Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
5
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
6
|
Ahammed GJ, Gantait S, Mitra M, Yang Y, Li X. Role of ethylene crosstalk in seed germination and early seedling development: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:124-131. [PMID: 32220785 DOI: 10.1016/j.plaphy.2020.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/20/2023]
Abstract
Seed germination and early seedling development are two critical phases in plant lifecycle that largely determine crop yield. Phytohormones play an essential role in governing these developmental processes; of these, ethylene (ET; C2H4), the smallest gaseous hormone, plays a major role via crosstalk with other hormones. Typically, the mechanism of hormone (for instance, auxin, cytokinins, ET, and gibberellins) action is determined by cellular context, revealing either synergistic or antagonistic relations. Significant progress has been made, so far, on unveiling ET crosstalk with other hormones and environmental signals, such as light. In particular, stimulatory and inhibitory effects of ET on hypocotyl growth in light and dark, respectively, and its interaction with other hormones provide an ideal model to study the growth-regulatory pathways. In this review, we aim at exploring the mechanisms of multifarious phenomena that occur via ET crosstalk during the germination of seeds (overcoming dormancy), and all through the development of seedlings. Understanding the remarkably complex mechanism of ET crosstalk that emerges from the interaction between hormones and other molecular players to modulate plant growth, remains a challenge in plant developmental biology.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, PR China.
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Monisha Mitra
- Department of Agricultural Biotechnology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
7
|
Qin H, He L, Huang R. The Coordination of Ethylene and Other Hormones in Primary Root Development. FRONTIERS IN PLANT SCIENCE 2019; 10:874. [PMID: 31354757 PMCID: PMC6635467 DOI: 10.3389/fpls.2019.00874] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/19/2019] [Indexed: 05/11/2023]
Abstract
The primary root is the basic component of root systems, initiates during embryogenesis and develops shortly after germination, and plays a key role in early seedling growth and survival. The phytohormone ethylene shows significant inhibition of the growth of primary roots. Recent findings have revealed that the inhibition of ethylene in primary root elongation is mediated via interactions with phytohormones, such as auxin, abscisic acid, gibberellin, cytokinins, jasmonic acid, and brassinosteroids. Considering that Arabidopsis and rice are the model plants of dicots and monocots, as well as the fact that hormonal crosstalk in primary root growth has been extensively investigated in Arabidopsis and rice, a better understanding of the mechanisms in Arabidopsis and rice will increase potential applications in other species. Therefore, we focus our interest on the emerging studies in the research of ethylene and hormone crosstalk in primary root development in Arabidopsis and rice.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Lina He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Rongfeng Huang,
| |
Collapse
|
8
|
Dalal M, Sahu S, Tiwari S, Rao AR, Gaikwad K. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:482-492. [PMID: 30081325 DOI: 10.1016/j.plaphy.2018.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 05/08/2023]
Abstract
The ability of roots to grow under drought stress is an adaptive trait for crop plants especially under rain fed and restricted irrigation regime. To unravel the molecular mechanism of drought induced-root growth, root transcriptomes of two wheat genotypes viz. Raj3765 and HD2329, with contrasting root growth under drought stress were analyzed. Drought stress significantly enhanced total root length in Raj3765 as compared to that of HD2329. RNA-seq analysis led to the identification of 2783 and 2638 differentially expressed genes (DEGs) in Raj3765 and HD2329, respectively, under drought stress as compared with non-stress conditions. Functional annotation, gene ontology and MapMan analysis of the DEGs revealed differential regulation of genes for pathways associated with root growth and stress tolerance. Drought stress significantly upregulated auxin receptor (AFB2) and ABA responsive transcription factors (MYB78, WRKY18 and GBF3) in roots of Raj3765. Although certain genes for ethylene pathway were downregulated in both the genotypes, ACC oxidase and 2OG-Fe(II) oxygenase were upregulated only in Raj3765 which might contribute to maintenance of a basal ethylene level to maintain root growth. Several genes related to cell wall biosynthesis and ROS metabolism were significantly upregulated in Raj3765. Genes related to gibberellic acid, jasmonic acid and phenylpropanoid pathways were downregulated in roots of both the genotypes under drought stress. Our analysis suggests that a coordinated yet complex interplay between hormones, cellular tolerance, cell wall synthesis and ROS metabolism are required for drought induced root growth in wheat.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Sneha Tiwari
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| | - Atmakuri R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
9
|
Schulte A, Schilling JV, Nolten J, Korona A, Krömke H, Vennekötter JB, Schillheim B, Wessling M, Conrath U, Büchs J. Parallel online determination of ethylene release rate by Shaken Parsley cell cultures using a modified RAMOS device. BMC PLANT BIOLOGY 2018; 18:101. [PMID: 29859042 PMCID: PMC5984790 DOI: 10.1186/s12870-018-1305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ethylene is an important plant hormone that controls many physiological processes in plants. Conventional methods for detecting ethylene include gas chromatographs or optical mid-infrared sensors, which are expensive and, in the case of gas chromatographs, are hardly suitable for automated parallelized online measurement. Electrochemical ethylene sensors are cheap but often suffer from poor resolution, baseline drifting, and target gas oxidation. Thus, measuring ethylene at extremely low levels is challenging. RESULTS This report demonstrates the integration of electrochemical ethylene sensors into a respiration activity monitoring system (RAMOS) that measures, in addition to the oxygen transfer rate, the ethylene transfer rate in eight parallel shake flasks. A calibration method is presented that is not prone to baseline drifting and considers target gas oxidation at the sensor. In this way, changes in ethylene transfer rate as low as 4 nmol/L/h can be resolved. In confirmatory experiments, the overall accuracy of the method was similar to that of gas chromatography-mass spectrometry (GC/MS) measurements. The RAMOS-based ethylene determination method was exemplified with parsley suspension-cultured cells that were primed for enhanced defense by pretreatment with salicylic acid, methyl jasmonate or 4-chlorosalicylic acid and challenged with the microbial pattern Pep13. Ethylene release into the headspace of the shake flask was observed upon treatment with salicylic acid and methyl jasmonate was further enhanced, in case of salicylic acid and 4-chlorosalicylic acid, upon Pep13 challenge. CONCLUSION A conventional RAMOS device was modified for simultaneous measurement of the ethylene transfer rate in eight parallel shake flasks at nmol/L/h resolution. For the first time electrochemical sensors are used to provide a medium-throughput method for monitoring ethylene release by plants. Currently, this can only be achieved by costly laser-based detection systems and automated gas chromatographs. The new method is particularly suitable for plant cell suspension cultures. However, the method may also be applicable to intact plants, detached leaves or other plant tissues. In addition, the general principle of the technology is likely extendable to other volatiles or gases as well, such as nitric oxide or hydrogen peroxide.
Collapse
Affiliation(s)
- Andreas Schulte
- AVT – Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Jana Viola Schilling
- AVT – Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Jannis Nolten
- AVT – Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Anna Korona
- AVT – Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Hannes Krömke
- AVT – Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Jan-Bernd Vennekötter
- AVT – Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Britta Schillheim
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Matthias Wessling
- AVT – Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Jochen Büchs
- AVT – Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074 Aachen, Germany
| |
Collapse
|