1
|
You HJ, Zhao R, Choi YM, Kang IJ, Lee S. Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [ Glycine max (L.) Merr.]. PLANTS (BASEL, SWITZERLAND) 2024; 13:3501. [PMID: 39771199 PMCID: PMC11676158 DOI: 10.3390/plants13243501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this study was to identify genomic regions associated with resistance to P. sojae isolate 40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the genetic basis of resistance, three statistical models were employed: the compressed mixed linear model (CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and fixed and random model circulating probability unification (FarmCPU). The three models consistently identified a genomic region (3.8-5.3 Mbp) on chromosome 3, which has been previously identified as an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical significance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations significantly associated with the resistance on several other chromosomes, indicating that the resistance observed in this panel was due to the presence of different alleles of multiple Rps genes. These findings underscore the necessity for robust statistical models to accurately detect true marker-trait associations and provide valuable insights into soybean genetics and breeding.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Ruihua Zhao
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| |
Collapse
|
2
|
Shim S, Kang IJ, You HJ, Kim H, Lee S. Transcriptome Comparison between Resistant and Susceptible Soybean Cultivars in Response to Inoculation of Phytophthora sojae. THE PLANT PATHOLOGY JOURNAL 2024; 40:641-655. [PMID: 39639668 PMCID: PMC11626037 DOI: 10.5423/ppj.oa.09.2024.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
Phytophthora root and stem rot, caused by Phytophthora sojae, considerably reduces soybean yield worldwide. Our previous study identified two genomic regions on chromosome 18 (2.1-2.6 and 53.1-53.3 Mbp) that confer resistance to the P. sojae isolate 2457, through linkage analysis using progenies derived from the Daepung × Socheong2 population. These two regions contained 51 and 19 annotated genes, respectively. However, the specific gene responsible for resistance to P. sojae isolate 2457 has yet to be identified. In this study, we performed a comparative transcriptomic analysis of Socheong2 and Daepung, two Korean soybean varieties identified as resistant and susceptible to P. sojae isolate 2457, respectively. RNA sequencing was conducted on tissue samples collected at 0, 6, and 12 hours after inoculation (HAI), and significant differences in the expression of defense-related genes were observed across time points and between the two cultivars. Genes associated with the jasmonic acid, salicylic acid, ethylene, and systemic acquired resistance pathways were upregulated in both cultivars at 6 and 12 HAI compared to 0 HAI, with these biological processes were more strongly upregulated in Socheong2 compared to Daepung at 6 and 12 HAI. A comparison of differentially expressed genes (DEGs) and candidate genes within the previously identified QTL regions revealed an ortholog of the HS1 PRO-1 2 gene from Arabidopsis thaliana among the upregulated DEGs in Socheong2, particularly at 12 HAI compared to 0 HAI. This study will aid in targeted breeding efforts to develop soybean varieties with improved resistance to P. sojae.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613, Korea
| | - Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hangil Kim
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
3
|
You HJ, Jang IH, Moon JK, Kang IJ, Kim JM, Kang S, Lee S. Genetic dissection of resistance to Phytophthora sojae using genome-wide association and linkage analysis in soybean [Glycine max (L.) Merr.]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:263. [PMID: 39516394 DOI: 10.1007/s00122-024-04771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Two novel and one known genomic regions associated with R-gene resistance to Phytophthora sojae were identified by genome-wide association analysis and linkage analysis in soybean. Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is a severe disease that causes substantial economic losses in soybean [Glycine max (L.) Merr.]. The primary approach for successful disease management of PRR is using R-gene-mediated resistance. Based on the phenotypic evaluation of 376 cultivated soybean accessions for the R-gene type resistance to P. sojae (isolate 2457), a genome-wide association analysis identified two regions on chromosomes 3 and 8. The most significant genomic region (20.7-21.3 Mbp) on chromosome 8 was a novel resistance locus where no Rps gene was previously reported. Instead, multiple copies of the UDP-glycosyltransferase superfamily protein-coding gene, associated with disease resistance, were annotated in this new locus. Another genomic region on chromosome 3 was a well-known Rps cluster. Using the Daepung × Ilpumgeomjeong RIL population, a linkage analysis confirmed these two resistance loci and identified a resistance locus on chromosome 2. A unique feature of the resistance in Ilpumgeomjeong was discovered when phenotypic distribution was projected upon eight groups of RILs carrying different combinations of resistance alleles for the three loci. Interestingly, the seven groups carrying at least one resistance allele statistically differed from the other with none, regardless of the number of resistance alleles. This suggests that the respective three different resistance genes can confer resistance to P. sojae isolate 2457. Deployment of the three regions via marker-assisted selection will facilitate effectively improving resistance to particular P. sojae isolates in soybean breeding programs.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ik Hyun Jang
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Kyung Moon
- Division of Crop Foundation, National Institute of Crop Science, Wanju-gun, 55365, Jeollabuk-do, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon, 16613, Gyeonggi-do, Republic of Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Sungtaeg Kang
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Liu J, Wang L, Jiang S, Wang Z, Li H, Wang H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. Int J Mol Sci 2023; 24:15311. [PMID: 37894991 PMCID: PMC10607095 DOI: 10.3390/ijms242015311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for grape breeding with high quality and disease resistance. The core theory of this method is the substitution accumulation of multi-genes with low disease resistance. The discovery of multi-genes for disease resistance in V. vinifera may provide a molecular basis for breeding for disease resistance in V. vinifera. In this study, resistance to downy mildew was identified, and genetic analysis was carried out in the intraspecific crossing population of V. vinifera (Ecolly × Dunkelfelder) to screen immune, highly resistant and disease-resistant plant samples; transcriptome sequencing and differential expression analysis were performed using high-throughput sequencing. The results showed that there were 546 differential genes (194 up-regulated and 352 down-regulated) in the immune group compared to the highly resistant group, and 199 differential genes (50 up-regulated and 149 down-regulated) in the highly resistant group compared to the resistant group, there were 103 differential genes (54 up-regulated and 49 down-regulated) in the immune group compared to the resistant group. KEGG analysis of differentially expressed genes in the immune versus high-resistance group. The pathway is mainly concentrated in phenylpropanoid biosynthesis, starch and sucrose metabolism, MAPK signaling pathway-plant, carotenoid biosyn-thesis and isoquinoline alkaloid biosynthesis. The differential gene functions of immune and resistant, high-resistant and resistant combinations were mainly enriched in plant-pathogen interaction pathway. Through the analysis of disease resistance-related genes in each pathway, the potential minor resistance genes in V. vinifera were mined, and the accumulation of minor resistance genes was analyzed from the molecular level.
Collapse
Affiliation(s)
- Junli Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Liang Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Shan Jiang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|
5
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Li W, Zheng X, Cheng R, Zhong C, Zhao J, Liu TH, Yi T, Zhu Z, Xu J, Meksem K, Dai L, Liu S. Soybean ZINC FINGER PROTEIN03 targets two SUPEROXIDE DISMUTASE1s and confers resistance to Phytophthora sojae. PLANT PHYSIOLOGY 2023; 192:633-647. [PMID: 36782397 PMCID: PMC10152685 DOI: 10.1093/plphys/kiad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 05/03/2023]
Abstract
Phytophthora sojae causes Phytophthora root and stem rot disease of soybean (Glycine max), leading to huge annual yield loss worldwide, but resistance to Phytophthora sojae (Rps) genes remains elusive. Soybean cultivar "Yudou 29" is resistant to P. sojae strain PsMC1, and this study aimed to clone, identify, and characterize the Rps gene in Yudou 29 (RpsYD29) and clarify its functional mechanism. We map-based cloned RpsYD29 (ZINC FINGER PROTEIN03, GmZFP03) using the families of a cross between Yudou 29 and a P. sojae-susceptible soybean cultivar "Jikedou 2". P. sojae resistance of GmZFP03 was functionally validated by stable soybean genetic transformation and allele-phenotype association analysis. GmZFP03 was identified as a C2H2-type zinc finger protein transcription factor, showing 4 amino acid residue polymorphisms (V79F, G122-, G123-, and D125V) and remarkably different expression patterns between resistant and susceptible soybeans. Notably boosted activity and gene expression of superoxide dismutase (SOD) in resistant-type GmZFP03-expressed transgenic soybean, substantial enhancement of P. sojae resistance of wild-type soybean by exogenous SOD treatment, and GmZFP03 binding to and activation of 2 SOD1 (Glyma.03g242900 and Glyma.19g240400) promoters demonstrated the involvement of SOD1s in GmZFP03-mediated resistance to P. sojae strain PsMC1. Thus, this study cloned the soybean P. sojae-resistant GmZFP03, the product of which specifically targets 2 SOD1 promoters. GmZFP03 can be directly used for precise P. sojae-resistance soybean breeding.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Xiang Zheng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Rong Cheng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Chanjuan Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Tyler H Liu
- College of Letters and Science, University of Wisconsin, Madison, WI 53706, USA
| | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jieting Xu
- Wimi Biotechnology Co., Ltd, Changzhou 213000, P. R. China
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Shiming Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Chandra S, Choudhary M, Bagaria PK, Nataraj V, Kumawat G, Choudhary JR, Sonah H, Gupta S, Wani SH, Ratnaparkhe MB. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean ( Glycine max L.). Front Genet 2022; 13:939182. [PMID: 36452161 PMCID: PMC9702362 DOI: 10.3389/fgene.2022.939182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/21/2022] [Indexed: 09/16/2023] Open
Abstract
Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.
Collapse
Affiliation(s)
| | | | - Pravin K. Bagaria
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | | | | | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
8
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
9
|
Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL Mapping of Palmitic Acid Content Using Specific-Locus Amplified Fragment Sequencing (SLAF-Seq) Genotyping in Soybeans (Glycine max L.). Int J Mol Sci 2022; 23:ijms231911273. [PMID: 36232577 PMCID: PMC9569734 DOI: 10.3390/ijms231911273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/27/2022] Open
Abstract
Soybeans are essential crops that supply protein and oil. The composition and contents of soybean fatty acids are relevant to human health and have a significant relationship with soybean oil processing and applications. Identifying quantitative trait locus (QTL) genes related to palmitic acid could facilitate the development of a range of nutritive soybean cultivars using molecular marker-assisted selection. In this study, we used a cultivar with higher palmitic acid content, ‘Dongnong42’, and a lower palmitic acid content cultivar, ‘Hobbit’, to establish F2:6 recombinant inbred lines. A high-density genetic map containing 9980 SLAF markers was constructed and distributed across 20 soybean chromosomes. The genetic map contained a total genetic distance of 2602.58 cM and an average genetic distance of 0.39 cM between adjacent markers. Two QTLs related to palmitic acid content were mapped using inclusive composite interval mapping, explaining 4.2–10.1% of the phenotypic variance in three different years and environments, including the QTL included in seed palmitic 7-3, which was validated by developing SSR markers. Based on the SNP/Indel and significant differential expression analyses of Dongnong42 and Hobbit, two genes, Glyma.15g119700 and Glyma.15g119800, were selected as candidate genes. The high-density genetic map, QTLs, and molecular markers will be helpful for the map-based cloning of palmitic acid content genes. These could be used to accelerate breeding for high nutritive value cultivars via molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Huawei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvemen, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaofei Tang
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Dan Cao
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (L.Z.); (L.Q.)
| | - Lijuan Qiu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- National Key Facility for Crop Gene Resources and Genetic Improvemen, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.Z.); (L.Q.)
| |
Collapse
|
10
|
Li W, Liu M, Lai YC, Liu JX, Fan C, Yang G, Wang L, Liang WW, Di SF, Yu DY, Bi YD. Genome-Wide Association Study of Partial Resistance to P. sojae in Wild Soybeans from Heilongjiang Province, China. Curr Issues Mol Biol 2022; 44:3194-3207. [PMID: 35877445 PMCID: PMC9319971 DOI: 10.3390/cimb44070221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023] Open
Abstract
Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Wei Li
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Miao Liu
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Jian-Xin Liu
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Chao Fan
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Guang Yang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Ling Wang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Wen-Wei Liang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Shu-Feng Di
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - De-Yue Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
- Correspondence:
| |
Collapse
|
11
|
Chen L, Wang W, Ping J, Fitzgerald JC, Cai G, Clark CB, Aggarwal R, Ma J. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3863-3872. [PMID: 34370048 DOI: 10.1007/s00122-021-03933-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A soybean landrace carries broad-spectrum resistance to Phytophthora sojae, which is conferred by a single gene, designated Rps14, on the short arm of chromosome 3. Phytophthora sojae is the causative agent for Phytophthora root and stem rot in soybean [Glycine max (L.) Merr.] and can be managed by deployment of resistance to P. sojae (Rps) genes. PI 340,029 is a soybean landrace carrying broad-spectrum resistance to the pathogen. Analysis of an F2 population derived from a cross between PI 340,029 and a susceptible cultivar 'Williams' reveals that the resistance to P. sojae race 1 is conferred by a single gene, designated Rps14, which was initially mapped to a 4.5-cM region on the short arm of chromosome 3 by bulked segregant analysis (BSA), and subsequently narrowed to a 1.48 cM region corresponding to 229-kb in the Williams 82 reference genome (Wm82 v2.a1), using F3:4 families derived from the F2 population. Further analysis indicates that the broad-spectrum resistance carried by PI 340,029 is fully attributable to Rps14. The genomic sequences corresponding to the defined Rps14 region from a set of diverse soybean varieties exhibit drastic NBS-LRR gene copy number variation, ranging from 3 to 17 copies. Ultimate isolation of Rps14 would be critical for precise selection and deployment of the gene for soybean protection.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Seed Technologies and Analytics, BASF Corporation, Morrisville, NC, 27560, USA
| | - Joshua C Fitzgerald
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Virginia Agricultural Research and Extension Centers, Virginia Polytechnic Institute and State University, Warsaw, VA, 22572, USA
| | - Guohong Cai
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajat Aggarwal
- Research and Development, Corteva AgriscienceTM, Johnston, IA, 50131, USA.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Matsuoka JI, Takahashi M, Yamada T, Kono Y, Yamada N, Takahashi K, Moriwaki J, Akamatsu H. Identification of three closely linked loci conferring broad-spectrum Phytophthora sojae resistance in soybean variety Tosan-231. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2151-2165. [PMID: 33792774 DOI: 10.1007/s00122-021-03813-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE A variable genomic region containing two Harosoy-derived loci related to Rps7 and one Nemashirazu-derived locus confers broad-spectrum Phytophthora sojae resistance in Tosan-231 and is useful for developing resistant cultivars. We investigated resistance to pathotypically variable Phytophthora sojae isolates in the soybean variety Tosan-231, which has broad-spectrum resistance. Mapping analysis using descendent lines from a cross between Shuurei and Tosan-231 demonstrated that a genomic region between SSR markers BARCSOYSSR_03_0209 and BARCSOYSSR_03_0385 (termed "Region T"), confers broad-spectrum resistance in Tosan-231 and contains three closely linked resistance loci. Inoculation tests with 20 P. sojae isolates of different pathotypes and simple sequence repeat (SSR) analysis of progenitors of Tosan-231 facilitated identification and characterization of Rps genes at the three resistance loci. Two resistance genes, RpsT1 and RpsT2, were found to be derived from Harosoy carrying Rps7. This result suggested two mutually exclusive possibilities: (1) either RpsT1 or RpsT2 is Rps7, and the other is a locally functional novel gene; (2) Rps7 is not a single gene but in fact comprises RpsT1 and RpsT2. The resistance locus containing RpsT3 is derived from Nemashirazu, in which Rps genes have remained poorly defined. Moreover, we identified two genomic regions with relatively high recombination frequencies on the basis of mapping information and proposed a strategy to readily assemble useful resistance genes in or around Region T.
Collapse
Affiliation(s)
- Jun-Ichi Matsuoka
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan.
| | - Mami Takahashi
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan
| | - Tetsuya Yamada
- Institute of Crop Science, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yuhi Kono
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan
| | - Naohiro Yamada
- Nagano Vegetable and Ornamental Crops Experiment Station, 1066-1 Souga, Shiojiri, Nagano, 399-646, Japan
- , Nagano Agricultural Experiment Station, 492 Ogawara, Suzaka, Nagano, 382-0072, Japan
| | - Koji Takahashi
- Institute of Crop Science, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Jouji Moriwaki
- Kyushu Okinawa Agricultural Research Center, NARO, 1823-1 Miimachi, Kurume, Fukuoka, 839-8503, Japan
| | - Hajime Akamatsu
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan
- Business Promotion Office, Department of Regional Strategy, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), C/O Institute of Vegetable and Floriculture Science, NARO, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
13
|
Jang IH, Kang IJ, Kim JM, Kang ST, Jang YE, Lee S. Genetic Mapping of a Resistance Locus to Phytophthora sojae in the Korean Soybean Cultivar Daewon. THE PLANT PATHOLOGY JOURNAL 2020; 36:591-599. [PMID: 33312094 PMCID: PMC7721532 DOI: 10.5423/ppj.oa.09.2020.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 05/19/2023]
Abstract
Phytophthora root and stem rot reduce soybean yields worldwide. The use of R-gene type resistance is currently crucial for protecting soybean production. The present study aimed to identify the genomic location of a gene conferring resistance to Phytophthora sojae isolate 2457 in the recombinant inbred line population developed by a cross of Daepung × Daewon. Single-marker analysis identified 20 single nucleotide polymorphisms associated with resistance to the P. sojae isolate 2457, which explained ~67% of phenotypic variance. Daewon contributed a resistance allele for the locus. This region is a well-known location for Rps1 and Rps7. The present study is the first, however, to identify an Rps gene locus from a major soybean variety cultivated in South Korea. Linkage analysis also identified a 573 kb region on chromosome 3 with high significance (logarithm of odds = 13.7). This genomic region was not further narrowed down due to lack of recombinants within the interval. Based on the latest soybean genome, ten leucine-rich repeat coding genes and four serine/threonine protein kinase-coding genes are annotated in this region, which all are well-known types of genes for conferring disease resistance in crops. These genes would be candidates for molecular characterization of the resistance in further studies. The identified R-gene locus would be useful in developing P. sojae resistant varieties in the future. The results of the present study provide foundational knowledge for researchers who are interested in soybean-P. sojae interaction.
Collapse
Affiliation(s)
- Ik-Hyun Jang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
| | - In Jeong Kang
- Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan 1116, Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan 1116, Korea
| | - Young Eun Jang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
- Corresponding author. Phone) +82-42-821-5727 , FAX) +82-42-822-2631, E-mail) , ORCID, Sungwoo Lee, https://orcid.org/0000-0003-3564-236
| |
Collapse
|
14
|
Zhong C, Sun S, Zhang X, Duan C, Zhu Z. Fine Mapping, Candidate Gene Identification and Co-segregating Marker Development for the Phytophthora Root Rot Resistance Gene RpsYD25. Front Genet 2020; 11:799. [PMID: 32849803 PMCID: PMC7399351 DOI: 10.3389/fgene.2020.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a serious disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Rps genes. Soybean cultivar Yudou25 can effectively resist pathotypes of P. sojae in China. Previous studies have mapped the Rps gene in Yudou25, RpsYD25, on chromosome 3. In this study, at first RpsYD25 was located between SSR markers Satt1k3 (2.2 cM) and BARCSOYSSR_03_0253 (4.5 cM) by using an F2:3 population containing 165 families derived from Zaoshu18 and Yudou25. Then the recombination sites were identified in 1127 F3:4 families derived from Zaoshu18 and Yudou25 using the developed PCR-based SNP, InDel and SSR markers, and RpsYD25 was finely mapped in the a 101.3 kb genomic region. In this region, a zinc ion binding and nucleic acid binding gene Glyma.03g034700 and two NBS-LRR genes Glyma.03g034800 and Glyma.03g034900 were predicted as candidate genes of RpsYD25, and five co-segregated SSR markers with RpsYD25 were identified and validated to be diagnostic markers. Combined with the resistance reaction to multiple P. sojae isolates, seven of 178 soybean genotypes were detected to contain RpsYD25 using the five co-segregated SSR markers. The soybean genotypes carrying RpsYD25 and the developed co-segregated markers can be effectively applied in the breeding for P. sojae resistance in China.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Suli Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuecui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Jiang B, Cheng Y, Cai Z, Li M, Jiang Z, Ma R, Yuan Y, Xia Q, Nian H. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics 2020; 21:280. [PMID: 32245402 PMCID: PMC7126358 DOI: 10.1186/s12864-020-6668-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) is one of the most serious limitations to soybean production worldwide. The identification of resistance gene(s) and their incorporation into elite varieties is an effective approach for breeding to prevent soybean from being harmed by this disease. A valuable mapping population of 228 F8:11 recombinant inbred lines (RILs) derived from a cross of the resistant cultivar Guizao1 and the susceptible cultivar BRSMG68 and a high-density genetic linkage map with an average distance of 0.81 centimorgans (cM) between adjacent bin markers in this population were used to map and explore candidate gene(s). RESULTS PRR resistance in Guizao1 was found to be controlled by a single Mendelian locus and was finely mapped to a 367.371-kb genomic region on chromosome 3 harbouring 19 genes, including 7 disease resistance (R)-like genes, in the reference Willliams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed that Glyma.03 g05300 was likely involved in PRR resistance. CONCLUSIONS These findings from the fine mapping of a novel Rps locus will serve as a basis for the cloning and transfer of resistance genes in soybean and the breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Mu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ruirui Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yeshan Yuan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| |
Collapse
|
16
|
Rolling W, Lake R, Dorrance AE, McHale LK. Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean [Glycine max (L.) Merr.] plant introductions. PLoS One 2020; 15:e0227710. [PMID: 32196522 PMCID: PMC7083333 DOI: 10.1371/journal.pone.0227710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/25/2019] [Indexed: 12/17/2022] Open
Abstract
Phytophthora sojae is one of the costliest soybean pathogens in the US. Quantitative disease resistance (QDR) is a vital part of Phytophthora disease management. In this study, QDR was measured in 478 and 495 plant introductions (PIs) towards P. sojae isolates OH.121 and C2.S1, respectively, in genome-wide association (GWA) analyses to identify genetic markers linked to QDR loci (QDRL). Populations were generated by sampling PIs from the US, the Republic of Korea, and the full collection of PIs maintained by the USDA. Additionally, a meta-analysis of QDRL reported from bi-parental studies was done to compare past and present findings. Twenty-four significant marker-trait associations were identified from the 478 PIs phenotyped with OH.121, and an additional 24 marker-trait associations were identified from the 495 PIs phenotyped with C2.S1. In total, 48 significant markers were distributed across 16 chromosomes and based on linkage analysis, represent a total of 44 QDRL. The majority of QDRL were identified with only one of the two isolates, and only a region on chromosome 13 was consistently identified. Regions on chromosomes 3, 13, and 17 were identified in previous GWA-analyses and were re-identified in this study. Five QDRL co-localized with P. sojae meta-QDRL identified from QDRL reported in previous biparental mapping studies. The remaining regions represent novel QDRL, in the soybean-P. sojae pathosystem and were primarily identified in germplasm from the Republic of Korea. Overall, the number of loci identified in this study highlights the complexity of QDR to P. sojae.
Collapse
Affiliation(s)
- William Rolling
- Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America
| | - Rhiannon Lake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Anne E. Dorrance
- Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Leah K. McHale
- Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Cui X, Yan Q, Gan S, Xue D, Wang H, Xing H, Zhao J, Guo N. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae. BMC PLANT BIOLOGY 2019; 19:598. [PMID: 31888478 PMCID: PMC6937711 DOI: 10.1186/s12870-019-2132-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 11/12/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. RESULTS In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. CONCLUSIONS Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Cui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuping Gan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Kang IJ, Kang S, Jang IH, Jang YW, Shim HK, Heu S, Lee S. Identification of New Isolates of Phytophthora sojae and the Reactions of Korean Soybean Cultivars Following Hypocotyl Inoculation. THE PLANT PATHOLOGY JOURNAL 2019; 35:698-704. [PMID: 31832050 PMCID: PMC6901254 DOI: 10.5423/ppj.nt.09.2019.0249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 05/29/2023]
Abstract
Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most destructive diseases of soybean. PRSR recently became an issue as soybean cultivation in paddy fields increased in South Korea. The management of PRSR mainly involves R-gene-mediated resistance, however, little is known about the resistance in Korean cultivars. Major Korean soybean cultivars were investigated for the presence or absence of R-gene-mediated resistance to four P. sojae isolates, two of which were new isolates. Isolate-specific reactions were observed following P. sojae inoculation. Of 21 cultivars, 15-20 cultivars (71.4-95.2%) showed susceptible reaction for each isolate. Ten cultivars were susceptible to all the isolates, and six cultivars were identified to have R-gene-mediated resistance to one or two isolates. The results of this study would provide a framework for the discovery of resistant cultivars, development of new cultivars resistant to P. sojae, and investigation of pathogenic diversity of P. sojae population in South Korea.
Collapse
Affiliation(s)
- In Jeong Kang
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sunjoo Kang
- Department of Crop Science, Chungnam National University, Daejeon 34134,
Korea
| | - Ik Hyun Jang
- Department of Crop Science, Chungnam National University, Daejeon 34134,
Korea
| | - Yun Woo Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Miryang 50424,
Korea
| | - Hyung Kwon Shim
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sunggi Heu
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sungwoo Lee
- Department of Crop Science, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
19
|
Zhong C, Li Y, Sun S, Duan C, Zhu Z. Genetic Mapping and Molecular Characterization of a Broad-spectrum Phytophthora sojae Resistance Gene in Chinese Soybean. Int J Mol Sci 2019; 20:E1809. [PMID: 31013701 PMCID: PMC6515170 DOI: 10.3390/ijms20081809] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Abstract
Phytophthora root rot (PRR) causes serious annual soybean yield losses worldwide. The most effective method to prevent PRR involves growing cultivars that possess genes conferring resistance to Phytophthora sojae (Rps). In this study, QTL-sequencing combined with genetic mapping was used to identify RpsX in soybean cultivar Xiu94-11 resistance to all P. sojae isolates tested, exhibiting broad-spectrum PRR resistance. Subsequent analysis revealed RpsX was located in the 242-kb genomic region spanning the RpsQ locus. However, a phylogenetic investigation indicated Xiu94-11 carrying RpsX is distantly related to the cultivars containing RpsQ, implying RpsX and RpsQ have different origins. An examination of candidate genes revealed RpsX and RpsQ share common nonsynonymous SNP and a 144-bp insertion in the Glyma.03g027200 sequence encoding a leucine-rich repeat (LRR) region. Glyma.03g027200 was considered to be the likely candidate gene of RpsQ and RpsX. Sequence analyses confirmed that the 144-bp insertion caused by an unequal exchange resulted in two additional LRR-encoding fragments in the candidate gene. A marker developed based on the 144-bp insertion was used to analyze the genetic population and germplasm, and proved to be useful for identifying the RpsX and RpsQ alleles. This study implies that the number of LRR units in the LRR domain may be important for PRR resistance in soybean.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yinping Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China.
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Cai Z, Cheng Y, Xian P, Ma Q, Wen K, Xia Q, Zhang G, Nian H. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1715-1728. [PMID: 29754326 DOI: 10.1007/s00122-018-3109-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Map-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress. Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23-13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80-13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4-16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
21
|
Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:525-538. [PMID: 29138903 DOI: 10.1007/s00122-017-3016-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/04/2017] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinping Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
22
|
Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:44. [PMID: 29441079 PMCID: PMC5797622 DOI: 10.3389/fpls.2018.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F2:3 families generated from a cross between Zaoshu18 (resistant) and Williams (susceptible) as the mapping population. Simple sequence repeat (SSR) markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700), a pfkB carbohydrate kinase encoding gene (Glyma.02g245800), and a gene with no functional annotation (Glyma.02g246300), are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|