1
|
An C, Lu L, Yao Y, Liu R, Cheng Y, Lin Y, Qin Y, Zheng P. Selection and Validation of Reference Genes in Clinacanthus nutans Under Abiotic Stresses, MeJA Treatment, and in Different Tissues. Int J Mol Sci 2025; 26:2483. [PMID: 40141128 PMCID: PMC11942611 DOI: 10.3390/ijms26062483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Clinacanthus nutans is a valuable traditional medicinal plant that contains enriched active compounds such as triterpenoids and flavonoids. Understanding the accuulation process of these secondary metabolites in C. nutans requires exploring gene expression regulation under abiotic stresses and hormonal stimuli. qRT-PCR is a powerful method for gene expression analysis, with the selection of suitable reference genes being paramount. However, reports on stably expressed reference genes in C. nutans and even across the entire family Acanthaceae are limited. In this study, we evaluated the expression stability of 12 candidate reference genes (CnUBQ, CnRPL, CnRPS, CnPTB1, CnTIP41, CnACT, CnUBC, CnGAPDH, Cn18S, CnCYP, CnEF1α, and CnTUB) in C. nutans across different tissues and under abiotic stresses and MeJA treatment using three programs (geNorm, NormFinder, and BestKeeper). The integrated ranking results indicated that CnUBC, CnRPL, and CnCYP were the most stably expressed genes across different tissues. Under abiotic stress conditions, CnUBC, CnRPL, and CnEF1α were the most stable, while under MeJA treatment, CnRPL, CnEF1α, and CnGAPDH exhibited the highest stability. Additionally, CnRPL, CnUBC, and CnEF1α were the most stable reference genes across all tested samples, whereas CnGAPDH was the least stable. CnRPL, consistently ranking among the top three most stable genes, may therefore serve as an ideal reference gene for qRT-PCR analysis in C. nutans. To further validate the selected reference genes, we assessed the expression of two key biosynthetic genes, CnPAL and CnHMGR. The results confirmed that using the most stable reference genes yielded expression patterns consistent with biological expectations, while using unstable reference genes led to significant deviations. These findings offer valuable insights for accurately quantifying target genes via qRT-PCR in C. nutans, facilitating investigations into the mechanisms underlying active compound accumulation.
Collapse
Affiliation(s)
- Chang An
- College of Agriculture, Guangxi University, Nanning 530004, China;
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (R.L.); (Y.C.)
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (R.L.); (Y.C.)
| | - Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China;
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (R.L.); (Y.C.)
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (R.L.); (Y.C.)
| | - Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yuan Qin
- College of Agriculture, Guangxi University, Nanning 530004, China;
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (R.L.); (Y.C.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (R.L.); (Y.C.)
| |
Collapse
|
2
|
Liu W, Yu C, Yang K, Wang L, Fan Z, Mo X. Comparative and Spatial Transcriptome Analysis of Rhododendron decorum Franch. During the Flowering Period and Revelation of the Plant Defense Mechanism. Genes (Basel) 2024; 15:1482. [PMID: 39596682 PMCID: PMC11593350 DOI: 10.3390/genes15111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Rhododendron is a globally distributed and extensive genus, comprising over 1000 species. In the southwestern mountains of China, there exists a remarkable diversity of Rhododendron, with Yunnan Province alone harboring more than 600 species. R. decorum Franch. has long been utilized by local communities for its medicinal and edible properties. However, the transcriptional regulation function, medicinal properties, and edibility characteristics of R. decorum Franch. currently lack a solid theoretical basis. METHODS Total RNA was extracted from leaves, corollas and androecium/gynoecium of R. decorum Franch. in Heqing county, followed by the construction of cDNA libraries and the de novo assembly of transcriptomes. RESULTS A total of 63,050 unigenes were extracted from the flowers and leaf organs of R. decorum Franch. Among these unigenes, 43,517 were predicted to be coding sequences, with 32,690 being effectively annotated. Differential gene expression enrichment was observed among different organs within their respective transcriptomes; notably floral organs exhibited significant defense against plant diseases along with signal transduction functions. Furthermore, during the flower harvesting period, all floral organs exhibited gene enrichment pathways associated with carbohydrate metabolism. Additionally, the stamen and pistil displayed flavonoid metabolism pathways, suggesting their potential applications as functional food or medicine. CONCLUSIONS Our results shed light on plant-pathogen defense mechanisms and the molecular bias of flavonoids biosynthesis on flower organs during the flowering period, which might help to understand the consumption of R. decorum Franch. corollas by the Bai nationality of Heqing county.
Collapse
Affiliation(s)
- Weiwei Liu
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (K.Y.); (Z.F.)
| | - Chenghua Yu
- School of Applied Technology, Lijiang Normal University, Lijiang 674199, China; (C.Y.); (L.W.)
| | - Kaiye Yang
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (K.Y.); (Z.F.)
| | - Ling Wang
- School of Applied Technology, Lijiang Normal University, Lijiang 674199, China; (C.Y.); (L.W.)
| | - Zhongyu Fan
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (K.Y.); (Z.F.)
| | - Xinchun Mo
- School of Applied Technology, Lijiang Normal University, Lijiang 674199, China; (C.Y.); (L.W.)
| |
Collapse
|
3
|
Zhao JX, Wang S, Liu J, Jiang XD, Wen J, Suo ZQ, Liu J, Zhong MC, Wang Q, Gu Z, Liu C, Deng Y, Hu JY, Li DZ. A comparative full-length transcriptomic resource provides insight into the perennial monocarpic mass flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1842-1855. [PMID: 37665679 DOI: 10.1111/tpj.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiazhi Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Wen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Quan Suo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhirong Gu
- Administration of National Nature Reserve of Badagongshan, Sangzhi, 427000, Hunan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
4
|
Mu D, Shao Y, He J, Zhu L, Qiu D, Wilson IW, Zhang Y, Pan L, Zhou Y, Lu Y, Tang Q. Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. Int J Mol Sci 2023; 24:16330. [PMID: 38003520 PMCID: PMC10671239 DOI: 10.3390/ijms242216330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Uncaria rhynchophylla (Miq.) Miq. ex Havil, a traditional medicinal herb, is enriched with several pharmacologically active terpenoid indole alkaloids (TIAs). At present, no method has been reported that can comprehensively select and evaluate the appropriate reference genes for gene expression analysis, especially the transcription factors and key enzyme genes involved in the biosynthesis pathway of TIAs in U. rhynchophylla. Reverse transcription quantitative PCR (RT-qPCR) is currently the most common method for detecting gene expression levels due to its high sensitivity, specificity, reproducibility, and ease of use. However, this methodology is dependent on selecting an optimal reference gene to accurately normalize the RT-qPCR results. Ten candidate reference genes, which are homologues of genes used in other plant species and are common reference genes, were used to evaluate the expression stability under three stress-related experimental treatments (methyl jasmonate, ethylene, and low temperature) using multiple stability analysis methodologies. The results showed that, among the candidate reference genes, S-adenosylmethionine decarboxylase (SAM) exhibited a higher expression stability under the experimental conditions tested. Using SAM as a reference gene, the expression profiles of 14 genes for key TIA enzymes and a WRKY1 transcription factor were examined under three experimental stress treatments that affect the accumulation of TIAs in U. rhynchophylla. The expression pattern of WRKY1 was similar to that of tryptophan decarboxylase (TDC) under ETH treatment. This research is the first to report the stability of reference genes in U. rhynchophylla and provides an important foundation for future gene expression analyses in U. rhynchophylla. The RT-qPCR results indicate that the expression of WRKY1 is similar to that of TDC under ETH treatment. It may coordinate the expression of TDC, providing a possible method to enhance alkaloid production in the future through synthetic biology.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Iain W Wilson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia
| | - Yao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Limei Pan
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dai-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yu Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Liu C, Cheng M, Ma C, Chen J, Tan H. Identification of novel flavin-dependent monooxygenase from Strobilanthes Cusia reveals molecular basis of indoles' biosynthetic logic. BMC PLANT BIOLOGY 2023; 23:527. [PMID: 37904107 PMCID: PMC10617207 DOI: 10.1186/s12870-023-04557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Strobilanthes cusia (Nees) Kuntze is a traditional medical plant distributed widely in south China. The indole compounds that originated from the plant are responsible for its pharmacological activities. However, the reason why indole ingredients are accumulated in this herb and how it is biosynthesized has remained largely unknown. RESULTS In this study, metabolic and transcriptional profiling measurement experiments of different S. cusia organs were carried out to understand the underlying molecular basis of indoles' biosynthetic logic. A metabolic investigation demonstrated that the indoles are primarily accumulated mainly in aerial parts, particularly in leaves. RNA-seq was employed to reveal the organ specific accumulation of indoles in different S. cusia organs. Meanwhile, a flavin-dependent monooxygenase gene (ScFMO1) was found in S. cusia, and it has capacity to produce indoxyl from indole by the fermentation assay. Finally, we assessed the outcomes of transient expression experiment in tobacco and confirmed that ScFMO1 localizes in cytoplasm. CONCLUSIONS Our results suggest that ScFMO1 plays a key role in biosynthesis of indoles (Indigo, indirubin, indican, etc.), it will be useful for illuminating the molecular basis of the medicinal indoles' biosynthesis and developing strategies for improving their yields.
Collapse
Affiliation(s)
- Chang Liu
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Mengya Cheng
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chao Ma
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junfeng Chen
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hexin Tan
- Department Chinese Medicine Authentication, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China.
| |
Collapse
|
6
|
Yetkin S, Alotaibi H. Selection and validation of novel stable reference genes for qPCR analysis in EMT and MET. Exp Cell Res 2023; 428:113619. [PMID: 37146958 DOI: 10.1016/j.yexcr.2023.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
Quantitative real-time polymerase chain reaction is a powerful tool for quantifying gene expression. The relative quantification relies on normalizing the data to reference genes or internal controls not modulated by the experimental conditions. The most widely used internal controls occasionally show changed expression patterns in different experimental settings, such as the mesenchymal to epithelial transition. Thus, identifying appropriate internal controls is of utmost importance. We analyzed multiple RNA-Seq datasets using a combination of statistical approaches such as percent relative range and coefficient of variance to define a list of candidate internal control genes, which was then validated experimentally and by using in silico analyses as well. We identified a group of genes as strong internal control candidates with high stability compared to the classical ones. We also presented evidence for the superiority of the percent relative range method for calculating expression stability in data sets with larger sample sizes. We used multiple methods to analyze data collected from several RNA-Seq datasets; we identified Rbm17 and Katna1 as the most stable reference genes in EMT/MET studies. The percent relative range approach surpasses other methods when analyzing datasets of larger sample sizes.
Collapse
Affiliation(s)
- Seray Yetkin
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey
| | - Hani Alotaibi
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey.
| |
Collapse
|
7
|
Guo Z, Chen J, Lv Z, Huang Y, Tan H, Zhang L, Diao Y. Molecular cloning and functional characterization of BcTSA in the biosynthesis of indole alkaloids in Baphicacanthus cusia. FRONTIERS IN PLANT SCIENCE 2023; 14:1174582. [PMID: 37139111 PMCID: PMC10149986 DOI: 10.3389/fpls.2023.1174582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an essential traditional Chinese herb that is commonly used to treat colds, fever, and influenza. Indole alkaloids, such as indigo and indirubin, are the primary active constituents of B. cusia. The indole-producing reaction is crucial for regulating the flow of indole alkaloids metabolites along the pathways and coordinating primary and secondary product biosynthesis in plants. The tryptophan synthase alpha-subunit (TSA) can catalyse a process that produces indole, which is free to enter secondary metabolite pathways; however, the underlying potential mechanism of regulating indigo alkaloids synthesis remains unknown. Here, a BcTSA was cloned from the transcriptome of B. cusia. The BcTSA has a significant degree of similarity with other plant TSAs according to bioinformatics and phylogenetic analyses. Quantitative real-time PCR (RT-qPCR) research showed that BcTSA was dramatically enhanced in response to treatment with methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA), and was predominantly expressed in the stems as opposed to the leaves and rhizomes. Subcellular localization revealed that BcTSA is localized in chloroplasts, which is compatible with the fact that the conversion of indole-3-glycerol phosphate (IGP) to indole occurs in chloroplasts. The complementation assay results showed that BcTSA was functional, demonstrating that it was capable of catalyzing the conversion of IGP to indole. BcTSA was shown to stimulate the manufacture of indigo alkaloids including isatin, indigo, and indirubin when the gene was overexpressed in the hairy roots of Isatis indigotica. In conclusion, our research provides novel perspectives that might be applied to manipulating the indole alkaloid composition of B. cusia.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, China
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Junfeng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxiang Huang
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Hexin Tan
- School of Pharmacy, Navy Medical University, Shanghai, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| | - Lei Zhang
- School of Pharmacy, Navy Medical University, Shanghai, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, China
- *Correspondence: Hexin Tan, ; Lei Zhang, ; Yong Diao,
| |
Collapse
|
8
|
Zeng M, Zhong Y, Guo Z, Yang H, Zhu H, Zheng L, Diao Y. Expression and Functional Study of BcWRKY1 in Baphicacanthus cusia (Nees) Bremek. FRONTIERS IN PLANT SCIENCE 2022; 13:919071. [PMID: 35845683 PMCID: PMC9284225 DOI: 10.3389/fpls.2022.919071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an important medicinal plant. Its effective substances including indigo and indirubin are metabolites in indoleacetate metabolic pathway. Based on a previous transcriptome sequencing analysis, a WRKY transcription factor, BcWRKY1, in B. cusia was identified, showing significant correlation with effective substances from B. cusia. In this study, BcWRKY1 was cloned by reverse transcription-polymerase chain reaction (RT-PCR). Further analysis showed that the BcWRKY1 gene was 916 bp in length, containing three exons and two introns. The open reading frame (ORF) of BcWRKY1 was 534 bp in length and encoded a WRKY domain-containing protein with 177 amino acids residues. Subcellular localization showed that BcWRKY1 protein was mainly localized in the nucleus. It could bind to the W-box motif and its role in transcriptional activation was confirmed in yeast. The function of BcWRKY1 was investigated by overexpressing BcWRKY1 in Arabidopsis thaliana. Metabolic profiles in wild type and BcWRKY1-OX1 transgenic Arabidopsis thaliana were analyzed with LC-MS. Results showed that the metabolic profile was significantly changed in BcWRKY1-OX1 transgenic Arabidopsis thaliana compared with wild type. Furthermore, indole-related metabolites were significantly increased in BcWRKY1-OX1 transgenic Arabidopsis thaliana, and the metabolic pathway analysis showed that flavonoid biosynthesis was significantly enriched. Overexpression of BcWRKY1 significantly changed flavonoid and indole metabolism and indole-related metabolites were significantly upregulated. We postulated that the BcWRKY1 transcription factor might be involved in the regulation of effective substances metabolism in B. cusia.
Collapse
Affiliation(s)
- Meijuan Zeng
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiying Guo
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
- Fujian Polytechnic Normal University, Fuqing, China
| | - Huiyong Yang
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
| | - Haisheng Zhu
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liling Zheng
- Department of Cardiovascular Surgery, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
| |
Collapse
|
9
|
Evaluation of Angelica decursiva reference genes under various stimuli for RT-qPCR data normalization. Sci Rep 2021; 11:18993. [PMID: 34556773 PMCID: PMC8460625 DOI: 10.1038/s41598-021-98434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Angelica decursiva is one of the lending traditional Chinese medicinal plants producing coumarins. Notably, several studies have focused on the biosynthesis and not the RT-qPCR (quantitative real-time reverse transcription polymerase chain reaction) study of coumarins. This RT-qPCR technique has been extensively used to investigate gene expression levels in plants and the selection of reference genes which plays a crucial role in standardizing the data form the RT-qPCR analysis. In our study, 11 candidate reference genes were selected from the existing transcriptome data of Angelica decursiva. Here, four different types of statistical algorithms (geNorm, NormFinder, BestKeeper, and Delta Ct) were used to calculate and evaluate the stability of gene expression under different external treatments. Subsequently, RefFinder analysis was used to determine the geometric average of each candidate gene ranking, and to perform comprehensive index ranking. The obtained results showed that among all the 11 candidate reference genes, SAND family protein (SAND), protein phosphatase 2A gene (PP2A), and polypyrimidine tract-binding protein (PTBP) were the most stable reference genes, where Nuclear cap binding protein 2 (NCBP2), TIP41-like protein (TIP41), and Beta-6-tubulin (TUBA) were the least stable genes. To the best of our knowledge, this work is the first to evaluate the stability of reference genes in the Angelica decursiva which has provided an important foundation on the use of RT-qPCR for an accurate and far-reaching gene expression analysis in this medicinal plant.
Collapse
|
10
|
Yin X, He T, Yi K, Zhao Y, Hu Y, Liu J, Zhang X, Meng L, Wang L, Liu H, Li Y, Cui G. Comprehensive evaluation of candidate reference genes for quantitative real-time PCR-based analysis in Caucasian clover. Sci Rep 2021; 11:3269. [PMID: 33558610 PMCID: PMC7870939 DOI: 10.1038/s41598-021-82633-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/19/2021] [Indexed: 11/08/2022] Open
Abstract
The forage species Caucasian clover (Trifolium ambiguum M. Bieb.), a groundcover plant, is resistant to both cold and drought. However, reference genes for qRT-PCR-based analysis of Caucasian clover are lacking. In this study, 12 reference genes were selected on the basis of transcriptomic data. These genes were used to determine the most stably expressed genes in various organs of Caucasian clover under cold, salt and drought stress for qRT-PCR-based analysis. Reference gene stability was analyzed by geNorm, NormFinder, BestKeeper, the ∆Ct method and RefFinder. Under salt stress, RCD1 and PPIL3 were the most stable reference genes in the leaves, and NLI1 and RCD1 were the most stable references genes in the roots. Under low-temperature stress, APA and EFTu-GTP were the most stable reference genes in the leaves, and the RCD1 and NLI2 genes were highly stable in the roots. Under 10% PEG-6000 stress, NLI1 and NLI2 were highly stable in the leaves, and RCD1 and PPIL3 were the most stable in the roots. Overall, RCD1 and NLI2 were the most stable reference genes in organs under normal conditions and across all samples. The most and least stable reference genes were validated by assessing their appropriateness for normalization via WRKY genes.
Collapse
Affiliation(s)
- Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Taotao He
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Yao Hu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Jiaxue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Lina Wang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Haoyue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Yonggang Li
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China.
| |
Collapse
|
11
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4853632. [PMID: 33623781 PMCID: PMC7875621 DOI: 10.1155/2021/4853632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and convenient method for mRNA quantification. Selection of optimal reference gene(s) is an important step in RT-qPCR experiments. However, the stability of housekeeping genes in spinach (Spinacia oleracea) under various abiotic stresses is unclear. Evaluating the stability of candidate genes and determining the optimal gene(s) for normalization of gene expression in spinach are necessary to investigate the gene expression patterns during development and stress response. In this study, ten housekeeping genes, 18S ribosomal RNA (18S rRNA), actin, ADP ribosylation factor (ARF), cytochrome c oxidase subunit 5C (COX), cyclophilin (CYP), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (H3), 50S ribosomal protein L2 (RPL2), and tubulin alpha chain (TUBα) from spinach, were selected as candidates in roots, stems, leaves, flowers, and seedlings in response to high temperature, CdCl2, NaCl, NaHCO3, and Na2CO3 stresses. The expression of these genes was quantified by RT-qPCR and evaluated by NormFinder, BestKeeper, and geNorm. 18S rRNA, actin, ARF, COX, CYP, EF1α, GAPDH, H3, and RPL2 were detected as optimal reference genes for gene expression analysis of different organs and stress responses. The results were further confirmed by the expression pattern normalized with different reference genes of two heat-responsive genes. Here, we optimized the detection method of the gene expression pattern in spinach. Our results provide the optimal candidate reference genes which were crucial for RT-qPCR analysis.
Collapse
|
12
|
Xing G, Liu K, Li W, Li J, Xing C, Yuan H, Yang J. Evaluation of internal reference genes in Auxenochlorella protothecoides under continuous heterotrophic culture conditions at normal, low and high temperatures. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Zhu LJ, Cao F, Su XX, Li CY, Lin B, Wang HF, Yao XS, Zhang X, Jia JM, Liu HW. Baphicacanthcusines A–E, Bisindole Alkaloids from the Leaves of Baphicacanthus cusia (Nees) Bremek. J Org Chem 2020; 85:8580-8587. [DOI: 10.1021/acs.joc.0c00949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ling-Juan Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Xiang-Xin Su
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun-Yu Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hai-Feng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Sheng Yao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing-Ming Jia
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong-Wei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Selection and Validation of Reference Genes for Normalisation of Gene Expression in Glehnia littoralis. Sci Rep 2020; 10:7374. [PMID: 32355237 PMCID: PMC7192926 DOI: 10.1038/s41598-020-63917-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Glehnia littoralis is an important medicinal halophyte—the dried root of which is used as Chinese herbal medicine. However, the use, selection and stability of reference genes are rarely verified in studies of G. littoralis, which hampers investigation of its salt tolerance and metabolism. In this study, we selected 13 candidate reference genes from the transcriptome data of G. littoralis—serine/threonine-protein phosphatase PP2A (PP2A), polyubiquitin 10 (UBQ10), actin (ACT), elongation factor 1-α (EF1-α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), α-tubulin (α-TUB), β-tubulin (β-TUB), polypyrimidine tract-binding protein 1 (PTBP1), expressed protein 1 (EXP1), expressed protein 2 (EXP2), TIP41-like (TIP41), SAND family (SAND), and cyclophilin 2 (CYP2), and used qRT-PCR to analyse their expression levels in roots of G. littoralis treated with NaCl, polyethylene glycol (PEG), abscisic acid (ABA), and methyl jasmonate (MeJA), as well as in various organs of G. littoralis. The ΔCt, geNorm, NormFinder, and BestKeeper algorithms were used to assess the expression stability of the candidate reference genes and the results were then used to generate a comprehensive rank list with the RankAggreg R package. The most stable reference genes for normalisation were EXP1 and PP2A in response to NaCl, EXP2 and PP2A in response to ABA, CYP2 and α-TUB in response to MeJA, and ACT and EXP1 in the PEG and the organ subsets. GAPDH, β-TUB, and UBQ10 exhibited low stability and so were unsuitable for normalisation. This study is the first systematic analysis of candidate reference genes in G. littoralis and will facilitate further investigation of normalisation of gene expression in G. littoralis.
Collapse
|
15
|
Yu J, Zhang Y, Ning S, Ye Q, Tan H, Chen R, Bu Q, Zhang R, Gong P, Ma X, Zhang L, Wei D. Molecular cloning and metabolomic characterization of the 5-enolpyruvylshikimate-3-phosphate synthase gene from Baphicacanthus cusia. BMC PLANT BIOLOGY 2019; 19:485. [PMID: 31706293 PMCID: PMC6842527 DOI: 10.1186/s12870-019-2035-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/12/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Indigo alkaloids, such as indigo, indirubin and its derivatives, have been identified as effective antiviral compounds in Baphicacanthus cusia. Evidence suggests that the biosynthesis of indigo alkaloids in plants occurs via the shikimate pathway. The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is involved in plant metabolism; however, its underlying putative mechanism of regulating the production of indigo alkaloids is currently unknown. RESULTS One gene encoding EPSPS was isolated from B. cusia. Quantitative real-time PCR analysis revealed that BcEPSPS was expressed at the highest level in the stem and upregulated by methyl jasmonate (MeJA), salicylic acid (SA) and abscisic acid (ABA) treatment. The results of subcellular localization indicated that BcEPSPS is mainly expressed in both the plastids and cytosol, which has not been previously reported. An enzyme assay revealed that the heterogeneously expressed BcEPSPS protein catalysed the generation of 5-enolpyruvyl shikimate-3-phosphate. The overexpression of BcEPSPS in Isatis indigotica hairy roots resulted in the high accumulation of indigo alkaloids, such as indigo, secologanin, indole and isorhamnetin. CONCLUSIONS The function of BcEPSPS in catalysing the production of EPSP and regulating indigo alkaloid biosynthesis was revealed, which provided a distinct view of plant metabolic engineering. Our findings have practical implications for understanding the effect of BcEPSPS on active compound biosynthesis in B. cusia.
Collapse
Affiliation(s)
- Jian Yu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fuzhou, 350002, People's Republic of China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
- School of Life Sciences, East China Normal University, Shanghai, 200433, People's Republic of China
| | - Yihan Zhang
- Department of Pharmaceutical Changzheng Hosipital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Shuju Ning
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Qi Ye
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fuzhou, 350002, People's Republic of China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qitao Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Rui Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Peimin Gong
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fuzhou, 350002, People's Republic of China
| | - Xiaoli Ma
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fuzhou, 350002, People's Republic of China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Daozhi Wei
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
16
|
Validation of suitable reference genes for quantitative gene expression analysis in Tripterygium wilfordii. Mol Biol Rep 2019; 46:4161-4174. [PMID: 31111371 DOI: 10.1007/s11033-019-04867-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
Validation of suitable reference genes is critical in quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Suitable and reliable reference genes for the normalization of gene expression data are characterized by high gene expression stability across tissues and different experimental conditions. This study evaluated the gene expression stability of ten reference genes commonly used in Arabidopsis thaliana for their suitability in qRT-PCR analysis in Tripterygium wilfordii Hook.f. The orthologous sequences of these ten candidate genes were identified from T. wilfordii transcriptomic data (Project No. SRX472292). Five algorithms including GeNorm, NormFinder, BestKeeper, ΔCt, and RefFinder were used to assess the gene expression stability of these putative reference genes in different plant tissues and different stress conditions. The results identified ACTINT7 and TBP as the most suitable reference genes across all samples. The gene expressions of TwHMGR (3-hydroxy-3-methylglutaryl coenzyme A reductase, KU246037.1) and of TwDXR (1-deoxy-D-xylulose-5-phosphate reductoisomerase, KJ174341.1) were investigated to validate the suitability of the reference genes. The validation analysis confirmed the suitability of ACTINT7 and TBP as the best reference genes for elucidating secondary metabolite biosynthesis pathway in T. wilfordii. In summary, this study identified the most suitable and reliable reference genes for future qRT-PCR- based studies in T. wilfordii.
Collapse
|
17
|
Lin W, Huang W, Ning S, Gong X, Ye Q, Wei D. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. PLoS One 2019; 14:e0212863. [PMID: 30865659 PMCID: PMC6415880 DOI: 10.1371/journal.pone.0212863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Baphicacanthus cusia (Nees) Bremek (B. cusia) is an effective herb for the treatment of acute promyelocytic leukemia and psoriasis in traditional Chinese medicine. Methyl jasmonate (MeJA) is a well-known signaling phytohormone that triggers gene expression in secondary metabolism. Currently, MeJA-mediated biosynthesis of indigo and indirubin in B. cusia is not well understood. In this study, we analyzed the content of indigo and indirubin in leaf and root tissues of B. cusia with high-performance liquid chromatography and measured photosynthetic characteristics of leaves treated by MeJA using FluorCam6 Fluorometer and chlorophyll fluorescence using the portable photosynthesis system CIRAS-2. We performed de novo RNA-seq of B. cusia leaf and root transcriptional profiles to investigate differentially expressed genes (DEGs) in response to exogenous MeJA application. The amount of indigo in MeJA-treated leaves were higher than that in controled leaves (p = 0.004), and the amounts of indigo in treated roots was higher than that in controlled roots (p = 0.048); Chlorophyll fluorescence of leaves treated with MeJA were significantly decreased. Leaves treated with MeJA showed lower photosynthetic rate compared to the control in the absence of MeJA. Functional annotation of DEGs showed the DEGs related to growth and development processes were down-regulated in the treated leaves, while most of the unigenes involved in the defense response were up-regulated in treated roots. This coincided with the effects of MeJA on photosynthetic characteristics and chlorophyll fluorescence. The qRT-PCR results showed that MeJA appears to down-regulate the gene expression of tryptophan synthase β-subunits (trpA-β) in leaves but increased the gene expression of anthranilate synthase (trp 3) in roots responsible for increased indigo content. The results showed that MeJA suppressed leaf photosynthesis for B. cusia and this growth-defense trade-off may contribute to the improved adaptability of B. cusia in changing environments.
Collapse
Affiliation(s)
- Wenjin Lin
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Wei Huang
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuju Ning
- School of Crop science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaogui Gong
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Ye
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Daozhi Wei
- School of Life science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
18
|
Liu X, Guan H, Song M, Fu Y, Han X, Lei M, Ren J, Guo B, He W, Wei Y. Reference gene selection for qRT-PCR assays in Stellera chamaejasme subjected to abiotic stresses and hormone treatments based on transcriptome datasets. PeerJ 2018; 6:e4535. [PMID: 29632740 PMCID: PMC5888148 DOI: 10.7717/peerj.4535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/06/2018] [Indexed: 11/20/2022] Open
Abstract
Background Stellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs) as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported. Method In this study, 10 candidate RGs namely, 18S, 60S, CYP, GAPCP1, GAPDH2, EF1B, MDH, SAND, TUA1, and TUA6, were singled out from the transcriptome database of S. chamaejasme, and their expression stability under three abiotic stresses (drought, cold, and salt) and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH) were estimated with the programs geNorm, NormFinder, and BestKeeper. Result Our results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND, TUA1 and CYP, GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes (P5CS2 and GI) further verified that the RGs that we selected were suitable for gene expression normalization. Discussion This work is the first attempt to comprehensively estimate the stability of RGs in S. chamaejasme. Our results provide suitable RGs for high-precision normalization in qRT-PCR analysis, thereby making it more convenient to analyze gene expression under these experimental conditions.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Huirui Guan
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Min Song
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Yanping Fu
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Xiaomin Han
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Meng Lei
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Jingyu Ren
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Bin Guo
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Wei He
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Yahui Wei
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation. PLoS One 2017; 12:e0183470. [PMID: 28817728 PMCID: PMC5560574 DOI: 10.1371/journal.pone.0183470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/04/2017] [Indexed: 01/05/2023] Open
Abstract
Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not.
Collapse
|