1
|
Liu J, Wang Y, Peng L, Chen M, Ye X, Li Y, Li Z, Wen Q, Zhu H. Genome-Wide Identification of the Cyclic Nucleotide-Gated Ion Channel Gene Family and Expression Profiles Under Low-Temperature Stress in Luffa cylindrica L. Int J Mol Sci 2024; 25:11330. [PMID: 39457112 PMCID: PMC11508470 DOI: 10.3390/ijms252011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are cell membrane channel proteins for calcium ions. They have been reported to play important roles in survival and in the responses to environmental factors in various plants. However, little is known about the CNGC family and its functions in luffa (Luffa cylindrica L.). In this study, a bioinformatics-based method was used to identify members of the CNGC gene family in L. cylindrica. In total, 20 LcCNGCs were detected, and they were grouped into five subfamilies (I, II, Ⅲ, IV-a, and IV-b) in a phylogenetic analysis with CNGCs from Arabidopsis thaliana (20 AtCNGCs) and Momordica charantia (17 McCNGCs). The 20 LcCNGC genes were unevenly distributed on 11 of the 13 chromosomes in luffa, with none on Chromosomes 1 and 5. The members of each subfamily encoded proteins with highly conserved functional domains. An evolutionary analysis of CNGCs in luffa revealed three gene losses and a motif deletion. An examination of gene replication events during evolution indicated that two tandemly duplicated gene pairs were the primary driving force behind the evolution of the LcCNGC gene family. PlantCARE analyses of the LcCNGC promoter regions revealed various cis-regulatory elements, including those responsive to plant hormones (abscisic acid, methyl jasmonate, and salicylic acid) and abiotic stresses (light, drought, and low temperature). The presence of these cis-acting elements suggested that the encoded CNGC proteins may be involved in stress responses, as well as growth and development. Transcriptome sequencing (RNA-seq) analyses revealed tissue-specific expression patterns of LcCNGCs in various plant parts (roots, stems, leaves, flowers, and fruit) and the upregulation of some LcCNGCs under low-temperature stress. To confirm the accuracy of the RNA-seq data, 10 cold-responsive LcCNGC genes were selected for verification by quantitative real-time polymerase chain reaction (RT-qPCR) analysis. Under cold conditions, LcCNGC4 was highly upregulated (>50-fold increase in its transcript levels), and LcCNGC3, LcCNGC6, and LcCNGC13 were upregulated approximately 10-fold. Our findings provide new information about the evolution of the CNGC family in L. cylindrica and provide insights into the functions of the encoded CNGC proteins.
Collapse
Affiliation(s)
- Jianting Liu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuqian Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350003, China; (Y.W.); (L.P.)
| | - Lijuan Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350003, China; (Y.W.); (L.P.)
| | - Mindong Chen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xinru Ye
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yongping Li
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zuliang Li
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qingfang Wen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Haisheng Zhu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
2
|
Cheng S, Su L, Guo X, Shao D, Qin Y, Liu X, Chu Q, Zhou X, He Z. Genome-wide development of simple sequence repeats markers and genetic diversity analysis of chayote. BMC PLANT BIOLOGY 2024; 24:603. [PMID: 38926681 PMCID: PMC11201790 DOI: 10.1186/s12870-024-05317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Chayote is a high economic crop in the Cucurbitaceae family, playing an important role in food production, disease treatment and the production of degradable materials in industries. Due to the harsh environment, such as high temperature, drought and frost, some chayote resources are gradually disappearing. It is crucial to collect, characterize, and conserve chayote resources. However, the genetic diversity of chayote resources in China has not been studied so far. RESULTS In this study, we collected 35 individuals of chayote from 14 provinces in China. Subsequently, we found 363,156 SSR motifs from the chayote genome and designed 57 pairs of SSR primers for validation. Out of these, 48 primer pairs successfully amplified bands, with 42 of them showing polymorphism. These 42 primer pairs detected a total of 153 alleles, averaging 3.64 alleles per locus. The polymorphic information content ranged from 0.03 to 0.78, with an average value of 0.41, indicating a high level of polymorphism. Based on the analysis using STRUCTURE, PCoA, and UPGMA methods, the 35 chayote individuals were divided into two major clusters. Through further association analysis, 7 significantly associated SSR markers were identified, including four related to peel color and three related to spine. CONCLUSIONS These molecular markers will contribute to the analysis of genetic diversity and genetic breeding improvement of chayote in the future.
Collapse
Affiliation(s)
- Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xin Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dalong Shao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yanmei Qin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xuanxuan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qianwen Chu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
3
|
Guan F, Shi B, Zhang J, Wan X. Metabolome Revealed the Potential Mechanism of Fusarium Wilt Resistance in Bitter Gourd ( Momordica charantia) Based on Liquid Chromatography with Mass Spectrometry. PLANT DISEASE 2024; 108:920-929. [PMID: 37814516 DOI: 10.1094/pdis-07-23-1371-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Fusarium wilt fungus infection of bitter gourd, a major melon vegetable crop, results in massive yield reduction. Through extensive testing, some Fusarium wilt-resistant bitter melon varieties have been produced, but the molecular mechanism of their resistance to the fungus remains unknown. Importantly, after bitter melon plants are infected with Fusarium oxysporum f. sp. momordicae (FOM), apart from altering their gene expression levels, numerous metabolites are produced because of the interaction with the fungus. In the current study, an untargeted metabolomics analysis was performed to investigate the metabolic difference between resistant and susceptible bitter gourd varieties at various timepoints postinoculation with FOM based on liquid chromatography with mass spectrometry. A total of 1,595 positive ion mode and 922 negative ion mode metabolites were identified. Between the resistant and susceptible bitter gourd varieties, 213 unique differentially abundant metabolites (DAMs) were identified, and they were mainly enriched in the alpha-linolenic acid metabolism pathway. By comparing the postinoculation with preinoculation timepoints in the resistant and susceptible bitter gourd varieties, 93 and 159 DAMs were identified, respectively. These DAMs were mainly related to beta-alanine metabolism, among others. Multiple metabolites in the biosynthesis of the phenylpropanoid pathway showed greater variability in the susceptible than the resistant varieties, which may be related to senescence and mortality in the susceptible variety. These results provide new insights into the understanding of metabolite changes after FOM infection and a theoretical foundation for the elucidation of the bitter gourd disease resistance mechanism.
Collapse
Affiliation(s)
- Feng Guan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Bo Shi
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jiangyun Zhang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xinjian Wan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
4
|
Mallikarjuna KN, Tomar BS, Mangal M, Singh N, Singh D, Kumar S, Tomer A, Singh B, Jat GS. Genetic Diversity and Population Structure Analyses in Bitter Gourd ( Momordica charantia L.) Based on Agro-Morphological and Microsatellite Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3512. [PMID: 37836252 PMCID: PMC10574847 DOI: 10.3390/plants12193512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 10/15/2023]
Abstract
Bitter gourd (Momordica charantia L.) is an important vine crop of the Cucurbitaceae family and is well known for its high nutritional and medicinal values. However, the genetic variation remains largely unknown. Herein, 96 diverse bitter gourd genotypes were undertaken for diversity analysis using 10 quantitative traits, and 82 simple sequence repeat (SSR) markers. Out of 82 SSRs, 33 were polymorphic and the mean polymorphism information content (PIC) value was 0.38. Marker, JY-003 revealed a maximum (0.81) PIC value and, the number of alleles per locus ranged from 2 to 7 (average 3.46). The value of gene diversity showed the presence of a significant level of polymorphism among these genotypes. The unweighted pair group method (UPGMA) cluster analysis grouped the genotypes into two major clusters of which Cluster I comprised mostly small and medium-fruited genotypes of both M. charantia var. charantia and M. charantia var. muricata, whereas Cluster II included mostly long and extra-long fruited genotypes. Furthermore, these genotypes were divided into six distinct groups based on population structure analysis. The diversity analysis based on 10 quantitative traits revealed that earliness and high-yielding ability were exhibited by the predominantly gynoecious line DBGS-21-06 followed by DBGS-48-00. The principal component analysis (PCA) revealed that the first two components exhibited more than 50% of the total genetic variation. The present study deciphered a higher magnitude of agro-morphological and genetic diversity in 96 bitter gourd genotypes. Therefore, trait-specific genotypes identified in this study could be utilized in breeding programmes directed towards the development of improved cultivars and hybrids of bitter gourd.
Collapse
Affiliation(s)
- K. N. Mallikarjuna
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India; (K.N.M.); (B.S.T.); (M.M.); (S.K.); (A.T.)
| | - Bhoopal Singh Tomar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India; (K.N.M.); (B.S.T.); (M.M.); (S.K.); (A.T.)
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India; (K.N.M.); (B.S.T.); (M.M.); (S.K.); (A.T.)
| | - Naveen Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India;
| | - Deepak Singh
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi 110 012, India;
| | - Sachin Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India; (K.N.M.); (B.S.T.); (M.M.); (S.K.); (A.T.)
| | - Avinash Tomer
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India; (K.N.M.); (B.S.T.); (M.M.); (S.K.); (A.T.)
| | - Balraj Singh
- Sri Karan Narendra Agriculture University, Jobner 303 328, Rajasthan, India;
| | - Gograj Singh Jat
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India; (K.N.M.); (B.S.T.); (M.M.); (S.K.); (A.T.)
| |
Collapse
|
5
|
Pei D, Song S, Kang J, Zhang C, Wang J, Dong T, Ge M, Pervaiz T, Zhang P, Fang J. Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes. Genes (Basel) 2023; 14:genes14030663. [PMID: 36980935 PMCID: PMC10048371 DOI: 10.3390/genes14030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
SSR (simple sequence repeat) DNA markers are widely used for genotype DNA identification, QTL mapping, and analyzing genetic biodiversity. However, SSRs in grapes are still in their early stages, with a few primer pairs accessible. With the whole-genome sequencing (WGS) of several grape varieties, characterization of grape SSR changed to be necessary not only to genomics but to also help SSR development and utility. Based on this, we identified the whole-genome SSR of nine grape cultivars (‘PN40024’, ‘Cabernet Sauvignon’, ‘Carménère’, ‘Chardonnay’, ‘Merlot’, ‘Riesling’, ‘Zinfandel’, ‘Shine Muscat’, and ‘Muscat Hamburg’) with whole-genome sequences released publicly and found that there are great differences in the distribution of SSR loci in different varieties. According to the difference in genome size, the number of SSRs ranged from 267,385 (Cabernet Sauvignon) to 627,429 (Carménère), the density of the SSR locus in the genome of nine cultivars was generally 1 per Kb. SSR motif distribution characteristic analysis of these grape cultivars showed that the distribution patterns among grape cultivars were conservative, mainly enriched in A/T. However, there are some differences in motif types (especially tetranucleotides, pentanucleotides, and hexanucleotides), quantity, total length, and average length in different varieties, which might be related to the size of the assembled genome or the specificity of variety domestication. The distribution characteristics of SSRs were revealed by whole-genome analysis of simple repeats of grape varieties. In this study, 32 pairs of primers with lower polymorphism have been screened, which provided an important research foundation for the development of molecular markers of grape variety identification and the construction of linkage maps of important agronomic traits for crop improvement.
Collapse
Affiliation(s)
- Dan Pei
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyan Song
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, Zhenjiang 212400, China
| | - Jun Kang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Zhang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Dong
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqing Ge
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 22963, USA
| | - Peian Zhang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
6
|
Yu R, Niu Y, Wang X, Yang K, Han X, Liu Z, Qi Z, Yang Y. Construction of a density mutant collection in bitter gourd via new germplasms innovation and gene functional study. FRONTIERS IN PLANT SCIENCE 2022; 13:1069750. [PMID: 36483947 PMCID: PMC9724616 DOI: 10.3389/fpls.2022.1069750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Although a few studies have elucidated the creation of bitter gourd mutants, the suitable concentration and duration of ethyl methanesulfonate (EMS) mutagenesis have not been determined. In this study, mutant collection was conducted to create new germplasms and widen genetic diversity. By employing the seeds of the inbred line Y52 as the mutagenic material, EMS as the mutagen, and the suitable mutagenic conditions for bitter gourd seeds (EMS concentration 0.2%, mutagenic time 10 h), we mutated 10,000 seeds and acquired 3223 independent M1 lines. For the randomly selected 1000 M2 lines, 199 M2 lines with visible phenotypes were found, and 167 M2 lines were mutants of fruit shape, size, and tubercles. Furthermore, fourteen dwarf, eleven leaf color, five leaf shape, and eight meristem defect mutants were discovered in this mutant collection. In addition, three lines of 1253, 2284, and 3269 represented recessive mutants crossed with Y52. Furthermore, the yellow leaf lines of 2284 and 3269 were not mutated at the same gene locus. This study constructed a mutant collection through innovative new germplasms and provided valuable resources for bitter gourd breeding and functional gene research.
Collapse
Affiliation(s)
- Renbo Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Hainan, China
| | - Yu Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Hainan, China
| | - Xiaoyi Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Kaili Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
| | - Xu Han
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Hainan, China
| | - Zhaohua Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Hainan, China
| | - Zhiqiang Qi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Hainan, China
| | - Yan Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Hainan, China
| |
Collapse
|
7
|
Ravichandiran K, Parani M. Transcriptome analysis of five different tissues of bitter gourd (Momordica charantia L.) fruit identifies full-length genes involved in seed oil biosynthesis. Sci Rep 2022; 12:15374. [PMID: 36100691 PMCID: PMC9470707 DOI: 10.1038/s41598-022-19686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe bitter gourd seed oil, rich in conjugated fatty acids, has therapeutic value to treat cancer, obesity, and aging. It also has an industrial application as a drying agent. Despite its significance, genomics studies are limited, and the genes for seed oil biosynthesis are not fully understood. In this study, we assembled the fruit transcriptome of bitter gourd using 254.5 million reads (Phred score > 30) from the green rind, white rind, pulp, immature seeds, and mature seeds. It consisted of 125,566 transcripts with N50 value 2,751 bp, mean length 960 bp, and 84% completeness. Transcript assembly was validated by RT-PCR and qRT-PCR analysis of a few selected transcripts. The transcripts were annotated against the NCBI non-redundant database using the BLASTX tool (E-value < 1E−05). In gene ontology terms, 99,443, 86,681, and 82,954 transcripts were classified under biological process, molecular function, and cellular component. From the fruit transcriptome, we identified 26, 3, and 10 full-length genes coding for all the enzymes required for synthesizing fatty acids, conjugated fatty acids, and triacylglycerol. The transcriptome, transcripts with tissue-specific expression patterns, and the full-length identified from this study will serve as an important genomics resource for this important medicinal plant.
Collapse
|
8
|
Patil PG, Jamma S, N M, Bohra A, Pokhare S, Dhinesh Babu K, Murkute AA, Marathe RA. Chromosome-specific potential intron polymorphism markers for large-scale genotyping applications in pomegranate. FRONTIERS IN PLANT SCIENCE 2022; 13:943959. [PMID: 36110362 PMCID: PMC9468638 DOI: 10.3389/fpls.2022.943959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Despite the availability of whole genome assemblies, the identification and utilization of gene-based marker systems has been limited in pomegranate. In the present study, we performed a genome-wide survey of intron length (IL) markers in the 36,524 annotated genes of the Tunisia genome. We identified and designed a total of 8,812 potential intron polymorphism (PIP) markers specific to 3,445 (13.40%) gene models that span 8 Tunisia chromosomes. The ePCR validation of all these PIP markers on the Tunisia genome revealed single-locus amplification for 1,233 (14%) markers corresponding to 958 (27.80%) genes. The markers yielding single amplicons were then mapped onto Tunisia chromosomes to develop a saturated linkage map. The functional categorization of 958 genes revealed them to be a part of the nucleus and the cytoplasm having protein binding and catalytic activity, and these genes are mainly involved in the metabolic process, including photosynthesis. Further, through ePCR, 1,233 PIP markers were assayed on multiple genomes, which resulted in the identification of 886 polymorphic markers with an average PIC value of 0.62. In silico comparative mapping based on physically mapped PIP markers indicates a higher synteny of Tunisia with the Dabenzi and Taishanhong genomes (>98%) in comparison with the AG2017 genome (95%). We then performed experimental validation of a subset of 100 PIP primers on eight pomegranate genotypes and identified 76 polymorphic markers, with 15 having PIC values ≥0.50. We demonstrated the potential utility of the developed markers by analyzing the genetic diversity of 31 pomegranate genotypes using 24 PIP markers. This study reports for the first time large-scale development of gene-based and chromosome-specific PIP markers, which would serve as a rich marker resource for genetic variation studies, functional gene discovery, and genomics-assisted breeding of pomegranate.
Collapse
Affiliation(s)
| | - Shivani Jamma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Manjunatha N
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Somnath Pokhare
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | | | - Rajiv A. Marathe
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| |
Collapse
|
9
|
Patil PG, Sharma J, Nanjundappa M, Singh NV, Bohra A, Gunnaiah R, Jamma SM, Vinayaka J, Sangnure VR, Marathe RA. Identification and validation of SSR markers for Xanthomonas axonopodis pv. punicae an incitant of bacterial blight of pomegranate. 3 Biotech 2022; 12:153. [PMID: 35755801 DOI: 10.1007/s13205-022-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 11/01/2022] Open
Abstract
This study reports genome wide characterization and development of first set of microsatellite markers through in silico analysis of eight sequenced Xanthomonas axonopodis pv. punicae strains available in the public database. SSR survey resulted in identification of ~ 4638 perfect SSRs, with mean marker frequency 901 SSRs/Mb and densitiy of 11,006 bp/Mb aross the eight genomes. Frequency distribution graphs revealed hexa-nucleotide repeats were more prominent fowllowed by tri-, tetra-, di- and penta-nucleotides in the analysed genomes. We desinged 2927 SSR primers that are specific to the strain LMG 859 and ePCR confirmed on seven other Xap genomes. This resulted in identification of 542 informative SSRs that are producing single amplicons, from which 66 primers were successfully validated through wet lab experiments on eight Xap isolates of pomegranate. Furthermore, utility of these SSRs were demostrated by analysing molecular diversity among 22 Xap isolates using 20 Xap_SSR primers. SSRs revealed moderate genetic diversity among Xap isolates (61%) and grouped 11 isolates that are repersenting six different states into one cluster. This proved the earlier evidence of wider spread of ST3 type Xap acoss India using Multi locus Sequence Typing (MLST) technique. In summary, Xap_SSR will serve as powerful genomics tools that would helps in monitoring of population dynamics, taxonomy, epidomology and quarantine aspects in bacterial blight pathogen through development of microsatellite based Multilocus Variable number of Tandem repeat analysis (MLVA) in future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03209-z.
Collapse
Affiliation(s)
- Prakash G Patil
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jyotsana Sharma
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Manjunatha Nanjundappa
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - N V Singh
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Abhishek Bohra
- State Agriculture Biotechnology, Centre, Centre for Crop & Food Innovation, Murdoch University, Perth, Western Australia
| | - Raghavendra Gunnaiah
- Department of Biotechnology and Crop Improvement, University of Horticultural Sciences (UHS), Bagalkot, 587104 India
| | - Shivani M Jamma
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jeer Vinayaka
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Vipul R Sangnure
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - R A Marathe
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| |
Collapse
|
10
|
Patil PG, Singh NV, Bohra A, Jamma S, N M, C VS, Karuppannan DB, Sharma J, Marathe RA. Novel miRNA-SSRs for Improving Seed Hardness Trait of Pomegranate (Punica granatum L.). Front Genet 2022; 13:866504. [PMID: 35495126 PMCID: PMC9040167 DOI: 10.3389/fgene.2022.866504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Present research discovered novel miRNA-SSRs for seed type trait from 761 potential precursor miRNA sequences of pomegranate. SSR mining and BLASTx of the unique sequences identified 69 non-coding pre-miRNA sequences, which were then searched for BLASTn homology against Dabenzi genome. Sixty three true pri-miRNA contigs encoding 213 pre-miRNAs were predicted. Analysis of the resulting sequences enabled discovery of SSRs within pri-miRNA (227) and pre-miRNA sequences (79). A total of 132 miRNA-SSRs were developed for seed type trait from 63 true pri-miRNAs, of which 46 were specific to pre-miRNAs. Through ePCR, 123 primers were validated and mapped on eight Tunisia chromosomes. Further, 80 SSRs producing specific amplicons were ePCR-confirmed on multiple genomes i.e. Dabenzi, Taishanhong, AG2017 and Tunisia, yielding a set of 63 polymorphic SSRs (polymorphism information content ≥0.5). Of these, 32 miRNA-SSRs revealed higher polymorphism level (89.29%) when assayed on six pomegranate genotypes. Furthermore, target prediction and network analysis suggested a possible association of miRNA-SSRs i.e. miRNA_SH_SSR69, miRNA_SH_SSR36, miRNA_SH_SSR103, miRNA_SH_SSR35 and miRNA_SH_SSR53 with seed type trait. These miRNA-SSRs would serve as important genomic resource for rapid and targeted improvement of seed type trait of pomegranate.
Collapse
Affiliation(s)
- Prakash Goudappa Patil
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
- *Correspondence: Prakash Goudappa Patil,
| | | | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Shivani Jamma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Manjunatha N
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Venkatesh S. C
- Dept. of Biotechnology and Crop Improvement, University of Horticultural Sciences (UHS), Bagalkot, India
| | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Rajiv A. Marathe
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| |
Collapse
|
11
|
Xu Y, Xing M, Song L, Yan J, Lu W, Zeng A. Genome-Wide Analysis of Simple Sequence Repeats in Cabbage ( Brassica oleracea L.). FRONTIERS IN PLANT SCIENCE 2021; 12:726084. [PMID: 34956251 PMCID: PMC8695497 DOI: 10.3389/fpls.2021.726084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Cabbage (Brassica oleracea L. var. capitata) accounts for a critical vegetable crop belonging to Brassicaceae family, and it has been extensively planted worldwide. Simple sequence repeats (SSRs), the markers with high polymorphism and co-dominance degrees, offer a crucial genetic research resource. The current work identified totally 64,546 perfect and 93,724 imperfect SSR motifs in the genome of the cabbage 'TO1000.' Then, we divided SSRs based on the respective overall length and repeat number into different linkage groups. Later, we characterized cabbage genomes from the perspectives of motif length, motif-type classified and SSR level, and compared them across cruciferous genomes. Furthermore, a large set of 64,546 primer pairs were successfully identified, which generated altogether 1,113 SSR primers, including 916 (82.3%) exhibiting repeated and stable amplification. In addition, there were 32 informative SSR markers screened, which might decide 32 cabbage genotypes for their genetic diversity, with level of polymorphism information of 0.14-0.88. Cultivars were efficiently identified by the new strategy designating manual diagram for identifying cultivars. Lastly, 32 cabbage accessions were clearly separately by five Bol-SSR markers. Besides, we verified whether such SSRs were available and transferable in 10 Brassicaceae relatives. Based on the above findings, those genomic SSR markers identified in the present work may facilitate cabbage research, which lay a certain foundation for further gene tagging and genetic linkage analyses, like marker-assisted selection, genetic mapping, as well as comparative genomic analysis.
Collapse
|
12
|
Analysis of Genetic Diversity and Population Structure in Bitter Gourd ( Momordica charantia L.) Using Morphological and SSR Markers. PLANTS 2021; 10:plants10091860. [PMID: 34579393 PMCID: PMC8466607 DOI: 10.3390/plants10091860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022]
Abstract
The present investigation was carried out using 51 diverse bitter gourd accessions as material for studying genetic diversity and relatedness using morphological and SSR markers. A wide variation was observed for morphological traits like the number of days to the first female flower anthesis (37.33–60.67), the number of days to the first fruit harvest (47.67–72.00), the number of fruits/plant (12.00–46.67), fruit length (5.00–22.23 cm), fruit diameter (1.05–6.38 cm), average fruit weight (20.71–77.67 g) and yield per plant (513.3–1976 g). Cluster analysis for 10 quantitative traits grouped the 51 accessions into 6 clusters. Out of 61 SSR primers screened, 30 were polymorphic and highly informative as a means to differentiate these accessions. Based on genotyping, a high level of genetic diversity was observed, with a total of 99 alleles. The polymorphic information content (PIC) values ranged from 0.038 for marker BG_SSR-8 to 0.721 for S-24, with an average of 0.429. The numbers of alleles ranged from 2 to 5, with an average of 3.3 alleles per locus. Gene diversity ranged from 0.04 for BG_SSR-8 to 0.76 for S-24, showing a wide variation among 51 accessions. The UPGMA cluster analysis grouped these accessions into 3 major clusters. Cluster I comprised 4 small, fruited accessions that are commercially cultivated in central and eastern India. Cluster II comprised 35 medium- to long-sized fruited accessions, which made up an abundant and diverse group. Cluster III comprised 11 long and extra-long fruited accessions. The polymorphic SSR markers of the study will be highly useful in genetic fingerprinting and mapping, and for association analysis in Momordica regarding several economic traits.
Collapse
|
13
|
Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simple sequence repeats (SSRs) are widely used in mapping constructions and comparative and genetic diversity analyses. Here, 103,056 SSR loci were found in Cucurbita species by in silico PCR. In general, the frequency of these SSRs decreased with the increase in the motif length, and di-nucleotide motifs were the most common type. For the same repeat types, the SSR frequency decreased sharply with the increase in the repeat number. The majority of the SSR loci were suitable for marker development (84.75% in Cucurbita moschata, 94.53% in Cucurbita maxima, and 95.09% in Cucurbita pepo). Using these markers, the cross-species transferable SSR markers between C. pepo and other Cucurbitaceae species were developed, and the complicated mosaic relationships among them were analyzed. Especially, the main syntenic relationships between C. pepo and C. moschata or C. maxima indicated that the chromosomes in the Cucurbita genomes were highly conserved during evolution. Furthermore, 66 core SSR markers were selected to measure the genetic diversity in 61 C. pepo germplasms, and they were divided into two groups by structure and unweighted pair group method with arithmetic analysis. These results will promote the utilization of SSRs in basic and applied research of Cucurbita species.
Collapse
|
14
|
Development and validation of genome-wide InDel markers with high levels of polymorphism in bitter gourd (Momordica charantia). BMC Genomics 2021; 22:190. [PMID: 33726664 PMCID: PMC7968231 DOI: 10.1186/s12864-021-07499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. Results Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines ‘47–2–1-1-3’ and ‘04–17,’ indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 ‘47–2–1-1-3’ × ‘04–17’ F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. Conclusions This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07499-0.
Collapse
|
15
|
Wang X, An Y, Xu P, Xiao J. Functioning of PPR Proteins in Organelle RNA Metabolism and Chloroplast Biogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:627501. [PMID: 33633768 PMCID: PMC7900629 DOI: 10.3389/fpls.2021.627501] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 05/05/2023]
Abstract
The pentatricopeptide repeat (PPR) proteins constitute one of the largest nuclear-encoded protein families in higher plants, with over 400 members in most sequenced plant species. The molecular functions of these proteins and their physiological roles during plant growth and development have been widely studied. Generally, there is mounting evidence that PPR proteins are involved in the post-transcriptional regulation of chloroplast and/or mitochondrial genes, including RNA maturation, editing, intron splicing, transcripts' stabilization, and translation initiation. The cooperative action of RNA metabolism has profound effects on the biogenesis and functioning of both chloroplasts and mitochondria and, consequently, on the photosynthesis, respiration, and development of plants and their environmental responses. In this review, we summarize the latest research on PPR proteins, specifically how they might function in the chloroplast, by documenting their mechanism of molecular function, their corresponding RNA targets, and their specific effects upon chloroplast biogenesis and host organisms.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Pan Xu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
16
|
Patil PG, Singh NV, Bohra A, Raghavendra KP, Mane R, Mundewadikar DM, Babu KD, Sharma J. Comprehensive Characterization and Validation of Chromosome-Specific Highly Polymorphic SSR Markers From Pomegranate ( Punica granatum L.) cv. Tunisia Genome. FRONTIERS IN PLANT SCIENCE 2021; 12:645055. [PMID: 33796127 PMCID: PMC8007985 DOI: 10.3389/fpls.2021.645055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
The simple sequence repeat (SSR) survey of 'Tunisia' genome (296.85 Mb) identified a total of 365,279 perfect SSRs spanning eight chromosomes, with a mean marker density of 1,230.6 SSRs/Mb. We found a positive trend in chromosome length and the SSR abundance as marker density enhanced with a shorter chromosome length. The highest number of SSRs (60,708) was mined from chromosome 1 (55.56 Mb), whereas the highest marker density (1,294.62 SSRs/Mb) was recorded for the shortest chromosome 8 (27.99 Mb). Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. Across the eight chromosomes, the class III had maximum number of SSR motifs (301,684, 82.59%), followed by the class II (31,056, 8.50%) and the class I (5,003, 1.37%). Examination of the distribution of SSR motif types within a chromosome suggested the abundance of hexanucleotide repeats in each chromosome followed by dinucleotides, and these results are consistent with 'Tunisia' genome features as a whole. Concerning major repeat types, AT/AG was the most frequent (14.16%), followed by AAAAAT/AAAAAG (7.89%), A/C (7.54%), AAT/AAG (5.23%), AAAT/AAAG (4.37%), and AAAAT/AAAAG (1.2%) types. We designed and validated a total of 3,839 class I SSRs in the 'Tunisia' genome through electronic polymerase chain reaction (ePCR) and found 1,165 (30.34%) SSRs producing a single amplicon. Then, we selected 906 highly variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across multiple draft genomes of pomegranate, which provided us a subset of 265 highly polymorphic SSRs. Of these, 235 primers were validated on six pomegranate genotypes through wet-lab experiment. We found 221 (94%) polymorphic SSRs on six genotypes, and 187 of these SSRs had ≥ 0.5 PIC values. The utility of the developed SSRs was demonstrated by analyzing genetic diversity of 30 pomegranate genotypes using 16 HvSSRs spanning eight pomegranate chromosomes. In summary, we developed a comprehensive set of highly polymorphic genome-wide SSRs. These chromosome-specific SSRs will serve as a powerful genomic tool to leverage future genetic studies, germplasm management, and genomics-assisted breeding in pomegranate.
Collapse
Affiliation(s)
- Prakash Goudappa Patil
- ICAR-National Research Centre on Pomegranate, Solapur, India
- *Correspondence: Prakash Goudappa Patil,
| | | | | | | | - Rushikesh Mane
- ICAR-National Research Centre on Pomegranate, Solapur, India
| | | | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate, Solapur, India
| |
Collapse
|
17
|
Cui J, Yang Y, Luo S, Wang L, Huang R, Wen Q, Han X, Miao N, Cheng J, Liu Z, Zhang C, Feng C, Zhu H, Su J, Wan X, Hu F, Niu Y, Zheng X, Yang Y, Shan D, Dong Z, He W, Dhillon NPS, Hu K. Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd ( Momordica spp.). HORTICULTURE RESEARCH 2020; 7:85. [PMID: 32528697 PMCID: PMC7261802 DOI: 10.1038/s41438-020-0305-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 05/06/2023]
Abstract
Bitter gourd (Momordica charantia) is a popular cultivated vegetable in Asian and African countries. To reveal the characteristics of the genomic structure, evolutionary trajectory, and genetic basis underlying the domestication of bitter gourd, we performed whole-genome sequencing of the cultivar Dali-11 and the wild small-fruited line TR and resequencing of 187 bitter gourd germplasms from 16 countries. The major gene clusters (Bi clusters) for the biosynthesis of cucurbitane triterpenoids, which confer a bitter taste, are highly conserved in cucumber, melon, and watermelon. Comparative analysis among cucurbit genomes revealed that the Bi cluster involved in cucurbitane triterpenoid biosynthesis is absent in bitter gourd. Phylogenetic analysis revealed that the TR group, including 21 bitter gourd germplasms, may belong to a new species or subspecies independent from M. charantia. Furthermore, we found that the remaining 166 M. charantia germplasms are geographically differentiated, and we identified 710, 412, and 290 candidate domestication genes in the South Asia, Southeast Asia, and China populations, respectively. This study provides new insights into bitter gourd genetic diversity and domestication and will facilitate the future genomics-enabled improvement of bitter gourd.
Collapse
Affiliation(s)
- Junjie Cui
- College of Horticulture, South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, 510642 Guangzhou, China
| | - Yan Yang
- Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571737 Danzhou, China
| | - Shaobo Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Le Wang
- BGI Genomics, BGI-Shenzhen, 518083 Shenzhen, China
| | - Rukui Huang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Qingfang Wen
- Crop Research Institute, Fujian Academy of Agricultural Sciences, 350013 Fuzhou, China
| | - Xiaoxia Han
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, 410125 Changsha, China
| | - Nansheng Miao
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200 Nanchang, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, 510642 Guangzhou, China
| | - Ziji Liu
- Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571737 Danzhou, China
| | - Changyuan Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Chengcheng Feng
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, China
| | - Haisheng Zhu
- Crop Research Institute, Fujian Academy of Agricultural Sciences, 350013 Fuzhou, China
| | - Jianwen Su
- Institute of Vegetable Research, Hunan Academy of Agricultural Sciences, 410125 Changsha, China
| | - Xinjian Wan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200 Nanchang, China
| | - Fang Hu
- College of Horticulture, South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, 510642 Guangzhou, China
| | - Yu Niu
- Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, 571737 Danzhou, China
| | - Xiaoming Zheng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Yulan Yang
- BGI Genomics, BGI-Shenzhen, 518083 Shenzhen, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, 518083 Shenzhen, China
| | | | - Weiming He
- BGI Genomics, BGI-Shenzhen, 518083 Shenzhen, China
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Kailin Hu
- College of Horticulture, South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, 510642 Guangzhou, China
| |
Collapse
|
18
|
Uncu AO, Uncu AT. High-throughput simple sequence repeat (SSR) mining saturates the carrot (Daucus carota L.) genome with chromosome-anchored markers. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1701551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ayse Ozgur Uncu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Meram, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology & Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Turkey
| |
Collapse
|
19
|
Genome-wide identification of simple sequence repeat (SSR) markers in Capsicum chinense Jacq. with high potential for use in pepper introgression breeding. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0155-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|