1
|
Mohanavel V, Muthu V, Kambale R, Palaniswamy R, Seeli P, Ayyenar B, Rajagopalan V, Manickam S, Rajasekaran R, Rahman H, Nallathambi J, Swaminathan M, Chellappan G, Vellingiri G, Muthurajan R. Marker-assisted breeding accelerates the development of multiple-stress-tolerant rice genotypes adapted to wider environments. FRONTIERS IN PLANT SCIENCE 2024; 15:1402368. [PMID: 39070911 PMCID: PMC11272538 DOI: 10.3389/fpls.2024.1402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Introduction Rice, one of the major staple food crops is frequently affected by various biotic/abiotic stresses including drought, salinity, submergence, heat, Bacterial leaf blight, Brown plant hopper, Gall midge, Stem borer, Leaf folder etc. Sustained increase of yield growth is highly necessary to meet the projected demand in rice production during the year 2050. Hence, development of high yielding and multiple stress tolerant rice varieties adapted to wider environments will serve the need. Methods A systematic MAB approach was followed to pyramid eight major QTLs/genes controlling tolerance to major abiotic/biotic stresses viz., drought (qDTY1.1 and qDTY2.1), salinity (Saltol), submergence (Sub1), bacterial leaf blight (xa13 and Xa21), blast (Pi9) and gall midge (Gm4) in the genetic background of an elite rice culture CBMAS 14065 possessing high yield and desirable grain quality traits. Two advanced backcross derivatives of CBMAS 14065 possessing different combinations of target QTLs namely #27-1-39 (qDTY1.1+qDTY2.1+Sub1+xa13+Xa21+Gm4+Pi9) and #29-2-2 (qDTY1.1+qDTY2.1+Saltol+Xa21+Gm4+Pi9) were inter-mated. Results Inter-mated F1 progenies harboring all the eight target QTLs/genes were identified through foreground selection. Genotyping of the inter-mated F4 population identified 14 progenies possessing all eight target QTLs/genes under homozygous conditions. All the fourteen progenies were forwarded up to F8 generation and evaluated for their yield and tolerance to dehydration, salinity, submergence, blast and bacterial leaf blight. All the 14 progenies exhibited enhanced tolerance to dehydration and salinity stresses by registering lesser reduction in their chlorophyll content, relative water content, root length, root biomass etc., against their recurrent parent Improved White Ponni/CBMAS 14065. All the 14 progenies harboring Sub1 loci from FR13A exhibited enhanced survival (90 - 95%) under 2 weeks of submergence /flooding when compared to their recurrent parent CBMAS 14065 which showed 100% susceptibility The inter-mated population showed a enhanced level of resistance to bacterial leaf blight (Score = 0 to 2) against blast (Score - 0) whereas the susceptible check CO 39 and the recurrent parent CBMAS 14065 recorded high level of susceptibility (Score = 7 to 9). Conclusion or discussion Our study demonstrated the accelerated development of multiple stress tolerant rice genotypes through marker assisted pyramiding of target QTLs/genes using tightly linked markers. These multiple stress tolerant rice lines will serve as excellent genetic stocks for field testing/variety release and also as parental lines in future breeding programs for developing climate resilient super rice varieties.
Collapse
Affiliation(s)
- Vignesh Mohanavel
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Valarmathi Muthu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rohit Kambale
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rakshana Palaniswamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Prisca Seeli
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bharathi Ayyenar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veeraranjani Rajagopalan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Hifzur Rahman
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- International Centre for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Jagadeeshselvam Nallathambi
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manonmani Swaminathan
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Gopalakrishnan Chellappan
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Raveendran Muthurajan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Ramprasad E, Rani CVD, Neeraja CN, Padmavathi G, Jagadeeshwar R, Anjali C, Thakur P, Yamini KN, Laha GS, Prasad MS, Alhelaify SS, Aharthy OM, Sayed SM, Mushtaq M. Understanding the nature of blast resistance in combined bacterial leaf blight and blast gene pyramided lines of rice variety tellahamsa. Mol Biol Rep 2024; 51:619. [PMID: 38709339 DOI: 10.1007/s11033-024-09549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.
Collapse
Affiliation(s)
- E Ramprasad
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, 500030, India
| | - Ch V Durga Rani
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, 500030, India.
| | - C N Neeraja
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - G Padmavathi
- Department of Genetics and Plant Breeding, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R Jagadeeshwar
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, 500030, India
| | - C Anjali
- Plant Biotechnology Department, Mallareddy University, Hyderabad, 500100, India
| | - Priya Thakur
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - K N Yamini
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, 500030, India
| | - G S Laha
- Department of Plant Pathology, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - M Srinivas Prasad
- Department of Plant Pathology, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Seham Sater Alhelaify
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ohud Muslat Aharthy
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Samy M Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
3
|
Sravanraju N, Beulah P, Jaldhani V, Nagaraju P, HariPrasad AS, Brajendra P, Sunitha N, Sundaram RM, Senguttuvel P. Genetic enhancement of reproductive stage drought tolerance in RPHR-1005R and derivative rice hybrids through marker-assisted backcross breeding in rice (Oryza sativa L.). Mol Biol Rep 2024; 51:426. [PMID: 38498081 DOI: 10.1007/s11033-024-09351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Drought stress is considered as one of the major production constraints in rice. RPHR-1005R is a restorer line (R-Line) with a popular, medium-slender grain type, and is the male parent of the popular Indian rice hybrid, DRR-H3. However, both the hybrid and its restorer are highly vulnerable to the drought stress, which limits the adoption of the hybrid. Therefore, the selection of the restorer line RPHR-1005R has been made with the objective of enhancing drought tolerance. METHODS AND RESULTS In this study, we have introgressed a major QTL for grain yield under drought (qDTY 1.1) from Nagina22 through a marker-assisted backcross breeding (MABB) strategy. PCR based SSR markers linked to grain yield under drought (qDTY1.1 - RM431, RM11943), fertility restorer genes (Rf3-DRRM-Rf3-10, Rf4-RM6100) and wide compatibility (S5n allele) were deployed for foreground selection. At BC2F1, a single plant (RPHR6339-4-16-14) with target QTL in heterozygous condition and with the highest recurrent parent genome recovery (85.41%) and phenotypically like RPHR-1005R was identified and selfed to generate BC2F2. Fifty-eight homozygous lines were advanced to BC2F4 and six promising restorer lines and a hybrid combination (APMS6A/RPHR6339-4-16-14-3) were identified. CONCLUSIONS In summary, the six improved restorer lines could be employed for developing heterotic hybrids possessing reproductive stage drought tolerance. The hybrid combination (APMS6A/RPHR6339-4-16-14-3) was estimated to ensure stable yields in drought-prone irrigated lowlands as well as in directly seeded aerobic and upland areas of India.
Collapse
Affiliation(s)
- N Sravanraju
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
- Biotechnology Department, Jawaharlal Nehru Technological University (JNTU-H), Hyderabad, 500085, India
| | - P Beulah
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - V Jaldhani
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P Nagaraju
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - A S HariPrasad
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P Brajendra
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - N Sunitha
- Biotechnology Department, Jawaharlal Nehru Technological University (JNTU-H), Hyderabad, 500085, India
| | - R M Sundaram
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - P Senguttuvel
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| |
Collapse
|
4
|
Manoj CA, Muralidhara B, Basavaraj PS, Honnappa M, Ajitha V, Aleena D, Ishwaryalakshmi VG, Usha G, Gireesh C, Senguttuvel P, Kemparaju KB, Rao LVS, Basavaraj K, Laha GS, Sundaram RM, Kumar RM, Rathod S, Salimath PM, Lokesha R, Diwan J, Nidagundi JM, Gowrisankar M, Anantha MS. Improvement of bacterial blight resistance of the high yielding, fine-grain, rice variety, Gangavati sona through marker-assisted backcross breeding. 3 Biotech 2023; 13:393. [PMID: 37953830 PMCID: PMC10638137 DOI: 10.1007/s13205-023-03828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Gangavati sona (GS) is a high-yielding, fine-grain rice variety widely grown in the Tungabhadra command area in Karnataka, India; however, it is susceptible to bacterial blight (BB). Therefore, the present study was conducted to improve the GS variety for BB resistance. Three BB-resistant genes (xa5, xa13, and Xa21) were introgressed into the genetic background of susceptible cultivar GS through marker-assisted backcrossing (MABB) by using Improved samba Mahsuri (ISM), a popular, high-yielding, bacterial blight resistant rice variety as a donor parent. Foreground selection was carried out using gene-specific markers, viz., xa5FM (xa5), xa13prom (xa13), and pTA248 (Xa21), while background selection was carried out using well-distributed 64 polymorphic microsatellite markers. The true heterozygote F1 was used as the male parent for backcrossing with GS to obtain BC1F1. The process was repeated in BC1F1 generation, and a BC2F1 plant (IGS-5-11-5) possessing all three target genes along with maximum recurrent parent genome (RPG) recovery (86.7%) was selfed to obtain BC2F2s. At BC2F2, a single triple gene homozygote plant (IGS-5-11-5-33) with 92.6% RPG recovery was identified and advanced to BC2F5 by a pedigree method. At BC2F5, the seven best entries were selected, possessing all three resistance genes with high resistance levels against bacterial blight, yield level, and grain quality features equivalent to better than GS. The improved versions of GS will immensely benefit the farmers whose fields are endemic to BB.
Collapse
Affiliation(s)
- C. A. Manoj
- University of Agricultural Sciences, Raichur, India
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - B. Muralidhara
- University of Agricultural Sciences, Raichur, India
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - P. S. Basavaraj
- ICAR-Indian Institute of Rice Research, Hyderabad, India
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - M. Honnappa
- University of Agricultural Sciences, Raichur, India
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - V. Ajitha
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - D. Aleena
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | - G. Usha
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - C. Gireesh
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - P. Senguttuvel
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | | | - K. Basavaraj
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - G. S. Laha
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | | | | | - R. Lokesha
- University of Agricultural Sciences, Raichur, India
| | | | | | | | - M. S. Anantha
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| |
Collapse
|
5
|
Gautam RK, Singh PK, Sakthivel K, Venkatesan K, Rao SS, Srikumar M, Vijayan J, Rakesh B, Ray S, Akhtar J, Meena BR, Langyan S, Ali S, Krishnamurthy SL. Marker-assisted enhancement of bacterial blight ( Xanthomonas oryzae pv . oryzae) resistance in a salt-tolerant rice variety for sustaining rice production of tropical islands. FRONTIERS IN PLANT SCIENCE 2023; 14:1221537. [PMID: 37818314 PMCID: PMC10561094 DOI: 10.3389/fpls.2023.1221537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023]
Abstract
Introduction Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice, specially in the tropical regions of the world. Developing rice varieties with host resistance against the disease is the most effective and economical solution for managing the disease. Methods Pyramiding resistance genes (Xa4, xa5, xa13,and Xa21) in popular rice varieties using marker-assisted backcross breeding (MABB) has been demonstrated as a cost-effective and sustainable approach for establishing durable BB resistance. Here, we report our successful efforts in introgressing four resistance genes (Xa4, xa5, xa13, and Xa21) from IRBB60 to CARI Dhan 5, a popular salt-tolerant variety developed from a somaclonal variant of Pokkali rice, through functional MABB. Results and discussion Both BB and coastal salinity are among the major challenges for rice production in tropical island and coastal ecosystems. Plants with four, three, and two gene pyramids were generated, which displayed high levels of resistance to the BB pathogen at the BC3F2 stage. Under controlled salinity microplot environments, the line 131-2-175-1223 identified with the presence of three gene pyramid (Xa21+xa13+xa5) displayed notable resistance across locations and years as well as exhibited a salinity tolerance comparable to the recurrent parent, CARI Dhan 5. Among two BB gene combinations (Xa21+xa13), two lines, 17-1-69-334 and 46-3-95-659, demonstrated resistance across locations and years, as well as salt tolerance and grain production comparable to CARI Dhan 5. Besides salinity tolerance, five lines, 17-1-69-179, 46-3-95-655, 131-2-190-1197, 131-2-175-1209, and 131-2-175-1239, exhibited complete resistance to BB disease. Following multilocation testing, potential lines have been identified that can serve as a prospective candidate for producing varieties for the tropical Andaman and Nicobar Islands and other coastal locations, which are prone to BB and coastal salinity stresses.
Collapse
Affiliation(s)
- Raj Kumar Gautam
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pankaj Kumar Singh
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
| | - Krishnan Sakthivel
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Oilseeds Research, Hyderabad, India
| | - K. Venkatesan
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources (NBPGR), Regional Research Station, Thrissur, Kerala, India
| | - Shyam S. Rao
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
| | - M. Srikumar
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
| | - Joshitha Vijayan
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - B. Rakesh
- Indian Council of Agricultural Research (ICAR)-Central Island Agricultural Research Institute, Port Blair, India
| | - Soham Ray
- Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Jameel Akhtar
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Bharat Raj Meena
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sharik Ali
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. L. Krishnamurthy
- Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute, Karnal, India
| |
Collapse
|
6
|
Multiparent-Derived, Marker-Assisted Introgression Lines of the Elite Indian Rice Cultivar, ‘Krishna Hamsa’ Show Resistance against Bacterial Blight and Blast and Tolerance to Drought. PLANTS 2022; 11:plants11050622. [PMID: 35270092 PMCID: PMC8912774 DOI: 10.3390/plants11050622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Major biotic stresses viz., bacterial blight (BB) and blast and brown plant hopper (BPH) coupled with abiotic stresses like drought stress, significantly affect rice yields. To address this, marker-assisted intercross (IC) breeding involving multiple donors was used to combine three BB resistance genes—xa5, xa13 and Xa21, two blast resistance genes—Pi9 and Pi54, two BPH resistance genes—Bph20 and Bph21, and four drought tolerant quantitative trait loci (QTL)—qDTY1.1, qDTY2.1, qDTY3.1 and qDTY12.1—in the genetic background of the elite Indian rice cultivar ‘Krishna Hamsa’. Three cycles of selective intercrossing followed by selfing coupled with foreground selection and phenotyping for the target traits resulted in the development of 196 introgression lines (ILs) with a myriad of gene/QTL combinations. Based on the phenotypic reaction, the ILs were classified into seven phenotypic classes of resistance/tolerance to the following: (1) BB, blast and drought—5 ILs; (2) BB and blast—10 ILs; (3) BB and drought—9 ILs; (4) blast and drought—42 ILs; (5) BB—3 ILs; (6) blast—84 ILs; and (7) drought—43 ILs; none of the ILs were resistant to BPH. Positive phenotypic response (resistance) was observed to both BB and blast in 2 ILs, BB in 9 ILs and blast in 64 ILs despite the absence of corresponding R genes. Inheritance of resistance to BB and/or blast in such ILs could be due to the unknown genes from other parents used in the breeding scheme. Negative phenotypic response (susceptibility) was observed in 67 ILs possessing BB-R genes, 9 ILs with blast-R genes and 9 ILs harboring QTLs for drought tolerance. Complex genic interactions and recombination events due to the involvement of multiple donors explain susceptibility in some of the marker positive ILs. The present investigation successfully demonstrates the possibility of rapid development of multiple stress-tolerant/resistant ILs in the elite cultivar background involving multiple donors through selective intercrossing and stringent phenotyping. The 196 ILs in seven phenotypic classes with myriad of gene/QTL combinations will serve as a useful genetic resource in combining multiple biotic and abiotic stress resistance in future breeding programs.
Collapse
|
7
|
Dasari A, Vemulapalli P, Gonuguntla R, Thota DK, Elumalai P, Muppavarapu K, Butam LP, Kulkarni SR, Sinha P, Gunukula H, Kale RR, Muralidhara AD, Shaik H, Miriyala A, Karnati P, Shaik M, Shankar LG, Madamsetty SP, Sena B, Channappa G, Siddaih AM, Lella VSR, Didla RB, Mohammad LA, Jagarlamudi VR, Avula VG, Sundaram RM. Improvement of bacterial blight resistance of the popular variety, Nellore Mahsuri (NLR34449) through marker-assisted breeding. J Genet 2022. [DOI: 10.1007/s12041-021-01340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
9
|
Janaki Ramayya P, Vinukonda VP, Singh UM, Alam S, Venkateshwarlu C, Vipparla AK, Dixit S, Yadav S, Abbai R, Badri J, T. R, Phani Padmakumari A, Singh VK, Kumar A. Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance. PLoS One 2021; 16:e0256721. [PMID: 34473798 PMCID: PMC8412243 DOI: 10.1371/journal.pone.0256721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
The elite Indian rice variety, Naveen is highly susceptible to major biotic and abiotic stresses such as blast, bacterial blight (BB), gall midge (GM) and drought which limit its productivity in rainfed areas. In the present study, a combined approach of marker-assisted forward (MAFB) and back cross (MABC) breeding was followed to introgress three major genes, viz., Pi9 for blast, Xa21 for bacterial blight (BB), and Gm8 for gall midge (GM) and three major QTLs, viz., qDTY1.1, qDTY2.2 and qDTY4.1 conferring increased yield under drought in the background of Naveen. At each stage of advancement, gene-based/linked markers were used for the foreground selection of biotic and abiotic stress tolerant genes/QTLs. Intensive phenotype-based selections were performed in the field for identification of lines with high level of resistance against blast, BB, GM and drought tolerance without yield penalty under non-stress situation. A set of 8 MAFB lines and 12 MABC lines with 3 to 6 genes/QTLs and possessing resistance/tolerance against biotic stresses and reproductive stage drought stress with better yield performance compared to Naveen were developed. Lines developed through combined MAFB and MABC performed better than lines developed only through MAFB. This study exemplifies the utility of the combined approach of marker-assisted forward and backcrosses breeding for targeted improvement of multiple biotic and abiotic stress resistance in the background of popular mega varieties.
Collapse
Affiliation(s)
| | | | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Shamshad Alam
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Challa Venkateshwarlu
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Shilpi Dixit
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Shailesh Yadav
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Ragavendran Abbai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jyothi Badri
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad, India
| | - Ram T.
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad, India
| | | | - Vikas Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Arvind Kumar
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
- * E-mail:
| |
Collapse
|
10
|
Biswas MK, Bagchi M, Biswas D, Harikrishna JA, Liu Y, Li C, Sheng O, Mayer C, Yi G, Deng G. Genome-Wide Novel Genic Microsatellite Marker Resource Development and Validation for Genetic Diversity and Population Structure Analysis of Banana. Genes (Basel) 2020; 11:genes11121479. [PMID: 33317074 PMCID: PMC7763637 DOI: 10.3390/genes11121479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- Correspondence: (M.K.B.); (G.D.)
| | - Mita Bagchi
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- The College of Economics and Managements, South China Agricultural University, Guangzhou 510640, China
| | - Dhiman Biswas
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal 700064, India;
| | - Jennifer Ann Harikrishna
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuxuan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Christoph Mayer
- Forschungsmuseum Alexander Koenig, Bonn, Adenauerallee 160, 53113 Bonn, Germany;
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Correspondence: (M.K.B.); (G.D.)
| |
Collapse
|
11
|
Ramalingam J, Raveendra C, Savitha P, Vidya V, Chaithra TL, Velprabakaran S, Saraswathi R, Ramanathan A, Arumugam Pillai MP, Arumugachamy S, Vanniarajan C. Gene Pyramiding for Achieving Enhanced Resistance to Bacterial Blight, Blast, and Sheath Blight Diseases in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:591457. [PMID: 33329656 PMCID: PMC7711134 DOI: 10.3389/fpls.2020.591457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 05/27/2023]
Abstract
Bacterial blight, blast, and sheath blight are the commonest diseases causing substantial yield loss in rice around the world. Stacking of broad-spectrum resistance genes/QTLs into popular cultivars is becoming a major objective of any disease resistance breeding program. The varieties ASD 16 and ADT 43 are the two popular, high yielding, and widely grown rice cultivars of South India, which are susceptible to bacterial blight (BB), blast, and sheath blight diseases. The present study was carried out to improve the cultivars (ASD 16 and ADT 43) through introgression of bacterial blight (xa5, xa13, and Xa21), blast (Pi54), and sheath blight (qSBR7-1, qSBR11-1, and qSBR11-2) resistance genes/QTLs by MABB (marker-assisted backcross breeding). IRBB60 (xa5, xa13, and Xa21) and Tetep (Pi54; qSBR7-1, qSBR11-1, and qSBR11-2) were used as donors to introgress BB, blast, and sheath blight resistance into the recurrent parents (ASD 16 and ADT 43). Homozygous (BC3F3 generation), three-gene bacterial blight pyramided (xa5 + xa13 + Xa21) lines were developed, and these lines were crossed with Tetep to combine blast (Pi54) and sheath blight (qSBR7-1, qSBR11-1, and qSBR11-2) resistance. In BC3F3 generation, the improved pyramided lines carrying a total of seven genes/QTLs (xa5 + xa13 + Xa21 + Pi54 + qSBR7-1 + qSBR11-1 + qSBR11-2) were selected through molecular and phenotypic assay, and these were evaluated for resistance against bacterial blight, blast, and sheath blight pathogens under greenhouse conditions. We have selected nine lines in ASD 16 background and 15 lines in ADT 43 background, exhibiting a high degree of resistance to BB, blast, and sheath blight diseases and also possessing phenotypes of recurrent parents. The improved pyramided lines are expected to be used as improved varieties or used as a potential donor in breeding programs. The present study successfully introgressed Pi54, and qSBR QTLs (qSBR7-1, qSBR11-1, and qSBR11-2) from Tetep and major effective BB-resistant genes (xa5, xa13, and Xa21) from IRBB60 into the commercial varieties for durable resistance to multiple diseases.
Collapse
Affiliation(s)
- Jegadeesan Ramalingam
- Centre of Excellence for Innovations, Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chandavarapu Raveendra
- Centre of Excellence for Innovations, Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Palanisamy Savitha
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Venugopal Vidya
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Senthilvel Velprabakaran
- Centre of Excellence for Innovations, Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Ramasamy Saraswathi
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ayyasamy Ramanathan
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, India
| | | | | | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
12
|
Ramalingam J, Palanisamy S, Alagarasan G, Renganathan VG, Ramanathan A, Saraswathi R. Improvement of Stable Restorer Lines for Blast Resistance through Functional Marker in Rice ( Oryza sativa L.). Genes (Basel) 2020; 11:genes11111266. [PMID: 33121205 PMCID: PMC7692511 DOI: 10.3390/genes11111266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Two popular stable restorer lines, CB 87 R and CB 174 R, were improved for blast resistance through marker-assisted back-cross breeding (MABB). The hybrid rice development program in South India extensively depends on these two restorer lines. However, these restorer lines are highly susceptible to blast disease. To improve the restorer lines for resistance against blasts, we introgressed the broad-spectrum dominant gene Pi54 into these elite restorer lines through two independent crosses. Foreground selection for Pi54 was done by using gene-specific functional marker, Pi54 MAS, at each back-cross generation. Back-crossing was continued until BC3 and background analysis with seventy polymorphic SSRs covering all the twelve chromosomes to recover the maximum recurrent parent genome was done. At BC3F2, closely linked gene-specific/SSR markers, DRRM-RF3-10, DRCG-RF4-8, and RM 6100, were used for the identification of fertility restoration genes, Rf3 and Rf4, along with target gene (Pi54), respectively, in the segregating population. Subsequently, at BC3F3, plants, homozygous for the Pi54 and fertility restorer genes (Rf3 and Rf4), were evaluated for blast disease resistance under uniform blast nursery (UBN) and pollen fertility status. Stringent phenotypic selection resulted in the identification of nine near-isogenic lines in CB 87 R × B 95 and thirteen in CB 174 R × B 95 as the promising restorer lines possessing blast disease resistance along with restoration ability. The improved lines also showed significant improvement in agronomic traits compared to the recurrent parents. The improved restorer lines developed through the present study are now being utilized in our hybrid development program.
Collapse
Affiliation(s)
- Jegadeesan Ramalingam
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India;
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.P.); (G.A.)
- Correspondence:
| | - Savitha Palanisamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.P.); (G.A.)
| | - Ganesh Alagarasan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.P.); (G.A.)
| | | | - Ayyasamy Ramanathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.R.); (R.S.)
| | - Ramasamy Saraswathi
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.R.); (R.S.)
| |
Collapse
|
13
|
Joshi JB, Arul L, Ramalingam J, Uthandi S. Advances in the Xoo-rice pathosystem interaction and its exploitation in disease management. J Biosci 2020. [DOI: 10.1007/s12038-020-00085-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ramalingam J, Alagarasan G, Savitha P, Lydia K, Pothiraj G, Vijayakumar E, Sudhagar R, Singh A, Vedna K, Vanniarajan C. Improved host-plant resistance to Phytophthora rot and powdery mildew in soybean (Glycine max (L.) Merr.). Sci Rep 2020; 10:13928. [PMID: 32811867 PMCID: PMC7434881 DOI: 10.1038/s41598-020-70702-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
Soybean is an important oilseed cum vegetable crop, susceptible to various biotic stresses which is attributed to recent decline in crop productivity. The emergence of virulent biotypes/strains of different plant pathogens necessitates the development of new crop varieties with enhanced host resistance mechanisms. Pyramiding of multiple disease-resistant genes is one of the strategies employed to develop durable disease-resistant cultivars to the prevailing and emerging biotypes of pathogens. The present study, reports the successful introgression of two major R-genes, including Rps2 (Phytophthora rot resistance), Rmd-c (complete-powdery mildew resistance) and effective nodulating gene (rj2) through functional Marker-Assisted Backcross Breeding (MABB) in the genetic background of well-adapted and high yielding soybean varieties, CO 3 and JS 335. We have identified several promising introgressed lines with enhanced resistance to Phytophthora rot and powdery mildew. The improved soybean lines have exhibited medium to high level of resistance against powdery mildew and Phytophthora rot as well as displayed effective nodulation capacity. Our study has proven the generation of resistant genotypes to realize the potential of MABB for achieving host plant resistance in soybean. The improved lines developed can greatly assist the soybean breeding programs in India and other soybean growing countries for evolving disease-resistant varieties.
Collapse
Affiliation(s)
- Jegadeesan Ramalingam
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India.
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Ganesh Alagarasan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Palanisamy Savitha
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kelsey Lydia
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Govindan Pothiraj
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Eswaramoorthy Vijayakumar
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Rajaprakasam Sudhagar
- Centre for Plant Breeding and Genetics, Department of Pulses, Tamil Nadu Agricultural University, Coimbatore, India
| | - Amar Singh
- Department of Plant Pathology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Kumari Vedna
- Department of Plant Breeding and Genetics, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
15
|
Pyramiding Bacterial Blight Resistance Genes in Tainung82 for Broad-Spectrum Resistance Using Marker-Assisted Selection. Int J Mol Sci 2020; 21:ijms21041281. [PMID: 32074964 PMCID: PMC7072918 DOI: 10.3390/ijms21041281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Tainung82 (TNG82) is one of the most popular japonica varieties in Taiwan due to its relatively high yield and grain quality, however, TNG82 is susceptible to bacterial blight (BB) disease. The most economical and eco-friendly way to control BB disease in japonica is through the utilization of varieties that are resistant to the disease. In order to improve TNG82’s resistance to BB disease, five bacterial blight resistance genes (Xa4, xa5, Xa7, xa13 and Xa21) were derived from a donor parent, IRBB66 and transferred into TNG82 via marker-assisted backcrossing breeding. Five BB-resistant gene-linked markers were integrated into the backcross breeding program in order to identify individuals possessing the five identified BB-resistant genes (Xa4, xa5, Xa7, xa13 and Xa21). The polymorphic markers between the donor and recurrent parent were used for background selection. Plants having maximum contribution from the recurrent parent genome were selected in each generation and crossed with the recipient parent. Selected BC3F1 plants were selfed in order to generate homozygous BC3F2 plants. Nine pyramided plants, possessing all five BB-resistant genes, were obtained. These individuals displayed a high level of resistance against the BB strain, XF89-b. Different BB gene pyramiding lines were also inoculated against the BB pathogen, resulting in more than three gene pyramided lines that exhibited high levels of resistance. The five identified BB gene pyramided lines exhibited yield levels and other desirable agronomic traits, including grain quality and palatability, consistent with TNG82. Bacterial blight-resistant lines possessing the five identified BB genes exhibited not only higher levels of resistance to the disease, but also greater yield levels and grain quality. Pyramiding multiple genes with potential characteristics into a single genotype through marker-assisted selection can improve the efficiency of generating new crop varieties exhibiting disease resistance, as well as other desirable traits.
Collapse
|
16
|
Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Okporie E, Onyishi G, Utobo E, Ekwu L, Swaray S, Jalloh M. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1584054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Samuel Chibuike Chukwu
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Selangor, Malaysia
- Department of Crop Production and Landscape Management, Faculty of Agriculture and Natural Resources Management, Ebonyi State University, Abakaliki, Nigeria
| | - Mohd Y. Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Shairul Izan Ramlee
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Siti Izera Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Yussuf Oladosu
- Department of Crop Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri, Nigeria
| | - Emmanuel Okporie
- Department of Crop Production and Landscape Management, Faculty of Agriculture and Natural Resources Management, Ebonyi State University, Abakaliki, Nigeria
| | - Godwin Onyishi
- Department of Crop Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri, Nigeria
| | - Emeka Utobo
- Department of Crop Production and Landscape Management, Faculty of Agriculture and Natural Resources Management, Ebonyi State University, Abakaliki, Nigeria
| | - Lynda Ekwu
- Department of Crop Production and Landscape Management, Faculty of Agriculture and Natural Resources Management, Ebonyi State University, Abakaliki, Nigeria
| | - Senesie Swaray
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Momodu Jalloh
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| |
Collapse
|
17
|
Descalsota-Empleo GI, Noraziyah AAS, Navea IP, Chung C, Dwiyanti MS, Labios RJD, Ikmal AM, Juanillas VM, Inabangan-Asilo MA, Amparado A, Reinke R, Cruz CMV, Chin JH, Swamy BPM. Genetic Dissection of Grain Nutritional Traits and Leaf Blight Resistance in Rice. Genes (Basel) 2019; 10:E30. [PMID: 30626141 PMCID: PMC6356647 DOI: 10.3390/genes10010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Colored rice is rich in nutrition and also a good source of valuable genes/quantitative trait loci (QTL) for nutrition, grain quality, and pest and disease resistance traits for use in rice breeding. Genome-wide association analysis using high-density single nucleotide polymorphism (SNP) is useful in precisely detecting QTLs and genes. We carried out genome-wide association analysis in 152 colored rice accessions, using 22,112 SNPs to map QTLs for nutritional, agronomic, and bacterial leaf blight (BLB) resistance traits. Wide variations and normal frequency distributions were observed for most of the traits except anthocyanin content and BLB resistance. The structural and principal component analysis revealed two subgroups. The linkage disequilibrium (LD) analysis showed 74.3% of the marker pairs in complete LD, with an average LD distance of 1000 kb and, interestingly, 36% of the LD pairs were less than 5 Kb, indicating high recombination in the panel. In total, 57 QTLs were identified for ten traits at p < 0.0001, and the phenotypic variance explained (PVE) by these QTLs varied from 9% to 18%. Interestingly, 30 (53%) QTLs were co-located with known or functionally-related genes. Some of the important candidate genes for grain Zinc (Zn) and BLB resistance were OsHMA9, OsMAPK6, OsNRAMP7, OsMADS13, and OsZFP252, and Xa1, Xa3, xa5, xa13 and xa26, respectively. Red rice genotype, Sayllebon, which is high in both Zn and anthocyanin content, could be a valuable material for a breeding program for nutritious rice. Overall, the QTLs identified in our study can be used for QTL pyramiding as well as genomic selection. Some of the novel QTLs can be further validated by fine mapping and functional characterization. The results show that pigmented rice is a valuable resource for mineral elements and antioxidant compounds; it can also provide novel alleles for disease resistance as well as for yield component traits. Therefore, large opportunities exist to further explore and exploit more colored rice accessions for use in breeding.
Collapse
Affiliation(s)
- Gwen Iris Descalsota-Empleo
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- University of the Southern Mindanao, Kabacan, Cotabato 9407, Philippines.
| | | | - Ian Paul Navea
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Nousbo Corp. #4-107, 89 Seohoro, Gwonsun, Suwon 16614, Gyeonggi, Korea.
| | - Chongtae Chung
- Chungcheongnam-do Agricultural Research and Extension Services, 167, Chusa-ro, Shinam-myeon, Yesan-gun 32418, Chungcheongnam-do, Korea.
| | - Maria Stefanie Dwiyanti
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Applied Plant Genome Laboratory, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.
| | | | - Asmuni Mohd Ikmal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | - Amery Amparado
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | - Russell Reinke
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | | | - Joong Hyoun Chin
- Department of Integrative Bio-Industrial Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | | |
Collapse
|
18
|
de Almeida Lopes KB, Carpentieri-Pipolo V, Fira D, Balatti PA, López SMY, Oro TH, Stefani Pagliosa E, Degrassi G. Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J Appl Microbiol 2018; 125:1466-1481. [PMID: 29978936 DOI: 10.1111/jam.14041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
AIMS This research was aimed at identifying and characterizing endophytic micro-organisms associated with soybean that have antimicrobial activity towards soybean pathogens. METHODS AND RESULTS Soybean plants were collected from field trials in four locations of southern Brazil that were cultivated with conventional (C) and transgenic glyphosate-resistant (GR) soybeans. Endophytic bacteria isolated from roots, stems and leaves of soybeans were evaluated for their capacity to inhibit fungal and bacterial plant pathogens and 13 micro-organisms were identified with antagonistic activity. Approximately 230 bacteria were isolated and identified based on the 16S rRNA and rpoN gene sequences. Bacteria isolated from conventional and transgenic soybeans were significantly different not only in population diversity but also in their antagonistic capacity. Thirteen isolates showed in vitro antagonism against Sclerotinia sclerotiorum, Phomopsis sojae and Rhizoctonia solani. Bacillus sp. and Burkholderia sp. were the most effective isolates in controlling bacterial and fungal pathogens in vitro. Extracts and precipitates from culture supernatants of isolates showed different patterns of inhibitory activity on growth of fungal and bacterial pathogens. CONCLUSIONS Bacillus sp. and Burkholderia sp. were the most effective isolates in controlling fungal pathogens in vitro, and the activity is mainly due to peptides. However, most of the studied bacteria showed the presence of antimicrobial compounds in the culture supernatant, either peptides, bacteriocins or secondary metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY These results could be significant to develop tools for the biological control of soybean diseases. The work brought to the identification of micro-organisms such as Bacillus sp. and Burkholderia sp. that have the potential to protect crops in order to enhance a sustainable management system of crops. Furthermore, the study provides the first evidences of the influence of management as well as the genetics of glyphosate-resistant soybean on the diversity of bacterial endophytes of soybean phytobiome.
Collapse
Affiliation(s)
| | | | - Djordje Fira
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Fac. de Ciencias Agrarias y Forestales - UNLP, La Plata, Argentina
| | | | | | | | - Giuliano Degrassi
- International Center for Genetic Engineering and Biotechnology, Polo Cientifico Tecnologico, Buenos Aires, Argentina
| |
Collapse
|
19
|
Divya D, Madhavi KR, Dass MA, Maku RV, Mallikarjuna G, Sundaram RM, Laha GS, Padmakumari AP, Patel HK, Prasad MS, Sonti RV, Bentur JS. Expression Profile of Defense Genes in Rice Lines Pyramided with Resistance Genes Against Bacterial Blight, Fungal Blast and Insect Gall Midge. RICE (NEW YORK, N.Y.) 2018; 11:40. [PMID: 30006850 PMCID: PMC6045563 DOI: 10.1186/s12284-018-0231-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/02/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Rice, a major food crop of the world, endures many major biotic stresses like bacterial blight (BB), fungal blast (BL) and the insect Asian rice gall midge (GM) that cause significant yield losses. Progress in tagging, mapping and cloning of several resistance (R) genes against aforesaid stresses has led to marker assisted multigene introgression into elite cultivars for multiple and durable resistance. However, no detailed study has been made on possible interactions among these genes when expressed simultaneously under combined stresses. RESULTS Our studies monitored expression profiles of 14 defense related genes in 11 rice breeding lines derived from an elite cultivar with different combination of R genes against BB, BL and GM under single and multiple challenge. Four of the genes found implicated earlier under combined GM and BB stress were confirmed to be induced (≥ 2 fold) in stem tissue following GM infestation; while one of these, cytochrome P450 family protein, was also induced in leaf in plants challenged by either BB or BL but not together. Three of the genes highlighted earlier in plants challenged by both BB and BL were also found induced in stem under GM challenge. Pi54 the target R gene against BL was also found induced when challenged by GM. Though expression of some genes was noted to be inhibited under combined pest challenge, such effects did not result in compromise in resistance against any of the target pests. CONCLUSION While R genes generally tended to respond to specific pest challenge, several of the downstream defense genes responded to multiple pest challenge either single, sequential or simultaneous, without any distinct antagonism in expression of resistance to the target pests in two of the pyramided lines RPNF05 and RPNF08.
Collapse
Affiliation(s)
| | | | | | - Roshan Venkata Maku
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | | | | | - Gouri Sankar Laha
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030 India
| | | | - Hitendra Kumar Patel
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | | | - Ramesh Venkata Sonti
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | | |
Collapse
|