1
|
Guo K, Tang X, Liu Y, Cheng H, Liu H, Fan Y, Qi X, Xu R, Kang J, Li D, Wang G, Gershenzon J, Liu Y, Li S. From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415370. [PMID: 39792598 PMCID: PMC11884544 DOI: 10.1002/advs.202415370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.2-fold increased sesterterpene production. These structurally diverse products suggest a comprehensive cyclization mechanism for plant sesterterpenes and provide compelling evidence for the initial cyclization of geranylfarnesyl diphosphate via a crucial 15-membered monocyclic carbocation. The activities of these sesterterpenes against liver fibrosis is inferred from the inhibition of the transforming growth factor-β/Smad signaling pathway and collagen synthesis. These findings greatly expand the chemical space and biological functions of sesterterpenes and provide new insights into the catalytic mechanism of terpene synthases.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Hui‐Zhen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Huan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yu‐Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xiao‐Yu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Juan‐Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - De‐Sen Li
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Guo‐Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101P. R. China
| | | | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| |
Collapse
|
2
|
Jeong Y, Lee SH, Lee J, Kim MS, Lee YG, Hwang JT, Choi SY, Yoon HG, Lim TG, Lee SH, Choi HK. Water Extract of Capsella bursa-pastoris Mitigates Doxorubicin-Induced Cardiotoxicity by Upregulating Antioxidant Enzymes. Int J Mol Sci 2023; 24:15912. [PMID: 37958893 PMCID: PMC10648471 DOI: 10.3390/ijms242115912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, causes cardiotoxicity in a cumulative and dose-dependent manner. The aim of this study is to investigate the effects of hot-water extract of Capsella bursa-pastoris (CBW) on DOX-induced cardiotoxicity (DICT). We utilized H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells to evaluate the effects of CBW on DOX-induced cell death. Superoxide dismutase (SOD) levels, reactive oxygen species (ROS) production, and oxygen consumption rate were measured in H9c2 cells. C57BL/6 mice were treated with DOX and CBW to assess their impact on various cardiac parameters. Human-induced pluripotent stem-cell-derived cardiomyocytes were also used to investigate DOX-induced electrophysiological changes and the potential ameliorative effects of CBW. UPLC-TQ/MS analysis identified seven flavonoids in CBW, with luteolin-7-O-glucoside and isoorientin as the major compounds. CBW inhibited DOX-induced death of H9c2 rat cardiomyocytes but did not affect DOX-induced death of MDA-MB-231 human breast cancer cells. CBW increased SOD levels in a dose-dependent manner, reducing ROS production and increasing the oxygen consumption rate in H9c2 cells. The heart rate, RR interval, QT, and ST prolongation remarkably recovered in C57BL/6 mice treated with the combination of DOX and CBW compared to those in mice treated with DOX alone. Administration of CBW with DOX effectively alleviated collagen accumulation, cell death in mouse heart tissues, and reduced the levels of creatinine kinase (CK) and lactate dehydrogenase (LDH) in serum. Furthermore, DOX-induced pathological electrophysiological features in human-induced pluripotent stem-cell-derived cardiomyocytes were ameliorated by CBW. CBW may prevent DICT by stabilizing SOD and scavenging ROS. The presence of flavonoids, particularly luteolin-7-O-glucoside and isoorientin, in CBW may contribute to its protective effects. These results suggest the potential of CBW as a traditional therapeutic option to mitigate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yuhui Jeong
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Sun-Ho Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-H.L.); (H.-G.Y.)
| | - Jangho Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Min-Sun Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Yu-Geon Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Jin-Taek Hwang
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Sang-Yoon Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-H.L.); (H.-G.Y.)
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-H.L.); (H.-G.Y.)
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.J.); (J.L.); (M.-S.K.); (Y.-G.L.); (J.-T.H.); (S.-Y.C.)
| |
Collapse
|
3
|
Soorni J, Kazemitabar SK, Kahrizi D, Dehestani A, Bagheri N, Kiss A, Kovács PG, Papp I, Mirmazloum I. Biochemical and Transcriptional Responses in Cold-Acclimated and Non-Acclimated Contrasting Camelina Biotypes under Freezing Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3178. [PMID: 36432910 PMCID: PMC9693809 DOI: 10.3390/plants11223178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Cold-acclimated and non-acclimated contrasting Camelina (Camelina sativa L.) biotypes were investigated for changes in stress-associated biomarkers, including antioxidant enzyme activity, lipid peroxidation, protein, and proline content. In addition, a well-known freezing tolerance pathway participant known as C-repeat/DRE-binding factors (CBFs), an inducer of CBF expression (ICE1), and a cold-regulated (COR6.6) genes of the ICE-CBF-COR pathway were studied at the transcriptional level on the doubled-haploid (DH) lines. Freezing stress had significant effects on all studied parameters. The cold-acclimated DH34 (a freezing-tolerant line) showed an overall better performance under freezing stress than non-acclimated plants. The non-cold-acclimated DH08 (a frost-sensitive line) showed the highest electrolyte leakage after freezing stress. The highest activity of antioxidant enzymes (glutathione peroxidase, superoxide dismutase, and catalase) was also detected in non-acclimated plants, whereas the cold-acclimated plants showed lower enzyme activities upon stress treatment. Cold acclimation had a significantly positive effect on the total protein and proline content of stressed plants. The qRT-PCR analysis revealed significant differences in the expression and cold-inducibility of CsCBF1-3, CsICE1, and CsCOR6.6 genes among the samples of different treatments. The highest expression of all CBF genes was recorded in the non-acclimated frost-tolerant biotype after freezing stress. Interestingly a significantly higher expression of COR6.6 was detected in cold-acclimated samples of both frost-sensitive and -tolerant biotypes after freezing stress. The presented results provide more insights into freezing tolerance mechanisms in the Camelina plant from both a biochemical point of view and the expression of the associated genes.
Collapse
Affiliation(s)
- Jahad Soorni
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 68984, Iran
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari 68984, Iran
| | - Seyed Kamal Kazemitabar
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 68984, Iran
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Razi University, Kermanshah 67144, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari 68984, Iran
| | - Nadali Bagheri
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 68984, Iran
| | - Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro-, Food- and Environmental Science, Debrecen University, H-4032 Debrecen, Hungary
| | - Péter Gergő Kovács
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - István Papp
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
4
|
Tang C, Xie J, Lv J, Li J, Zhang J, Wang C, Liang G. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:395-409. [PMID: 33740679 DOI: 10.1016/j.plaphy.2021.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/05/2021] [Indexed: 05/03/2023]
Abstract
As a typical thermophilous vegetable, the growth and yield of peppers are easily limited by chilling conditions. Zeaxanthin, a crucial carotenoid, positively regulates plant abiotic stress responses. Therefore, this study investigated the regulatory mechanisms of zeaxanthin-induced chilling tolerance in peppers. The results indicated that the pretreatment with zeaxanthin effectively alleviated chilling damage in pepper leaves and increased the plant fresh weight and photosynthetic pigment content under chilling stress. Additionally, alterations in photosynthetic chlorophyll fluorescence parameters and chlorophyll fluorescence induction curves after zeaxanthin treatment highlighted the participation of zeaxanthin in improving the photosystem response to chilling stress by heightening the quenching of excess excitation energy and protection of the photosynthetic electron transport system. In chill-stressed plants, zeaxanthin treatment also enhanced antioxidant enzyme activity and transcript expression, and reduced hydrogen peroxide (H2O2) and superoxide anion (O2•-) content, resulting in a decrease in biological membrane damage. Additionally, exogenous zeaxanthin upregulated the expression levels of key genes encoding β-carotene hydroxylase (CaCA1, CaCA2), zeaxanthin epoxidase (CaZEP) and violaxanthin de-epoxidase (CaVDE), and promoted the synthesis of endogenous zeaxanthin during chilling stress. Collectively, exogenous zeaxanthin pretreatment enhances plant tolerance to chilling by improving the photosystem process, increasing oxidation resistance, and inducing alterations in endogenous zeaxanthin metabolism.
Collapse
Affiliation(s)
- Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| |
Collapse
|
5
|
Dos Reis MV, Rouhana LV, Sadeque A, Koga L, Clough SJ, Calla B, Paiva PDDO, Korban SS. Genome-wide expression of low temperature response genes in Rosa hybrida L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:238-248. [PMID: 31765955 DOI: 10.1016/j.plaphy.2019.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Plants respond to low temperature stress during cold acclimation, a complex process involving changes in physiological and biochemical modifications. The rose serves as a good model to investigate low temperature responses in perennial ornamentals. In this study, a heterologous apple microarray is used to investigate genome-wide expression profiles in Rosa hybrida subjected to low temperature dark treatment. Transcriptome profiles are determined in floral buds at 0h, 2h, and 12h of low temperature treatment (4 °C). It is observed that a total of 134 transcripts are up-regulated and 169 transcripts are down-regulated in response to low temperature. Interestingly, a total of eight up-regulated genes, including those coding for two cytochrome P450 proteins, two ankyrin repeat family proteins, two metal ion binding proteins, and two zinc finger protein-related transcription factors, along with a single down-regulated gene, coding for a dynamin-like protein, are detected. Transcript profiles of 12 genes known to be involved in cold stress response are also validated using qRT-PCR. Furthermore, expression patterns of the AP2/ERF gene family of transcription factors are investigated in both floral buds and leaves. Overall, AP2/ERFs genes are more rapidly induced in leaves than in floral buds. Moreover, differential expression of several AP2/ERF genes are detected earlier in vegetative rather than in reproductive tissues. These findings highlight important roles of various low temperature response genes in mediating cold acclimation, thereby allowing roses to adapt to low temperatures, but without adversely affecting flower bud development and subsequent flowering, while vegetative tissues undergo early adaptation to low temperatures.
Collapse
Affiliation(s)
- Michele Valquíria Dos Reis
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Agriculture, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - Laura Vaughn Rouhana
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ahmed Sadeque
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lucimara Koga
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; USDA-ARS, Urbana, IL, 61801, USA
| | - Bernanda Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Noman A, Ali Q, Maqsood J, Iqbal N, Javed MT, Rasool N, Naseem J. Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. CHEMOSPHERE 2018; 195:175-189. [PMID: 29268176 DOI: 10.1016/j.chemosphere.2017.12.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/30/2017] [Accepted: 12/09/2017] [Indexed: 05/19/2023]
Abstract
Water shortage appears to be expedited under the current climate change scenario worldwide. The present work was aimed to investigate the effects of zinc-chelated lysine (Zn-Lys) on germination and yield of water stressed radish plants. The research was comprised of two studies where the effect of Zn-Lys seed priming on germination attributes under PEG-induced water stress was investigated in the first experiment. In the second experiment, growth, physio-biochemical, and yield responses of water-stressed radish plants raised from Zn-Lys primed seeds were recorded. The seeds pre-conditioned with 0, 1.5, 3, 4.5, or 6 mg kg-1 of Zn-Lys was grown in petri-dishes and pots. Priming treatments significantly improved the germination attributes under water stress. Plants raised from primed seeds exhibited significant improvements in plant biomass production, leaf photosynthetic pigments, final root yield, and nutritional quality. Furthermore, the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased, while the melondialdehyde (MDA) content decreased. Root flavonoids, ascorbic acid, carotenoids, protein, carbohydrates, fiber and lysine content were significantly improved due to Zn-Lys seed priming, both under water-stressed and non-stressed conditions. Moreover, plant's mineral nutrients such as K and Ca as well as Mg, Fe, P, and Zn of final harvested roots were also improved due to Zn-Lys seed priming. Overall, for the induction of drought tolerance and nutritional quality, Zn-Lys regimes of 3 and 4.5 mg kg-1 were most effective. It can be inferred that the Zn-Lys priming maintained a potential balance of nutrient uptake and translocation by preventing drought-induced lipid peroxidation of membranes.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Maqsood
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Naeem Iqbal
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - M Tariq Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Jazia Naseem
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|