1
|
Kaur V, Gomashe SS, Yadav SK, Singh D, Sheela, Chauhan SS, Kumar V, Jat B, Tayade NR, Langyan S, Kaushik N, Singh M, Kheralia M, Wankhede DP, Aravind J, Srivastava V, Gupta K, Kumar A, Singh GP. Leveraging genetic resource diversity and identification of trait-enriched superior genotypes for accelerated improvement in linseed (Linum usitatissimum L.). Sci Rep 2024; 14:20266. [PMID: 39217216 PMCID: PMC11365958 DOI: 10.1038/s41598-024-71044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Linseed or flaxseed, native to the Indian subcontinent, had undergone domestication, edaphic selection and evolutionary processes that may have resulted in huge genetic variability in Indian genotypes. To understand the hitherto unexplored genetic diversity for sustainable flaxseed production amid challenges of climate fluctuation and identify trait-specific high-yielding genotypes, 2576 unique linseed accessions were comprehensively evaluated for 36 traits for up to six environments representing two major agroecological zones in India. A wide range of variability was recorded for days to initiation of flowering (42.86-114.99), plant height (43.31-122.88 cm), capsules/plant (64.62-375.87), seed size (6.06-14.44 cm2), thousand seed weight (2.80-11.86 g), seed yield (2.93-17.28 g/plant), oil content (30.14-45.96%) and fatty acid profile especially the key constituent omega-3 fatty acid (25.4-65.88%). Most of the traits such as plant height, flowering time, seed yield, seed and capsule size showed a high or moderately high level of variance coupled with high broad sense heritability indicating precise capturing of less heritable quantitative traits. The infraspecific classification of the tested collection revealed the seed/oil type (2498 accessions) as the dominant morphotype over dual-purpose/fiber flax (78 accessions) in the conserved collection. Correlation analysis indicated a significant positive association between flowering time, plant height, days to maturity and oil content. Trait-specific superior genotypes for earliness (50% flowering in < 60 days, maturity in < 122 days), bold seeds with high thousand seed weight (> 11 g), capsules/plant (> 350), oil content (> 45%) and fatty acid composition (> 65% alpha-linolenic acid) were identified to aid genetic improvement of linseed and to broaden the narrow genetic base.
Collapse
Affiliation(s)
- Vikender Kaur
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
| | - Sunil S Gomashe
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), Regional Station-Akola, Akola, Maharashtra, India
| | - Shashank K Yadav
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Devender Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Sheela
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Shubhendra Singh Chauhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Vinay Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Balram Jat
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Nandan Ramesh Tayade
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), Regional Station-Akola, Akola, Maharashtra, India
| | - Sapna Langyan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Gautam Buddha Nagar, Noida, UP, India
| | - Mamta Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Munisha Kheralia
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | | | - J Aravind
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Vartika Srivastava
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Kavita Gupta
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Ashok Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| |
Collapse
|
2
|
Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Feng Y, Ghosh S, Agyenim-Boateng KG, Liu Y, Yao L, Li J, Li B, Wang B, Sun J. Effect of Origin, Seed Coat Color, and Maturity Group on Seed Isoflavones in Diverse Soybean Germplasm. PLANTS (BASEL, SWITZERLAND) 2024; 13:1774. [PMID: 38999614 PMCID: PMC11243943 DOI: 10.3390/plants13131774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
Soybeans are grown worldwide owing to their protein, oil, and beneficial bioactive compounds. Genetic and environmental factors influence soybean seed isoflavones. In the present study, we profiled the seed isoflavones in world diverse soybean germplasm grown in two locations over two years in China. Significant differences (p < 0.001) were observed between the accessions, accession origins, seed coat colors, and maturity groups for individual and total isoflavone (TIF) content. TIF content of the soybean accessions ranged from 677.25 μg g-1 to 5823.29 μg g-1, representing an 8-fold difference. USA soybean accessions showed the highest mean TIF content (3263.07 μg g-1), followed by Japan (2521.26 μg g-1). Soybean with black seed coat showed the highest (3236.08 μg g-1) TIF concentration. Furthermore, isoflavone levels were significantly higher in late-maturity groups. Correlation analysis revealed significant positive associations between individual and TIF content. Malonyldaidzin and malonylgenistin showed higher correlations with TIF content (r = 0.92 and r = 0.94, respectively). The soybean accessions identified as having high and stable TIF content can be utilized in the food and pharmaceutical industries and breeding programs to develop soybean varieties with enhanced isoflavone content.
Collapse
Affiliation(s)
- Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shengrui Zhang
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Jie Qi
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | | | - Abdulwahab Saliu Shaibu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Agronomy, Bayero University, Kano 700001, Nigeria
| | - Yue Feng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Suprio Ghosh
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Kwadwo Gyapong Agyenim-Boateng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yitian Liu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Luming Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bin Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junming Sun
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
3
|
Abtahi M, Mirlohi A. Quality assessment of flax advanced breeding lines varying in seed coat color and their potential use in the food and industrial applications. BMC PLANT BIOLOGY 2024; 24:60. [PMID: 38254037 PMCID: PMC10804595 DOI: 10.1186/s12870-024-04733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND With the increasing consumer awareness of the strong relationship between food and health, flax became a promising functional food due to its bioactive nutraceutical composition. Intra-specific crosses of eight contrasting flax genotypes were performed previously, and within segregating F6 progeny families, we investigated a close-up composition of phytochemicals derived from whole seeds. RESULTS The considerable genetic variation among the flax F6 families suggested that intra-specific hybridization is essential in flax breeding to obtain and broaden genetic variability and largely affirmed the opportunity for selecting promising lines. Also, significant variations in the targeted metabolite contents and antioxidant properties were observed among brown and yellow-seeded families. Notably, brown-seeded families expressed the highest average values of saturated fatty acids, protein, fiber, tocopherol, phenolics, SDG, and SECO lignans. Yellow-seeded families represented the highest average content of unsaturated fatty acids and mucilage. The cultivation year significantly affects flaxseed's composition and functional properties, presumably due to temperature, humidity, and sunshine time differences. Interestingly, the seeds obtained in warmer conditions were more potent and had more chemical constituents. The favorable genetic correlations among all evaluated traits suggest the possibility of joint genetic selection for several nutritional and phytochemical characteristics in flax. The current study highlights the importance and utilization of 19 top families as their seeds and oil play imperative roles in the pharmaceuticals and food industries. The antioxidant capacity of the seeds showed that families 84B, 23B, 35Y, 95Y, 30B, 88B, and 78B serve as a natural source of dietary antioxidants beneficial to human health. To increase the oxidative stability of the flaxseed oil, the quality evaluation identified some families with low levels of linolenic acid. CONCLUSIONS These findings are essential to improving flaxseed's nutritional quality and therapeutic properties through a bulk breeding program.
Collapse
Affiliation(s)
- Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Isfahan, 84156-83111, Iran.
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Isfahan, 84156-83111, Iran
| |
Collapse
|
4
|
He L, Sui Y, Che Y, Wang H, Rashid KY, Cloutier S, You FM. Genome-wide association studies using multi-models and multi-SNP datasets provide new insights into pasmo resistance in flax. FRONTIERS IN PLANT SCIENCE 2023; 14:1229457. [PMID: 37954993 PMCID: PMC10634603 DOI: 10.3389/fpls.2023.1229457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 11/14/2023]
Abstract
Introduction Flax (Linum usitatissimum L.) is an economically important crop due to its oil and fiber. However, it is prone to various diseases, including pasmo caused by the fungus Septoria linicola. Methods In this study, we conducted field evaluations of 445 flax accessions over a five-year period (2012-2016) to assess their resistance to pasmo A total of 246,035 single nucleotide polymorphisms (SNPs) were used for genetic analysis. Four statistical models, including the single-locus model GEMMA and the multi-locus models FarmCPU, mrMLM, and 3VmrMLM, were assessed to identify quantitative trait nucleotides (QTNs) associated with pasmo resistance. Results We identified 372 significant QTNs or 132 tag QTNs associated with pasmo resistance from five pasmo resistance datasets (PAS2012-PAS2016 and the 5-year average, namely PASmean) and three genotypic datasets (the all SNPs/ALL, the gene-based SNPs/GB and the RGA-based SNPs/RGAB). The tag QTNs had R2 values of 0.66-16.98% from the ALL SNP dataset, 0.68-20.54%from the GB SNP dataset, and 0.52-22.42% from the RGAB SNP dataset. Of these tag QTNs, 93 were novel. Additionally, 37 resistance gene analogs (RGAs)co-localizing with 39 tag QTNs were considered as potential candidates for controlling pasmo resistance in flax and 50 QTN-by-environment interactions(QEIs) were identified to account for genes by environmental interactions. Nine RGAs were predicted as candidate genes for ten QEIs. Discussion Our results suggest that pasmo resistance in flax is polygenic and potentially influenced by environmental factors. The identified QTNs provide potential targets for improving pasmo resistance in flax breeding programs. This study sheds light on the genetic basis of pasmo resistance and highlights the importance of considering both genetic and environmental factors in breeding programs for flax.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Huixian Wang
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou, China
| | - Khalid Y. Rashid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
5
|
Kaur V, Singh M, Wankhede DP, Gupta K, Langyan S, Aravind J, Thangavel B, Yadav SK, Kalia S, Singh K, Kumar A. Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies - a review. Front Nutr 2023; 10:1165580. [PMID: 37324736 PMCID: PMC10267467 DOI: 10.3389/fnut.2023.1165580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.
Collapse
Affiliation(s)
- Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kavita Gupta
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jayaraman Aravind
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Boopathi Thangavel
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Kuldeep Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
6
|
Abtahi M, Mirlohi A, Sharif-Moghaddam N, Ataii E. Revealing seed color variation and their possible association with yield and quality traits in a diversity panel of flax ( Linum Usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1038079. [PMID: 36438141 PMCID: PMC9691844 DOI: 10.3389/fpls.2022.1038079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Seed color is a vital quality determinant of flax, significant for consumers' acceptability, and determines the commercial values of seeds. Also, seed color as a phenotypic marker may be a convenient way to select the plants with desired traits. This study assessed a diversity panel representing 144 flax genotypes from diverse geographical origins for the existence of genetic variability for luminosity (L*) and chromaticity (a* and b*) seed color parameters, seed yield, and quality traits over two years. The genetic variance was significant for seed color parameters, demonstrating the presence of significant genetic variability, which provides a resource to objectively evaluate and select flax genotypes based on seed color according to the market demand. High heritability combined with the high genotypic coefficient of variation observed for seed yield, oil, and protein content suggested a better genetic gain upon selecting these traits. Seed yield, seed quality traits, and phenological traits showed significant negative correlation with L* and b* parameters and positive correlation with a* suggesting that the seeds' dark background and brown color can serve as marker characters to prescreen early-flowering, high-yielding and oil and protein-rich genotypes. Interestingly 48 brown-seeded genotypes were identified as early-flowering with short height, large seeds, high thousand seed weight, and capsule diameter. In addition, 34 genotypes were characterized by light-colored yellow seeds, large seeds, late-flowering with shorter height, and high branch numbers. Our results highlighted that North America and Australia-belonged genotypes were lighter yellow-seeded than the ones from other continents. Flax genotypes from South America and Asia were high-yielding, while genotypes from North America were low-yielding genotypes. Moreover, darker brown-seeded genotypes have prevailed in the South American continent.
Collapse
Affiliation(s)
- Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | | | |
Collapse
|
7
|
Jiang H, Guo D, Liu Y, Zhu L, Xie F, Xie L. RNA-Seq combined with population-level analysis reveals important candidate genes related to seed size in flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1015399. [PMID: 36388602 PMCID: PMC9641021 DOI: 10.3389/fpls.2022.1015399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Seed size is a key determinant of crop yields. Understanding the regulatory mechanisms of seed size is beneficial for improving flax seed yield. In this study, the development of large flax seeds lagged behind that of small seeds, and 1,751 protein-coding genes were differentially expressed in early seeds, torpedo-stage embryos, and endosperms of CIli2719 and Z11637 using RNA sequencing. Homologous alignment revealed that 129 differentially expressed genes (DEGs) in flax were homologous with 71 known seed size-related genes in Arabidopsis thaliana and rice (Oryza sativa L.). These DEGs controlled seed size through multiple processes and factors, among which phytohormone pathways and transcription factors were the most important. Moreover, 54 DEGs were found to be associated with seed size and weight in a DEG-based association study. Nucleotide diversity (π) analysis of seed size-related candidate DEGs by homologous alignment and association analysis showed that the π values decreased significantly during flax acclimation from oil to fiber flax, suggesting that some seed size-related candidate genes were selected in this acclimation process. These results provide important resources and genetic foundation for further research on seed size regulation and seed improvement in flax.
Collapse
|
8
|
Abtahi M, Mirlohi A, Zare S. Selection of promising lines for yield and quality traits in advanced segregating generation of linseed. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Sara Zare
- Department of Agronomy and Plant Breeding, College of Agriculture Isfahan University of Technology Isfahan Iran
| |
Collapse
|
9
|
You FM, Rashid KY, Zheng C, Khan N, Li P, Xiao J, He L, Yao Z, Cloutier S. Insights into the Genetic Architecture and Genomic Prediction of Powdery Mildew Resistance in Flax ( Linum usitatissimum L.). Int J Mol Sci 2022; 23:ijms23094960. [PMID: 35563347 PMCID: PMC9104541 DOI: 10.3390/ijms23094960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022] Open
Abstract
Powdery mildew (PM), caused by the fungus Oidium lini in flax, can cause defoliation and reduce seed yield and quality. To date, one major dominant gene (Pm1) and three quantitative trait loci (QTL) on chromosomes 1, 7 and 9 have been reported for PM resistance. To fully dissect the genetic architecture of PM resistance and identify QTL, a diverse flax core collection of 372 accessions augmented with an additional 75 breeding lines were sequenced, and PM resistance was evaluated in the field for eight years (2010–2017) in Morden, Manitoba, Canada. Genome-wide association studies (GWAS) were performed using two single-locus and seven multi-locus statistical models with 247,160 single nucleotide polymorphisms (SNPs) and the phenotypes of the 447 individuals for each year separately as well as the means over years. A total of 349 quantitative trait nucleotides (QTNs) were identified, of which 44 large-effect QTNs (R2 = 10–30%) were highly stable over years. The total number of favourable alleles per accession was significantly correlated with PM resistance (r = 0.74), and genomic selection (GS) models using all identified QTNs generated significantly higher predictive ability (r = 0.93) than those constructed using the 247,160 genome-wide random SNP (r = 0.69), validating the overall reliability of the QTNs and showing the additivity of PM resistance in flax. The QTNs were clustered on the distal ends of all 15 chromosomes, especially on chromosome 5 (0.4–5.6 Mb and 9.4–16.9 Mb) and 13 (4.7–5.2 Mb). To identify candidate genes, a dataset of 3230 SNPs located in resistance gene analogues (RGAs) was used as input for GWAS, from which an additional 39 RGA-specific QTNs were identified. Overall, 269 QTN loci harboured 445 RGAs within the 200 Kb regions spanning the QTNs, including 45 QTNs located within the RGAs. These RGAs supported by significant QTN/SNP allele effects were mostly nucleotide binding site and leucine-rich repeat receptors (NLRs) belonging to either coiled-coil (CC) NLR (CNL) or toll interleukin-1 (TIR) NLR (TNL), receptor-like kinase (RLK), receptor-like protein kinase (RLP), transmembrane-coiled-coil (TM-CC), WRKY, and mildew locus O (MLO) genes. These results constitute an important genomic tool for resistance breeding and gene cloning for PM in flax.
Collapse
Affiliation(s)
- Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Correspondence: (F.M.Y.); (S.C.); Tel.: +1-613-759-1539 (F.M.Y.); +1-613-759-1744 (S.C.)
| | - Khalid Y. Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (K.Y.R.); (Z.Y.)
| | - Chunfang Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
| | - Nadeem Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
| | - Jin Xiao
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China;
| | - Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China;
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (K.Y.R.); (Z.Y.)
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Correspondence: (F.M.Y.); (S.C.); Tel.: +1-613-759-1539 (F.M.Y.); +1-613-759-1744 (S.C.)
| |
Collapse
|
10
|
Ghosh S, Zhang S, Azam M, Gebregziabher BS, Abdelghany AM, Shaibu AS, Qi J, Feng Y, Agyenim-Boateng KG, Liu Y, Feng H, Li Y, Li J, Li B, Sun J. Natural Variation of Seed Tocopherol Composition in Diverse World Soybean Accessions from Maturity Group 0 to VI Grown in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:206. [PMID: 35050094 PMCID: PMC8779575 DOI: 10.3390/plants11020206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Tocopherols are natural antioxidants that increase the stability of fat-containing foods and are well known for their health benefits. To investigate the variation in seed tocopherol composition of soybeans from different origins, 493 soybean accessions from different countries (China, USA, Japan, and Russia) belonging to 7 maturity groups (MG 0-VI) were grown in 2 locations (Beijing and Hainan Provinces of China) for 2 years (2017 and 2018). The results showed that significant differences (p < 0.001) were observed among the accessions and origins for individual and total tocopherol contents. The total tocopherol content ranged from 118.92 μg g-1 to 344.02 μg g-1. Accessions from the USA had the highest average concentration of γ- and total tocopherols (152.92 and 238.21 μg g-1, respectively), whereas a higher level of α-tocopherol (12.82 μg g-1) was observed in the Russian accessions. The maturity group of the accession significantly (p < 0.001) influenced all tocopherol components, and higher levels of α-, γ-, and total tocopherols were observed in early maturing accessions, while late-maturing accessions exhibited higher levels of δ-tocopherol. The inclination of tocopherol concentrations with various MGs provided further evidence of the significance of MG in soybean breeding for seed tocopherol components. Furthermore, the correlation between the seed tocopherol components and geographical factors revealed that α-, γ-, and total tocopherols had significant positive correlations with latitude, while δ-tocopherol showed an opposite trend. The elite accessions with high and stable tocopherol concentrations determined could be used to develop functional foods, industrial materials, and breeding lines to improve tocopherol composition in soybean seeds.
Collapse
Affiliation(s)
- Suprio Ghosh
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Shengrui Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Muhammad Azam
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Berhane S. Gebregziabher
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Crop Sciences Research Department, Mehoni Agricultural Research Center, Maichew 7020, Ethiopia
| | - Ahmed M. Abdelghany
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Abdulwahab S. Shaibu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Department of Agronomy, Bayero University, Kano 700001, Nigeria
| | - Jie Qi
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Yue Feng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Yitian Liu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Huoyi Feng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Yecheng Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Jing Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Bin Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Junming Sun
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| |
Collapse
|
11
|
Zare S, Mirlohi A, Saeidi G, Sabzalian MR, Ataii E. Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Sci Rep 2021; 11:23958. [PMID: 34907195 PMCID: PMC8671436 DOI: 10.1038/s41598-021-02604-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/15/2021] [Indexed: 12/05/2022] Open
Abstract
This study aimed to investigate the effect of yellow and brown seed coat color of flax on lignan content, seed yield, and yield components under two contrasting environments of non-stress and water stress conditions. The water stress environment intensified the discrimination between the two seed color groups as the yellow seeded families had lower values for seed yield components under the water stress. Heritability and the genetic advance for seed yield were significantly higher in brown-seeded families than those of yellow-seeded ones at water stress conditions. Secoisolariciresinol diglucoside (SDG) as the chief lignan in flaxseed was more abundant in yellow-seeded families under the non-stress environment but under water stress conditions, it increased in brown seeded families and exceeded from yellow ones. Considering that the brown and yellow seed color families were full sibs and shared a similar genetic background but differed in seed color, it is concluded that a considerable interaction exists between the flax seed color and moisture stress concerning its effect on seed yield and yield components and also the seed SDG content. Brown-seeded genotypes are probably preferred for cultivation under water stress conditions for better exploitation of flax agronomic and nutritional potentials.
Collapse
Affiliation(s)
- Sara Zare
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran.
| | - Ehsan Ataii
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156 83111, Isfahan, Iran
| |
Collapse
|
12
|
Yuan H, Guo W, Zhao L, Yu Y, Chen S, Tao L, Cheng L, Kang Q, Song X, Wu J, Yao Y, Huang W, Wu Y, Liu Y, Yang X, Wu G. Genome-wide identification and expression analysis of the WRKY transcription factor family in flax (Linum usitatissimum L.). BMC Genomics 2021; 22:375. [PMID: 34022792 PMCID: PMC8141250 DOI: 10.1186/s12864-021-07697-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Members of the WRKY protein family, one of the largest transcription factor families in plants, are involved in plant growth and development, signal transduction, senescence, and stress resistance. However, little information is available about WRKY transcription factors in flax (Linum usitatissimum L.). RESULTS In this study, comprehensive genome-wide characterization of the flax WRKY gene family was conducted that led to prediction of 102 LuWRKY genes. Based on bioinformatics-based predictions of structural and phylogenetic features of encoded LuWRKY proteins, 95 LuWRKYs were classified into three main groups (Group I, II, and III); Group II LuWRKYs were further assigned to five subgroups (IIa-e), while seven unique LuWRKYs (LuWRKYs 96-102) could not be assigned to any group. Most LuWRKY proteins within a given subgroup shared similar motif compositions, while a high degree of motif composition variability was apparent between subgroups. Using RNA-seq data, expression patterns of the 102 predicted LuWRKY genes were also investigated. Expression profiling data demonstrated that most genes associated with cellulose, hemicellulose, or lignin content were predominantly expressed in stems, roots, and less in leaves. However, most genes associated with stress responses were predominantly expressed in leaves and exhibited distinctly higher expression levels in developmental stages 1 and 8 than during other stages. CONCLUSIONS Ultimately, the present study provides a comprehensive analysis of predicted flax WRKY family genes to guide future investigations to reveal functions of LuWRKY proteins during plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Hongmei Yuan
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Wendong Guo
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Lijuan Zhao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Si Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lei Tao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lili Cheng
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Qinghua Kang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xixia Song
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jianzhong Wu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yubo Yao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying Wu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yan Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xue Yang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Guangwen Wu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| |
Collapse
|
13
|
Sertse D, You FM, Ravichandran S, Soto-Cerda BJ, Duguid S, Cloutier S. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:191-212. [PMID: 33047220 DOI: 10.1007/s00122-020-03691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 05/19/2023]
Abstract
QTNs associated with drought tolerance traits and indices were identified in a flax mini-core collection through multiple GWAS models and phenotyping at multiple locations under irrigated and non-irrigated field conditions. Drought is a critical phenomenon challenging today's agricultural sector. Crop varieties adapted to moisture deficit are becoming vital. Flax can be greatly affected by limiting moisture conditions, especially during the early development and reproductive stages. Here, a mini-core collection comprising genotypes from more than 20 major growing countries was evaluated for 11 drought-related traits in irrigated and non-irrigated fields for 3 years. Heritability of the traits ranged from 44.7 to 86%. Six of the 11 traits showed significant phenotypic difference between irrigated and non-irrigated conditions. A genome-wide association study (GWAS) was performed for these six traits and their corresponding stress indices based on 106 genotypes and 12,316 single nucleotide polymorphisms (SNPs) using six multi-locus and one single-locus models. The SNPs were then assigned to 8050 linkage disequilibrium (LD) blocks to which a restricted two-stage multi-locus multi-allele GWAS was applied. A total of 144 quantitative trait nucleotides (QTNs) and 13 LD blocks were associated with at least one trait or stress index. Of these, 16 explained more than 15% of the genetic variance. Most large-effect QTN loci harbored gene(s) previously predicted to play role(s) in the associated traits. Genes mediating responses to abiotic stresses resided at loci associated with stress indices. Flax genes Lus10009480 and Lus10030150 that are predicted to encode WAX INDUCER1 and STRESS-ASSOCIATED PROTEIN (SAP), respectively, are among the important candidates detected. Accessions with multiple favorable alleles outperformed others for grain yield, thousand seed weight and fiber/biomass in non-irrigated conditions, suggesting their potential usefulness in breeding and genomic selection.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Centre (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Scott Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Lan S, Zheng C, Hauck K, McCausland M, Duguid SD, Booker HM, Cloutier S, You FM. Genomic Prediction Accuracy of Seven Breeding Selection Traits Improved by QTL Identification in Flax. Int J Mol Sci 2020; 21:ijms21051577. [PMID: 32106624 PMCID: PMC7084455 DOI: 10.3390/ijms21051577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular markers are one of the major factors affecting genomic prediction accuracy and the cost of genomic selection (GS). Previous studies have indicated that the use of quantitative trait loci (QTL) as markers in GS significantly increases prediction accuracy compared with genome-wide random single nucleotide polymorphism (SNP) markers. To optimize the selection of QTL markers in GS, a set of 260 lines from bi-parental populations with 17,277 genome-wide SNPs were used to evaluate the prediction accuracy for seed yield (YLD), days to maturity (DTM), iodine value (IOD), protein (PRO), oil (OIL), linoleic acid (LIO), and linolenic acid (LIN) contents. These seven traits were phenotyped over four years at two locations. Identification of quantitative trait nucleotides (QTNs) for the seven traits was performed using three types of statistical models for genome-wide association study: two SNP-based single-locus (SS), seven SNP-based multi-locus (SM), and one haplotype-block-based multi-locus (BM) models. The identified QTNs were then grouped into QTL based on haplotype blocks. For all seven traits, 133, 355, and 1208 unique QTL were identified by SS, SM, and BM, respectively. A total of 1420 unique QTL were obtained by SS+SM+BM, ranging from 254 (OIL, LIO) to 361 (YLD) for individual traits, whereas a total of 427 unique QTL were achieved by SS+SM, ranging from 56 (YLD) to 128 (LIO). SS models alone did not identify sufficient QTL for GS. The highest prediction accuracies were obtained using single-trait QTL identified by SS+SM+BM for OIL (0.929 ± 0.016), PRO (0.893 ± 0.023), YLD (0.892 ± 0.030), and DTM (0.730 ± 0.062), and by SS+SM for LIN (0.837 ± 0.053), LIO (0.835 ± 0.049), and IOD (0.835 ± 0.041). In terms of the number of QTL markers and prediction accuracy, SS+SM outperformed other models or combinations thereof. The use of all SNPs or QTL of all seven traits significantly reduced the prediction accuracy of traits. The results further validated that QTL outperformed high-density genome-wide random markers, and demonstrated that the combined use of single and multi-locus models can effectively identify a comprehensive set of QTL that improve prediction accuracy, but further studies on detection and removal of redundant or false-positive QTL to maximize prediction accuracy and minimize the number of QTL markers in GS are warranted.
Collapse
Affiliation(s)
- Samuel Lan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (S.L.); (C.Z.); (K.H.); (M.M.)
- Department of Mathematics and Statistics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Chunfang Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (S.L.); (C.Z.); (K.H.); (M.M.)
| | - Kyle Hauck
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (S.L.); (C.Z.); (K.H.); (M.M.)
- Department of Mathematics and Statistics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Madison McCausland
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (S.L.); (C.Z.); (K.H.); (M.M.)
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Scott D. Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Helen M. Booker
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (S.L.); (C.Z.); (K.H.); (M.M.)
- Correspondence: (F.M.Y.); (S.C); Tel.: +1-613-759-1539 (F.M.Y.); +1-613-759-1744 (S.C.)
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (S.L.); (C.Z.); (K.H.); (M.M.)
- Correspondence: (F.M.Y.); (S.C); Tel.: +1-613-759-1539 (F.M.Y.); +1-613-759-1744 (S.C.)
| |
Collapse
|
15
|
Petit J, Salentijn EMJ, Paulo MJ, Thouminot C, van Dinter BJ, Magagnini G, Gusovius HJ, Tang K, Amaducci S, Wang S, Uhrlaub B, Müssig J, Trindade LM. Genetic Variability of Morphological, Flowering, and Biomass Quality Traits in Hemp ( Cannabis sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:102. [PMID: 32153610 PMCID: PMC7044243 DOI: 10.3389/fpls.2020.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/23/2020] [Indexed: 05/09/2023]
Abstract
Hemp (Cannabis sativa L.) is a bast-fiber crop well-known for the great potential to produce sustainable fibers. Nevertheless, hemp fiber quality is a complex trait, and little is known about the phenotypic variability and heritability of fiber quality traits in hemp. The aim of this study is to gain insights into the variability in fiber quality within the hemp germplasm and to estimate the genetic components, environmental components, and genotype-by-environment (G×E) interactions on fiber quality traits in hemp. To investigate these parameters, a panel of 123 hemp accessions was phenotyped for 28 traits relevant to fiber quality at three locations in Europe, corresponding to climates of northern, central, and southern Europe. In general, hemp cultivated in northern latitudes showed a larger plant vigor while earlier flowering was characteristic of plants cultivated in southern latitudes. Extensive variability between accessions was observed for all traits. Most cell wall components (contents of monosaccharides derived from cellulose and hemicellulose; and lignin content), bast fiber content, and flowering traits revealed large genetic components with low G×E interactions and high broad-sense heritability values, making these traits suitable to maximize the genetic gains of fiber quality. In contrast, contents of pectin-related monosaccharides, most agronomic traits, and several fiber traits (fineness and decortication efficiency) showed low genetic components with large G×E interactions affecting the rankings across locations. These results suggest that pectin, agronomic traits, and fiber traits are unsuitable targets in breeding programs of hemp, as their large G×E interactions might lead to unexpected phenotypes in untested locations. Furthermore, all environmental effects on the 28 traits were statistically significant, suggesting a strong adaptive behavior of fiber quality in hemp to specific environments. The high variability in fiber quality observed in the hemp panel, the broad range in heritability, and adaptability among all traits prescribe positive prospects for the development of new hemp cultivars of excellent fiber quality.
Collapse
Affiliation(s)
- Jordi Petit
- Wageningen UR Plant Breeding, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Elma M. J. Salentijn
- Wageningen UR Plant Breeding, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Claire Thouminot
- Fédération Nationale des Producteurs de Chanvre (FNPC), Le Mans, France
| | | | | | - Hans-Jörg Gusovius
- Department of Post Harvest Technology, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam-Bornim, Germany
| | - Kailei Tang
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Shaoliang Wang
- The Biological Materials Group, Biomimetics, City University of Applied Sciences Bremen (HSB), Bremen, Germany
| | - Birgit Uhrlaub
- The Biological Materials Group, Biomimetics, City University of Applied Sciences Bremen (HSB), Bremen, Germany
| | - Jörg Müssig
- The Biological Materials Group, Biomimetics, City University of Applied Sciences Bremen (HSB), Bremen, Germany
| | - Luisa M. Trindade
- Wageningen UR Plant Breeding, Wageningen University and Research (WUR), Wageningen, Netherlands
- *Correspondence: Luisa M. Trindade,
| |
Collapse
|
16
|
Natural Variation in Fatty Acid Composition of Diverse World Soybean Germplasms Grown in China. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soybean (Glycine max L. Merr.) is one of the most important crops in the world. Its major content of vegetable oil made it widely used for human consumption and several food industries. To investigate the variation in seed fatty acid composition of soybeans from different origins, a set of 633 soybean accessions originated from four diverse germplasm collections—including China, United States of America (USA), Japan, and Russia—were grown in three locations, Beijing, Anhui, and Hainan for two years. The results showed significant differences (P < 0.001) among the four germplasm origins for all fatty acid contents investigated. Higher levels, on average, of palmitic acid (PA) and linolenic acid (LNA) were observed in Russian germplasm (12.31% and 8.15%, respectively), whereas higher levels of stearic acid (SA) and oleic acid (OA) were observed in Chinese germplasm (3.95% and 21.95%, respectively). The highest level of linoleic acid (LA) was noticed in the USA germplasm accessions (56.34%). The largest variation in fatty acid composition was found in LNA, while a large variation was observed between Chinese and USA germplasms for LA level. Maturity group (MG) significantly (P < 0.0001) affected all fatty acids and higher levels of PA, SA, and OA were observed in early maturing accessions, while higher levels of LA and LNA were observed in late maturing accessions. The trends of fatty acids concentrations with different MG in this study further provide an evidence of the importance of MG in breeding for such soybean seed components. Collectively, the unique accessions identified in this study can be used to strengthen the soybean breeding programs for meeting various human nutrition patterns around the globe.
Collapse
|
17
|
Sertse D, You FM, Ravichandran S, Cloutier S. The Complex Genetic Architecture of Early Root and Shoot Traits in Flax Revealed by Genome-Wide Association Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:1483. [PMID: 31798617 PMCID: PMC6878218 DOI: 10.3389/fpls.2019.01483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/25/2019] [Indexed: 05/05/2023]
Abstract
Roots are fundamental organs for water and nutrient uptake as well as for signal transduction in response to biotic and abiotic stresses. Flax has a shallow tap root system that relies mostly on top soil nutrient and moisture resources. The crop can easily be outcompeted by weeds or other crops in intercropping systems, especially in moisture deficit conditions. However, there is a wide range of variation among genotypes in terms of performance under scarce resources such as moisture limitation. Here we phenotyped 15 root, two shoot traits and shoot to root dry weight ratio on 115 flax accessions grown in a hydroponic pouch system and performed a genome-wide association study (GWAS) based on seven different models to identify quantitative trait loci underlying these traits. Significant variation among genotypes was observed for the two shoot and 12 of the 14 root traits. Shoot dry weight was correlated with root network volume, length, surface area, and root dry weight (r > 0.5, P < 0.001) but not significantly correlated with root depth (r = 0.033, P > 0.05). The seven GWAS models detected a total of 228 quantitative trait nucleotides (QTNs) for 16 traits. Most loci, defined by an interval of 100 kb up and downstream of the QTNs, harbored genes known to play role(s) in root and shoot development, suggesting them as candidates. Examples of candidate genes linked to root network QTNs included genes encoding GRAS transcription factors, mitogen-activated protein kinases, and auxin related lateral organ boundary proteins while QTN loci for shoot dry weight harbored genes involved in photomorphogenesis and plant immunity. These results provide insights into the genetic bases of early shoot and root development traits in flax that could be capitalized upon to improve its root architecture, particularly in view of better withstanding water limiting conditions during the cropping season.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
18
|
Sertse D, You FM, Ravichandran S, Cloutier S. The genetic structure of flax illustrates environmental and anthropogenic selections that gave rise to its eco-geographical adaptation. Mol Phylogenet Evol 2019; 137:22-32. [PMID: 30978393 DOI: 10.1016/j.ympev.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023]
Abstract
Flax, one of the eight founder crops of agriculture, has been cultivated for its oil and/or fiber for millennia. Understanding genetic divergence and geographic origins of germplasm in line with their cultivation history and ecological adaptation are essential for conservation and breeding. Here we performed a genome-wide assessment based on more than 51,000 single nucleotide polymorphic sites defining 383 flax accessions from a core collection representing 37 flax growing countries. Population structure analysis resulted in a total of 12 populations that were pooled into four major groups: Temperate, South Asian, Abyssinian and Mediterranean. The vast majority (n = 335) belonged to the Temperate group that comprised eight populations including one dominated by fiber flax. Genetic variation between fiber and oil morphotypes was less pronounced than variation within morphotypes. The genetic variation among groups and populations was attributed in part to eco-geographic and anthropogenic factors. Genetic signatures indicated loci under strong selection by environmental factors such as day length. A high concentration of private haplotypes were observed in the South Asian, Mediterranean and Abyssinian populations despite their low genotype representation, hinting at the long history of the crop in these regions. The addition of genotypes from these three regions would enrich the core collection by capturing a wider genetic breadth for breeding and conservation.
Collapse
Affiliation(s)
- Demissew Sertse
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada; Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Frank M You
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada; Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
19
|
Genetic Diversity and Population Structure Analysis of Dalbergia Odorifera Germplasm and Development of a Core Collection Using Microsatellite Markers. Genes (Basel) 2019; 10:genes10040281. [PMID: 30959931 PMCID: PMC6523640 DOI: 10.3390/genes10040281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a woody tree species indigenous to Hainan Island in China. Due to its high medicinal and commercial value, this tree species has been planted over 3500 ha2 in southern China. There is an urgent need for improvement of the D. odorifera germplasm, however, limited information on germplasm collection, conservation, and assessment of genetic resources is available. Therefore, we have built a database of 251 individuals collected across the whole of southern China, which included 42 wild trees and 210 cultivated trees, with the following objectives. (1) Evaluate genetic diversity and population structure of the database using 19 microsatellite markers and (2) develop a core collection for improvement and breeding programs. Totally, the 19 microsatellite markers harbored 77 alleles across the database with the polymorphic information content (PIC) ranging from 0.03 to 0.66. Medium genetic diversity level was inferred by Nei’s gene diversity (0.38), Shannon’s information index (0.65), and observed (0.33) and expected heterozygosity (0.38). Structure analysis showed that four was the optimum cluster size using the model-based Bayesian procedure, and the 251 D. odorifera individuals were grouped into five populations including four pure ones (RP1-4) and one mixed one (MIX) based on their maximum membership coefficients. Among these populations, the expected heterozygosity varied from 0.30 (RP3) to 0.38 (RP4). Analysis of molecular variance (AMOVA) showed 11% genetic variation existed among populations, and moderate population differentiation was inferred by the matrix of pairwise Fst (genetic differentiation among populations), which was in the range of 0.031 to 0.095. Moreover, a core collection of 31 D. odorifera individuals including six wild and 25 cultivated trees was developed, which was only 12.4% of the database but conserved the whole genetic diversity. The results of this study provided additional insight into the genetic structure of the large D. odorifera germplasm, and the core collection will be useful for the efficient and sustainable utilization of genetic resources, as well as efficient improvement in breeding programs.
Collapse
|
20
|
Cullis C, Lawlor DW, Chimwamurombe P, Bbebe N, Kunert K, Vorster J. Development of marama bean, an orphan legume, as a crop. Food Energy Secur 2019. [DOI: 10.1002/fes3.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | - Percy Chimwamurombe
- Department of Natural and Applied Sciences Namibia University of Science and Technology Windhoek Namibia
| | - Nchimunya Bbebe
- Mulungushi University School of Agriculture and Natural Resources Kabwe Zambia
| | - Karl Kunert
- Department of Plant and Soil Sciences Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Juan Vorster
- Department of Plant and Soil Sciences Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
21
|
He L, Xiao J, Rashid KY, Jia G, Li P, Yao Z, Wang X, Cloutier S, You FM. Evaluation of Genomic Prediction for Pasmo Resistance in Flax. Int J Mol Sci 2019; 20:E359. [PMID: 30654497 PMCID: PMC6359301 DOI: 10.3390/ijms20020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Pasmo (Septoria linicola) is a fungal disease causing major losses in seed yield and quality and stem fibre quality in flax. Pasmo resistance (PR) is quantitative and has low heritability. To improve PR breeding efficiency, the accuracy of genomic prediction (GP) was evaluated using a diverse worldwide core collection of 370 accessions. Four marker sets, including three defined by 500, 134 and 67 previously identified quantitative trait loci (QTL) and one of 52,347 PR-correlated genome-wide single nucleotide polymorphisms, were used to build ridge regression best linear unbiased prediction (RR-BLUP) models using pasmo severity (PS) data collected from field experiments performed during five consecutive years. With five-fold random cross-validation, GP accuracy as high as 0.92 was obtained from the models using the 500 QTL when the average PS was used as the training dataset. GP accuracy increased with training population size, reaching values >0.9 with training population size greater than 185. Linear regression of the observed PS with the number of positive-effect QTL in accessions provided an alternative GP approach with an accuracy of 0.86. The results demonstrate the GP models based on marker information from all identified QTL and the 5-year PS average is highly effective for PR prediction.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| | - Khalid Y Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Gaofeng Jia
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| |
Collapse
|
22
|
He L, Xiao J, Rashid KY, Yao Z, Li P, Jia G, Wang X, Cloutier S, You FM. Genome-Wide Association Studies for Pasmo Resistance in Flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2019; 9:1982. [PMID: 30693010 PMCID: PMC6339956 DOI: 10.3389/fpls.2018.01982] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 05/04/2023]
Abstract
Pasmo is one of the most widespread diseases threatening flax production. To identify genetic regions associated with pasmo resistance (PR), a genome-wide association study was performed on 370 accessions from the flax core collection. Evaluation of pasmo severity was performed in the field from 2012 to 2016 in Morden, MB, Canada. Genotyping-by-sequencing has identified 258,873 single nucleotide polymorphisms (SNPs) distributed on all 15 flax chromosomes. Marker-trait associations were identified using ten different statistical models. A total of 692 unique quantitative trait nucleotides (QTNs) associated with 500 putative quantitative trait loci (QTL) were detected from six phenotypic PR datasets (five individual years and average across years). Different QTNs were identified with various statistical models and from individual PR datasets, indicative of the complementation between analytical methods and/or genotype × environment interactions of the QTL effects. The single-locus models tended to identify large-effect QTNs while the multi-loci models were able to detect QTNs with smaller effects. Among the putative QTL, 67 had large effects (3-23%), were stable across all datasets and explained 32-64% of the total variation for PR in the various datasets. Forty-five of these QTL spanned 85 resistance gene analogs including a large toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (TNL) type gene cluster on chromosome 8. The number of QTL with positive-effect or favorite alleles (NPQTL) in accessions was significantly correlated with PR (R 2 = 0.55), suggesting that these QTL effects are mainly additive. NPQTL was also significantly associated with morphotype (R 2 = 0.52) and major QTL with positive effect alleles were present in the fiber type accessions. The 67 large effect QTL are suited for marker-assisted selection and the 500 QTL for effective genomic prediction in PR molecular breeding.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - Jin Xiao
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - Khalid Y. Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Gaofeng Jia
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiue Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| |
Collapse
|
23
|
Saha D, Rana RS, Das S, Datta S, Mitra J, Cloutier SJ, You FM. Genome-wide regulatory gene-derived SSRs reveal genetic differentiation and population structure in fiber flax genotypes. J Appl Genet 2018; 60:13-25. [PMID: 30368734 DOI: 10.1007/s13353-018-0476-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023]
Abstract
We designed a set of 580 simple sequence repeat markers; 506 from transcription factor-coding genes, and 74 from long non-coding RNAs and designated them as regulatory gene-derived simple sequence repeat (ReG-SSR) markers. From this set, we could anchor 559 ReG-SSR markers on 15 flax chromosomes with an average marker distance of 0.56 Mb. Thirty-one polymorphic ReG-SSR primers, amplifying SSR loci length of at least 20 bp were chosen from 134 screened primers. This primer set was used to characterize a diversity panel of 93 flax accessions. The panel included 33 accessions from India, including released varieties, dual-purpose lines and landraces, and 60 fiber flax accessions from the global core collection. Thirty-one ReG-SSR markers generated 76 alleles, with an average of 2.5 alleles per primer and a mean allele frequency of 0.77. These markers recorded 0.32 average gene diversity, 0.26 polymorphism information content and 1.35% null alleles. All the 31 ReG-SSR loci were found selectively neutral and showed no evidence of population reduction. A model-based clustering analysis separated the flax accessions into two sub-populations-Indian and global, with some accessions showing admixtures. The distinct clustering pattern of the Indian accessions compared to the global accessions, conforms to the principal coordinate analysis, genetic dissimilarity-based unweighted neighbor-joining tree and analysis of molecular variance. Fourteen flax accessions with 99.3% allelic richness were found optimum to adopt in breeding programs. In summary, the genome-wide ReG-SSR markers will serve as a functional marker resource for genetic and phenotypic relationship studies, marker-assisted selections, and provide a basis for selection of accessions from the Indian and global gene pool in fiber flax breeding programs.
Collapse
Affiliation(s)
- Dipnarayan Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700121, India.
| | - Rajeev Singh Rana
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700121, India
| | - Shantanab Das
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700121, India.,School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda University, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, 700103, India
| | - Subhojit Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700121, India
| | - Jiban Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700121, India
| | - Sylvie J Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Frank M You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| |
Collapse
|