1
|
Wang X, Shafiq K, Ousley DA, Chigumba DN, Davis D, McDonough KM, Mydy LS, Sexton JZ, Kersten RD. Large-scale transcriptome mining enables macrocyclic diversification and improved bioactivity of the stephanotic acid scaffold. Nat Commun 2025; 16:4198. [PMID: 40328797 PMCID: PMC12056006 DOI: 10.1038/s41467-025-59428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Nearly 10,000 plant species are represented by RNA-seq datasets in the NCBI sequence read archive, which are difficult to search in unassembled format due to database size. Here, we optimize RNA-seq assembly to transform most of this public RNA-seq data to a searchable database for biosynthetic gene discovery. We test our transcriptome mining pipeline towards the diversification of moroidins, which are plant ribosomally-synthesized and posttranslationally-modified peptides (RiPPs) biosynthesized from copper-dependent peptide cyclases. Moroidins are bicyclic compounds with a conserved stephanotic acid scaffold, which becomes cytotoxic to non-small cell lung adenocarcinoma cells with an additional C-terminal macrocycle. We discover moroidin analogs with second ring structures diversified at the crosslink and the non-crosslinked residues including a moroidin analog from water chickweed, which exhibits higher cytotoxicity against lung adenocarcinoma cells than moroidin. Our study expands stephanotic acid-type peptides to grasses, Lowiaceae, mints, pinks, and spurges while demonstrating that large-scale transcriptome mining can broaden the medicinal chemistry toolbox for chemical and biological exploration of eukaryotic RiPP lead structures.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Derrick A Ousley
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Dulciana Davis
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kali M McDonough
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Deegala S, Rathnapala HC, Rajendran S, Hettiarachchi C. Transgenic Innovation: Harnessing Cyclotides as Next Generation Pesticides. ACS OMEGA 2025; 10:6323-6336. [PMID: 40028067 PMCID: PMC11865984 DOI: 10.1021/acsomega.4c09668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Cyclotides are unique cyclic mini proteins derived from plants which are recognized for the distinctive cyclic cystine knot (CCK) structure and the cyclized backbone. To date, more than 760 sequences of cyclotides have been identified across five major families, making them the largest known group of cyclic peptides. These cyclic peptides derived from plants have garnered significant attention due to their remarkable structural stability and diverse bioactivities, including potent insecticidal properties, which offer a promising alternative to conventional pesticides that are often associated with environmental toxicity and resistance development in pests. Advances in transgenic technology have opened new avenues for the sustainable and targeted deployment of cyclotides in pest management. By incorporating cyclotide genes into crops, plants can gain enhanced self-defense mechanisms against insect pests, reducing reliance on chemical pesticides and mitigating ecological impact. This review explores the molecular features essential in cyclotides' insecticidal activity, the latest breakthroughs in transgenic strategies for cyclotide expression in crops, and the potential challenges and future prospects of this innovative approach. By highlighting the synergy between natural bioactive compounds and genetic engineering, this work underscores the potential of cyclotides as next-generation, eco-friendly biopesticides to address global agricultural challenges.
Collapse
Affiliation(s)
- Sathira Deegala
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| | - Hiruni C. Rathnapala
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| | - Sanjeevan Rajendran
- Department
of Chemistry, BioDiscovery Institute, University
of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Chamari Hettiarachchi
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| |
Collapse
|
3
|
Khatibi N, Huang YH, Wang CK, Durek T, Gilding EK, Craik DJ. Isolation and Characterization of Insecticidal Cyclotides from Viola communis. JOURNAL OF NATURAL PRODUCTS 2025; 88:24-35. [PMID: 38747744 DOI: 10.1021/acs.jnatprod.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in Viola communis was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of V. communis, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from V. communis and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.
Collapse
Affiliation(s)
- Negin Khatibi
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
4
|
Akinniyi G, Akinboye AJ, Yang I, Lee JG. Plant proteins, peptides, and non-protein amino acids: Toxicity, sources, and analysis. Heliyon 2024; 10:e34890. [PMID: 39145010 PMCID: PMC11320209 DOI: 10.1016/j.heliyon.2024.e34890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Plants have evolved various mechanisms to synthesize diverse range of substances that contribute to their survival against pests, pathogens, predators, and adverse environmental conditions. Although several plant metabolites possess therapeutic potential, some can be potentially harmful to human and animal health when consumed in large proportion. Proteins, peptides, and non-protein amino acids are products of plant biochemical pathways with proven beneficial and nutritional effects. Despite these benefits, the in vivo toxicities associated with certain plant-derived proteins, peptides, and non-protein amino acids pose a significant risk to humans and animals. Symptoms of poisoning include nausea, vomiting, diarrhea, hair and weight loss, goiter, cataracts, and infertility. Even though plant processing methods such as soaking and drying can reduce the amount of toxin contained in plants, complete riddance is often impossible. As such, food regulatory bodies need to prevent uncontrolled consumption of the listed and many other toxin-containing plant species to keep the public safe. For this purpose, this review collates crucial insights into the sources, and in vivo toxicity associated with certain plant-derived proteins, peptides, and non-protein amino acids that have the clear potential to adversely affect human health. Additionally, this review provides information on analytical methods suitable for the detection of these substances in plants.
Collapse
Affiliation(s)
- Ganiyu Akinniyi
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Adebayo J. Akinboye
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, South Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Joon-Goo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, South Korea
| |
Collapse
|
5
|
Gilding EK, Jackson MA, Nguyen LTT, Hamilton BR, Farquharson KA, Ho WL, Yap K, Hogg CJ, Belov K, Craik DJ. Hijacking of N-fixing legume albumin-1 genes enables the cyclization and stabilization of defense peptides. Nat Commun 2024; 15:6565. [PMID: 39095373 PMCID: PMC11297342 DOI: 10.1038/s41467-024-50742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
The legume albumin-1 gene family, arising after nodulation, encodes linear a- and b-chain peptides for nutrient storage and defense. Intriguingly, in one prominent legume, Clitoria ternatea, the b-chains are replaced by domains producing ultra-stable cyclic peptides called cyclotides. The mechanism of this gene hijacking is until now unknown. Cyclotides require recruitment of ligase-type asparaginyl endopeptidases (AEPs) for maturation (cyclization), necessitating co-evolution of two gene families. Here we compare a chromosome-level C. ternatea genome with grain legumes to reveal an 8 to 40-fold expansion of the albumin-1 gene family, enabling the additional loci to undergo diversification. Iterative rounds of albumin-1 duplication and diversification create four albumin-1 enriched genomic islands encoding cyclotides, where they are physically grouped by similar pI and net charge values. We identify an ancestral hydrolytic AEP that exhibits neofunctionalization and multiple duplication events to yield two ligase-type AEPs. We propose cyclotides arise by convergence in C. ternatea where their presence enhances defense from biotic attack, thus increasing fitness compared to lineages with linear b-chains and ultimately driving the replacement of b-chains with cyclotides.
Collapse
Affiliation(s)
- Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linh T T Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wing L Ho
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Tran GH, Tran TH, Pham SH, Xuan HL, Dang TT. Cyclotides: The next generation in biopesticide development for eco-friendly agriculture. J Pept Sci 2024; 30:e3570. [PMID: 38317283 DOI: 10.1002/psc.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.
Collapse
Affiliation(s)
- Gia-Hoa Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi-Huyen Tran
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
| | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
7
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Bjørklund G, Cruz-Martins N, Goh BH, Mykhailenko O, Lysiuk R, Shanaida M, Lenchyk L, Upyr T, Rusu ME, Pryshlyak A, Shanaida V, Chirumbolo S. Medicinal Plant-derived Phytochemicals in Detoxification. Curr Pharm Des 2024; 30:988-1015. [PMID: 37559241 DOI: 10.2174/1381612829666230809094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana 8610, Norway
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Victoria, Malaysia
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonina Pryshlyak
- Department of Human Anatomy, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
9
|
Salah A, El-Khateeb EA, Gaafar RM, Mohamed Atia MA. Genome-wide in silico and in vitro mining to develop a novel cyclotide-based marker system in plants. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2176175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Arwa Salah
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | | | | | - Mohamed Atia Mohamed Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
10
|
Venkatesan J, Roy D. Cyclic cystine knot and its strong implication on the structure and dynamics of cyclotides. Proteins 2023; 91:256-267. [PMID: 36107799 DOI: 10.1002/prot.26426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
The archetypal Viola odorata cyclotide cycloviolacin-O1 and its seven analogs, created by partial or total reduction of the three native S-S linkages belonging to the "cyclic cystine knot" (CCK) motif are studied for their structural and dynamical diversities using molecular dynamics simulations. The results indicate interesting interplay between the constraints imposed by the S-S bonds on the dynamical modes and the corresponding structure of the model peptide. Principal component analysis brings out the variation in the extent of dynamical freedom along the peptide backbone for each model. The motions are characterized by low amplitude diffusive modes in the peptides retaining most of the native S-S linkages in contrast to the large amplitude discrete jumps where at least two or all of the three S-S linkages are reduced. Simulation results further indicate that the disulfide bond between Cys1-18 is formed at a much faster pace compared with its two other peers Cys5-20 and Cys10-25 as found in the native peptide. This gives insight as to why the S-S linkages appear in the native peptide in a particular combination. Model therapeutics and drug delivery engines can potentially utilize this information to customize the engineered S-S bonds and gauge its impact on the dynamic flexibility of a model macrocyclic peptide.
Collapse
Affiliation(s)
- Jayapriya Venkatesan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Aslam L, Kaur R, Hussain S, Kapoor N, Mahajan R. LC-MS/MS identification and structural characterization of isolated cyclotides from precursor sequences of Viola odorata L. petiole tissue using computational approach. J Biosci 2022. [DOI: 10.1007/s12038-022-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Marcussen T, Ballard HE, Danihelka J, Flores AR, Nicola MV, Watson JM. A Revised Phylogenetic Classification for Viola (Violaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2224. [PMID: 36079606 PMCID: PMC9460890 DOI: 10.3390/plants11172224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The genus Viola (Violaceae) is among the 40-50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker's classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.
Collapse
Affiliation(s)
- Thomas Marcussen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Harvey E. Ballard
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Jiří Danihelka
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Ana R. Flores
- Independent Researcher, Casilla 161, Los Andes 2100412, Chile
| | - Marcela V. Nicola
- Instituto de Botánica Darwinion (IBODA, CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, San Isidro, Buenos Aires B1642HYD, Argentina
| | - John M. Watson
- Independent Researcher, Casilla 161, Los Andes 2100412, Chile
| |
Collapse
|
13
|
Muratspahić E, Tomašević N, Nasrollahi-Shirazi S, Gattringer J, Emser FS, Freissmuth M, Gruber CW. Plant-Derived Cyclotides Modulate κ-Opioid Receptor Signaling. JOURNAL OF NATURAL PRODUCTS 2021; 84:2238-2248. [PMID: 34308635 PMCID: PMC8406418 DOI: 10.1021/acs.jnatprod.1c00301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low μM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shahrooz Nasrollahi-Shirazi
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Jasmin Gattringer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabiola Susanna Emser
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Freissmuth
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Gattringer J, Ndogo OE, Retzl B, Ebermann C, Gruber CW, Hellinger R. Cyclotides Isolated From Violet Plants of Cameroon Are Inhibitors of Human Prolyl Oligopeptidase. Front Pharmacol 2021; 12:707596. [PMID: 34322026 PMCID: PMC8311463 DOI: 10.3389/fphar.2021.707596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Traditional medicine and the use of herbal remedies are well established in the African health care system. For instance, Violaceae plants are used for antimicrobial or anti-inflammatory applications in folk medicine. This study describes the phytochemical analysis and bioactivity screening of four species of the violet tribe Allexis found in Cameroon. Allexis cauliflora, Allexis obanensis, Allexis batangae and Allexis zygomorpha were evaluated for the expression of circular peptides (cyclotides) by mass spectrometry. The unique cyclic cystine-rich motif was identified in several peptides of all four species. Knowing that members of this peptide family are protease inhibitors, the plant extracts were evaluated for the inhibition of human prolyl oligopeptidase (POP). Since all four species inhibited POP activity, a bioactivity-guided fractionation approach was performed to isolate peptide inhibitors. These novel cyclotides, alca 1 and alca 2 exhibited IC50 values of 8.5 and 4.4 µM, respectively. To obtain their amino acid sequence information, combinatorial enzymatic proteolysis was performed. The proteolytic fragments were evaluated in MS/MS fragmentation experiments and the full-length amino acid sequences were obtained by de novo annotation of fragment ions. In summary, this study identified inhibitors of the human protease POP, which is a drug target for inflammatory or neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
15
|
Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data. Viruses 2021; 13:v13071304. [PMID: 34372509 PMCID: PMC8310260 DOI: 10.3390/v13071304] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/06/2023] Open
Abstract
Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.
Collapse
|
16
|
Rajendran S, Slazak B, Mohotti S, Strömstedt AA, Göransson U, Hettiarachchi CM, Gunasekera S. Tropical vibes from Sri Lanka - cyclotides from Viola betonicifolia by transcriptome and mass spectrometry analysis. PHYTOCHEMISTRY 2021; 187:112749. [PMID: 33932786 DOI: 10.1016/j.phytochem.2021.112749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Cyclotides are an extremely stable class of peptides, ubiquitously distributed in Violaceae. The aim of the present study was to investigate the presence of cyclotides in Sri Lankan Violaceae plants, using combined tools of transcriptomics and mass spectrometry. New cyclotides were discovered for the first time in the wild flora of Sri Lanka, within Viola betonicifolia, a plant used in traditional medicine as an antimicrobial. Plant extracts prepared in small scale from Viola betonicifolia were first subjected to LC-MS analysis. Subsequent transcriptome de novo sequencing of Viola betonicifolia uncovered 25 new (vibe 1-25) and three known (varv A/kalata S, viba 17, viba 11) peptide sequences from Möbius and bracelet cyclotide subfamilies as well as hybrid cyclotides. Among the transcripts, putative linear acyclotide sequences (vibe 4, vibe 10, vibe 11 and vibe 22) that lack a conserved asparagine or aspartic acid vital for cyclisation were also present. Four asparagine endopeptidases (AEPs), VbAEP1-4 were found within the Viola betonicifolia transcriptome, including a peptide asparaginyl ligase (PAL), potentially involved in cyclotide backbone cyclisation, showing >93% sequence homology to Viola yedoensis peptide asparaginyl ligases, VyPALs. In addition, we identified two protein disulfide isomerases (PDIs), VbPDI1-2, likely involved in cyclotide oxidative folding, having high sequence homology (>74%) with previously reported Rubiaceae and Violaceae PDIs. The current study highlights the ubiquity of cyclotides in Violaceae as well as the utility of transcriptomic analysis for cyclotides and their putative processing enzyme discovery. The high variability of cyclotide sequences in terms of loop sizes and residues in V. betonicifolia showcase the cyclotide structure as an adaptable scaffold as well as their importance as a combinatorial library, implicated in plant defense.
Collapse
Affiliation(s)
- Sanjeevan Rajendran
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 23, Uppsala, Sweden; Department of Chemistry, Faculty of Science, University of Colombo, Thurston Rd, Colombo 03, Sri Lanka
| | - Blazej Slazak
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 23, Uppsala, Sweden; W. Szafer Institute of Botany, Polish Academy of Science, 46 Lubicz St., 31-512, Cracow, Poland
| | - Supun Mohotti
- Department of Chemistry, Faculty of Science, University of Colombo, Thurston Rd, Colombo 03, Sri Lanka
| | - Adam A Strömstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 23, Uppsala, Sweden
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 23, Uppsala, Sweden
| | - Chamari M Hettiarachchi
- Department of Chemistry, Faculty of Science, University of Colombo, Thurston Rd, Colombo 03, Sri Lanka
| | - Sunithi Gunasekera
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 23, Uppsala, Sweden.
| |
Collapse
|
17
|
Aslam L, Kaur R, Sharma V, Kapoor N, Mahajan R. Isolation and characterization of cyclotides from the leaves of Viola odorata L. using peptidomic and bioinformatic approach. 3 Biotech 2021; 11:211. [PMID: 33927999 DOI: 10.1007/s13205-021-02763-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Cyclotides are true gene products characterized by the presence of six conserved cysteine residues and knotted arrangement of three disulfide bonds. These macrocyclic peptides show exceptional resistance to thermal, chemical and enzymatic degradation which is defined due to their three-dimensional folding. The current study describes an efficient strategy involving reduction, enzymatic digestion and mass spectroscopy sequencing for the identification of the precursor sequences and the cyclotide domains present in the leaf tissue of Viola odorata. We observed 122 partial peptide sequences containing 31 cyclotide domains along with 19 unique sequences consisting of putative novel cyclotides and acyclotides. Four precursor sequences consisting of putative new and already reported domains were further characterized for cyclotide domains, their structure and subfamilies. The sequences revealed the presence of classic knotted cyclotide folds with similar six characteristic loops but different amino acid residues. Molecular modeling indicated that the secondary structures present in the cyclotides are mainly α-helix and random coils. Variation in the sequences and conservation in cysteine residues in the cyclotides was revealed by protein diversity wheel. The significant information observed in the current study expands our knowledge about the structure and type of cyclic peptides in V. odorata leaves. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02763-2.
Collapse
Affiliation(s)
- Lubna Aslam
- School of Biotechnology, University of Jammu, Jammu and Kashmir, India
| | - Ramanjeet Kaur
- School of Biotechnology, University of Jammu, Jammu and Kashmir, India
| | - Venu Sharma
- School of Biotechnology, University of Jammu, Jammu and Kashmir, India
| | - Nisha Kapoor
- School of Biotechnology, University of Jammu, Jammu and Kashmir, India
| | - Ritu Mahajan
- School of Biotechnology, University of Jammu, Jammu and Kashmir, India
| |
Collapse
|
18
|
Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol Res 2021; 167:105529. [PMID: 33675962 DOI: 10.1016/j.phrs.2021.105529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022]
Abstract
Despite recent advances in the treatment of colorectal cancer (CRC), low patient survival rate due to emergence of drug resistant cancer cells, metastasis and multiple deleterious side effects of chemotherapy, is a cause of public concern globally. To negate these clinical conundrums, search for effective and harmless novel molecular entities for the treatment of CRC is an urgent necessity. Since antimicrobial peptides (AMPs) are part of innate immunity of living beings, it is quite imperative to look for essential attributes of these peptides which may contribute to their effectiveness against carcinogenesis. Once identified, those characteristics can be suitably modified using several synthetic and computational techniques to further enhance their selectivity and pharmacokinetic profiles. Hence, this review analyses scientific reports describing the antiproliferative action of AMPs derived from several sources, particularly focusing on various colon cancer in vitro/in vivo investigations. On perusal of the literature, it appears that AMPs based therapeutics would definitely find special place in CRC therapy in future either alone or as an adjunct to chemotherapy provided some necessary alterations are made in their natural structures to make them more compatible with modern clinical practice. In this context, further in-depth research is warranted in adequate in vivo models.
Collapse
Affiliation(s)
- Sonia Chauhan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Avneet Saini
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
19
|
Wang CK, Craik DJ. Linking molecular evolution to molecular grafting. J Biol Chem 2021; 296:100425. [PMID: 33600801 PMCID: PMC8005815 DOI: 10.1016/j.jbc.2021.100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Molecular grafting is a strategy for the engineering of molecular scaffolds into new functional agents, such as next-generation therapeutics. Despite its wide use, studies so far have focused almost exclusively on demonstrating its utility rather than understanding the factors that lead to either poor or successful grafting outcomes. Here, we examine protein evolution and identify parallels between the natural process of protein functional diversification and the artificial process of molecular grafting. We discuss features of natural proteins that are correlated to innovability-the capacity to acquire new functions-and describe their implications to molecular grafting scaffolds. Disulfide-rich peptides are used as exemplars because they are particularly promising scaffolds onto which new functions can be grafted. This article provides a perspective on why some scaffolds are more suitable for grafting than others, identifying opportunities on how molecular grafting might be improved.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Jackson MA, Nguyen LT, Gilding EK, Durek T, Craik DJ. Make it or break it: Plant AEPs on stage in biotechnology. Biotechnol Adv 2020; 45:107651. [DOI: 10.1016/j.biotechadv.2020.107651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
21
|
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, Pires CDJ, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, Benko-Iseppon AM. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform Biol Insights 2020; 14:1177932220952739. [PMID: 32952397 PMCID: PMC7476358 DOI: 10.1177/1177932220952739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.
Collapse
Affiliation(s)
| | - Luisa Zupin
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy
| | - Marx Oliveira-Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | - José Diogo Cavalcanti Ferreira
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Genética, Instituto Federal de Pernambuco, Pesqueira, Brazil
| | | | | | | | | | - Ederson Akio Kido
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
22
|
Kalmankar NV, Venkatesan R, Balaram P, Sowdhamini R. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Sci Rep 2020; 10:12658. [PMID: 32728092 PMCID: PMC7391643 DOI: 10.1038/s41598-020-69452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023] Open
Abstract
Clitoria ternatea a perennial climber of the Fabaceae family, is well known for its agricultural and medical applications. It is also currently the only known member of the Fabaceae family that produces abundant amounts of the ultra-stable macrocyclic peptides, cyclotides, across all tissues. Cyclotides are a class of gene-encoded, disulphide-rich, macrocyclic peptides (26–37 residues) acting as defensive metabolites in several plant species. Previous transcriptomic studies have demonstrated the genetic origin of cyclotides from the Fabaceae plant family to be embedded in the albumin-1 genes, unlike its counterparts in other plant families. However, the complete mechanism of its biosynthesis and the repertoire of enzymes involved in cyclotide folding and processing remains to be understood. In this study, using RNA-Seq data and de novo transcriptome assembly of Clitoria ternatea, we have identified 71 precursor genes of cyclotides. Out of 71 unique cyclotide precursor genes obtained, 51 sequences display unique cyclotide domains, of which 26 are novel cyclotide sequences, arising from four individual tissues. MALDI-TOF mass spectrometry analysis of fractions from different tissue extracts, coupled with precursor protein sequences obtained from transcriptomic data, established the cyclotide diversity in this plant species. Special focus in this study has also been on identifying possible enzymes responsible for proper folding and processing of cyclotides in the cell. Transcriptomic mining for oxidative folding enzymes such as protein-disulphide isomerases (PDI), ER oxidoreductin-1 (ERO1) and peptidylprolyl cis-trans isomerases (PPIases)/cyclophilins, and their levels of expression are also reported. In particular, it was observed that the CtPDI genes formed plant-specific clusters among PDI genes as compared to those from other plant species. Collectively, this work provides insights into the biogenesis of the medicinally important cyclotides and establishes the expression of certain key enzymes participating in peptide biosynthesis. Also, several novel cyclotide sequences are reported and precursor sequences are analysed in detail. In the absence of a published reference genome, a comprehensive transcriptomics approach was adopted to provide an overview of diverse properties and constituents of C. ternatea.
Collapse
Affiliation(s)
- Neha V Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), #74/2, Jarakabande Kaval, Post Attur, Via Yelahanka, Bangalore, Karnataka, 560064, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Department of Biological Sciences, Indian Institute of Science, Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
23
|
Wiedemann C, Kumar A, Lang A, Ohlenschläger O. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Front Chem 2020; 8:280. [PMID: 32391319 PMCID: PMC7191308 DOI: 10.3389/fchem.2020.00280] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Disulfide bridges establish a fundamental element in the molecular architecture of proteins and peptides which are involved e.g., in basic biological processes or acting as toxins. NMR spectroscopy is one method to characterize the structure of bioactive compounds including cystine-containing molecules. Although the disulfide bridge itself is invisible in NMR, constraints obtained via the neighboring NMR-active nuclei allow to define the underlying conformation and thereby to resolve their functional background. In this mini-review we present shortly the impact of cysteine and disulfide bonds in the proteasome from different domains of life and give a condensed overview of recent NMR applications for the characterization of disulfide-bond containing biomolecules including advantages and limitations of the different approaches.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Amit Kumar
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Andras Lang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | |
Collapse
|
24
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
25
|
Oguis GK, Gilding EK, Jackson MA, Craik DJ. Butterfly Pea ( Clitoria ternatea), a Cyclotide-Bearing Plant With Applications in Agriculture and Medicine. FRONTIERS IN PLANT SCIENCE 2019; 10:645. [PMID: 31191573 PMCID: PMC6546959 DOI: 10.3389/fpls.2019.00645] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 05/16/2023]
Abstract
The perennial leguminous herb Clitoria ternatea (butterfly pea) has attracted significant interest based on its agricultural and medical applications, which range from use as a fodder and nitrogen fixing crop, to applications in food coloring and cosmetics, traditional medicine and as a source of an eco-friendly insecticide. In this article we provide a broad multidisciplinary review that includes descriptions of the physical appearance, distribution, taxonomy, habitat, growth and propagation, phytochemical composition and applications of this plant. Notable amongst its repertoire of chemical components are anthocyanins which give C. ternatea flowers their characteristic blue color, and cyclotides, ultra-stable macrocyclic peptides that are present in all tissues of this plant. The latter are potent insecticidal molecules and are implicated as the bioactive agents in a plant extract used commercially as an insecticide. We include a description of the genetic origin of these peptides, which interestingly involve the co-option of an ancestral albumin gene to produce the cyclotide precursor protein. The biosynthesis step in which the cyclic peptide backbone is formed involves an asparaginyl endopeptidase, of which in C. ternatea is known as butelase-1. This enzyme is highly efficient in peptide ligation and has been the focus of many recent studies on peptide ligation and cyclization for biotechnological applications. The article concludes with some suggestions for future studies on this plant, including the need to explore possible synergies between the various peptidic and non-peptidic phytochemicals.
Collapse
Affiliation(s)
| | | | | | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|