1
|
Dostálek T, Rydlová J, Kohout P, Kuťáková E, Kolaříková Z, Frouz J, Münzbergová Z. Beyond the rootzone: Unveiling soil property and biota gradients around plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175032. [PMID: 39059657 DOI: 10.1016/j.scitotenv.2024.175032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.
Collapse
Affiliation(s)
- Tomáš Dostálek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic.
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Institute of Microbiology, The Czech Academy of Science, Vídeňská 1043, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eliška Kuťáková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-907 36 Umeå, Sweden
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Gfeller V, Waelchli J, Pfister S, Deslandes-Hérold G, Mascher F, Glauser G, Aeby Y, Mestrot A, Robert CAM, Schlaeppi K, Erb M. Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. eLife 2023; 12:e84988. [PMID: 37526647 PMCID: PMC10393292 DOI: 10.7554/elife.84988] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
Plant secondary metabolites that are released into the rhizosphere alter biotic and abiotic soil properties, which in turn affect the performance of other plants. How this type of plant-soil feedback affects agricultural productivity and food quality in the field in the context of crop rotations is unknown. Here, we assessed the performance, yield and food quality of three winter wheat varieties growing in field plots whose soils had been conditioned by either wild type or benzoxazinoid-deficient bx1 maize mutant plants. Following maize cultivation, we detected benzoxazinoid-dependent chemical and microbial fingerprints in the soil. The benzoxazinoid fingerprint was still visible during wheat growth, but the microbial fingerprint was no longer detected. Wheat emergence, tillering, growth, and biomass increased in wild type conditioned soils compared to bx1 mutant conditioned soils. Weed cover was similar between soil conditioning treatments, but insect herbivore abundance decreased in benzoxazinoid-conditioned soils. Wheat yield was increased by over 4% without a reduction in grain quality in benzoxazinoid-conditioned soils. This improvement was directly associated with increased germination and tillering. Taken together, our experiments provide evidence that soil conditioning by plant secondary metabolite producing plants can increase yield via plant-soil feedbacks under agronomically realistic conditions. If this phenomenon holds true across different soils and environments, optimizing root exudation chemistry could be a powerful, genetically tractable strategy to enhance crop yields without additional inputs.
Collapse
Affiliation(s)
- Valentin Gfeller
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jan Waelchli
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | | | - Fabio Mascher
- Department of Plant Breeding, Agroscope, Nyon, Switzerland
| | - Gaetan Glauser
- Platform of Analytical Chemistry, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Yvo Aeby
- Research contracts animals group, Agroscope, Posieux, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Guo S, Wang H, Sui Y, Liu X, Tan L. Bioactive extracts and association with C and N in Eleutherococcus senticosus subjected to chitosan nanoparticles in contrasting light spectra. PLoS One 2022; 17:e0277233. [PMID: 36454898 PMCID: PMC9714952 DOI: 10.1371/journal.pone.0277233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/22/2022] [Indexed: 12/05/2022] Open
Abstract
Bioactive compounds are major reasons for the value of Eleutherococcus senticosus, which can be modified by different lighting spectra. Light-emitting diode (LED) provides lights with specific spectra which can interact with other treatments to impact plant bioactive production. Chitosan nanoparticle (CN) is a biopolymer derived from marine creatures. It's usage may be a practical approach to cope with uncertainties in secondary metabolites induced by illumination. Carbon (C) and nitrogen (N) cyclings link plant eco-physiological performance and bioactive substance; hence their associations may reveal the mechanism of joint light-CN interaction. In this study, E. senticosus seedlings were raised under artificial lighting spectra from high-pressure sodium (HPS) lamps (44% red, 55% green, 1% blue) and white (44% red, 47% green, 8% blue) and red colored (73% red, 13% green, 14% blue) LED panels. Half of the seedlings received CN and the other half received distilled water as the control. Compared to the HPS spectrum, the red-light induced stronger shoot growth with greater biomass accumulation and higher water uptake but resulted in lower N concentration and biomass ratio in the root. The white light caused more biomass allocated to the root and strengthened stem C concentration. Stem eleutheroside B increased with shoot growth, while root eleutheroside B had a positive association with leaf C and stem protocatechuic acid had a negative association with leaf N. Having the CN treatment in white and red LED lights is recommended for increasing accumulation of bioactive compounds in the shoots and roots of E. senticosus seedlings, respectively.
Collapse
Affiliation(s)
- Shenglei Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- * E-mail:
| | - Hexiang Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Yawen Sui
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Long Tan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Li W, Lei X, Zhang R, Cao Q, Yang H, Zhang N, Liu S, Wang Y. Shifts in rhizosphere microbial communities in Oplopanax elatus Nakai are related to soil chemical properties under different growth conditions. Sci Rep 2022; 12:11485. [PMID: 35798802 PMCID: PMC9262954 DOI: 10.1038/s41598-022-15340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant growth environment plays an important role in shaping soil microbial communities. To understand the response of soil rhizosphere microbial communities in Oplopanax elatus Nakai plant to a changed growth conditions from natural habitation to cultivation after transplant. Here, a comparative study of soil chemical properties and microbial community using high-throughput sequencing was conducted under cultivated conditions (CT) and natural conditions (WT), in Changbai Mountain, Northeast of China. The results showed that rhizosphere soil in CT had higher pH and lower content of soil organic matter (SOM) and available nitrogen compared to WT. These changes influenced rhizosphere soil microbial communities, resulting in higher soil bacterial and fungi richness and diversity in CT soil, and increased the relative abundance of bacterial phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes and Patescibacteria, and the fungi phyla Mortierellomycota and Zoopagomycota, while decreased bacterial phyla Actinobacteria, WPS-2, Gemmatimonadetes, and Verrucomicrobia, and the fungi phyla Ascomycota, and Basidiomycota. Redundancy analysis analysis indicated soil pH and SOM were the primarily environmental drivers in shaping the rhizosphere soil microbial community in O. elatus under varied growth conditions. Therefore, more attention on soil nutrition management especially organic fertilizer inputs should be paid in O. elatus cultivation.
Collapse
Affiliation(s)
- Wanying Li
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Rui Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Qingjun Cao
- Jilin Academy of Agriculture Science, Changchun, 130033, People's Republic of China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Nanqi Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China. .,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China.
| |
Collapse
|
5
|
Aldorfová A, Dostálek T, Münzbergová Z. Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. OIKOS 2022. [DOI: 10.1111/oik.09025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anna Aldorfová
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| | - Tomáš Dostálek
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| | - Zuzana Münzbergová
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| |
Collapse
|
6
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
7
|
Pélissier R, Violle C, Morel JB. Plant immunity: Good fences make good neighbors? CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102045. [PMID: 33965754 DOI: 10.1016/j.pbi.2021.102045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plant immunity is modulated by several abiotic factors, and microbiome has emerged as a major biotic driver of plant resistance. Recently, a few studies showed that plants also modify resistance to pests and pathogens in their neighborhood. Several types of neighborhood could be identified depending on the biological processes at play: intraspecific and interspecific competition, kin and stranger recognition, plant-soil feedbacks, and danger signaling. This review highlights that molecules exchanged aboveground and belowground between plants can modulate plant immunity, either constitutively or after damage or attack. An intriguing relationship between allelopathy and immunity has been evidenced and should merit further investigation. Interestingly, most reported cases of modulation of immunity by the neighbors are positive, opening new perspectives for the understanding of natural plant communities as well as for the design of more diverse cultivated systems.
Collapse
Affiliation(s)
- Rémi Pélissier
- PHIM Plant Health Institute, CEFE, Univ Montpellier, Institut Agro, INRAE, CIRAD, TA A-54/K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry, Campus du CNRS, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, TA A-54 / K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Jin H, Yuan Y, Li J. Host functional traits affect plant responses to pathogen stress: A meta-analysis. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Howard MM, Muñoz CA, Kao-Kniffin J, Kessler A. Soil Microbiomes From Fallow Fields Have Species-Specific Effects on Crop Growth and Pest Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:1171. [PMID: 32849726 PMCID: PMC7419683 DOI: 10.3389/fpls.2020.01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Communities of microorganisms in the soil can affect plants' growth and interactions with aboveground herbivores. Thus, there is growing interest in utilizing soil microbiomes to improve plant performance in agriculture (e.g., for pest control), but little is known about the phenotypic responses of various crop species to different microbiomes. In this study, we inoculated four crop species from different botanical families, maize (Zea mays, Poaceae), cucumber (Cucumis sativus, Cucurbitaceae), tomato (Solanum lycopersicum, Solanaceae), and lettuce (Lactuca sativa, Asteraceae), with diverse soil microbiomes originating from actively-managed agricultural fields or fallow fields under varying stages of succession (1, 3, and 16-years post-agriculture) sourced from a large-scale field experiment. We compared the crops' responses to these different microbiomes by assessing their growth and resistance to two generalist insect pests, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda). These different microbiomes affected both plant growth and resistance, but the effects were species-specific. For instance, lettuce produced the largest leaves when inoculated with a 3-year fallow microbiome, the microbiome in which cucumber performed worst. Plants were generally more resistant to T. ni when inoculated with the later succession microbiomes, particularly in contrast to those treated with agricultural microbiomes. However, for tomato plants, the opposite pattern was observed with regard to S. frugiperda resistance. Collectively, these results indicate that plant responses to microbiomes are species-specific and emphasize the need to characterize the responses of taxonomically diverse plant species to different microbiomes.
Collapse
Affiliation(s)
- Mia M. Howard
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Jenny Kao-Kniffin
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Cardarelli E, Gentili R, Della Rocca F, Zanella M, Caronni S, Bogliani G, Citterio S. Seeding and Overseeding Native Hayseed Support Plant and Soil Arthropod Communities in Agriculture Areas. Life (Basel) 2020; 10:E38. [PMID: 32290501 PMCID: PMC7235896 DOI: 10.3390/life10040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022] Open
Abstract
Using native seed mixtures to create or recover grassland habitats in rotation to crops or in strips surrounding fields is considered a cost-effective practice to enhance ecosystem resilience and agro-biodiversity. The aim of this research was to assess the effects of native hayseed mixtures on plant and microarthropod communities in an agricultural area of Northern Italy. Three different experimental treatments were set up. The first was a control (C) (i.e., non-seeded plots left to spontaneous vegetation succession after ploughing no deeper than 15 cm). The second, hayseed seeded (Hs) after ploughing no deeper than 15 cm. The third experimental treatment was hayseed overseeded (Ov) on the resident plant community after only a superficial harrowing. Ov plots exhibited the preeminent positive effects on the total productivity and quality of the grassland in terms of total vegetation cover, cover and richness of typical grassland species (i.e., Molinio-Arrhenatheretea species), and cover of legumes, grasses and perennial species. Moreover, Ov sites exhibited the highest abundance of microarthropod taxa and soil biological quality (QBS-ar) but only in spring, when the disturbance of ploughing negatively affected Hs and C plots. On the other hand, Hs sites showed a great reduction of invasive alien (i.e., Ambrosia artemisiifolia and Artemisia verlotiorum) and segetal weed species (i.e., Capsella bursa-pastoris and Spergula arvensis) in terms of cover. This study provides valuable indication on using hayseed mixtures to create grassland habitats as reservoir of native flora and soil biodiversity in agriculture areas.
Collapse
Affiliation(s)
- Elisa Cardarelli
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.C.); (F.D.R.); (M.Z.); (G.B.)
| | - Rodolfo Gentili
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.C.); (S.C.)
| | - Francesca Della Rocca
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.C.); (F.D.R.); (M.Z.); (G.B.)
| | - Marta Zanella
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.C.); (F.D.R.); (M.Z.); (G.B.)
| | - Sarah Caronni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.C.); (S.C.)
| | - Giuseppe Bogliani
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.C.); (F.D.R.); (M.Z.); (G.B.)
| | - Sandra Citterio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.C.); (S.C.)
| |
Collapse
|
11
|
Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM. Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest. THE NEW PHYTOLOGIST 2020; 226:595-608. [PMID: 31863484 PMCID: PMC7155073 DOI: 10.1111/nph.16385] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Soils and their microbiomes are now recognized as key components of plant health, but how to steer those microbiomes to obtain their beneficial functions is still unknown. Here, we assess whether plant-soil feedbacks can be applied in a crop system to shape soil microbiomes that suppress herbivorous insects in above-ground tissues. We used four grass and four forb species to condition living soil. Then we inoculated those soil microbiomes into sterilized soil and grew chrysanthemum as a focal plant. We evaluated the soil microbiome in the inocula and after chrysanthemum growth, as well as plant and herbivore parameters. We show that inocula and inoculated soil in which a focal plant had grown harbor remarkably different microbiomes, with the focal plant exerting a strong negative effect on fungi, especially arbuscular mycorrhizal fungi. Soil inoculation consistently induced resistance against the thrips Frankliniella occidentalis, but not against the mite Tetranychus urticae, when compared with sterilized soil. Additionally, plant species shaped distinct microbiomes that had different effects on thrips, chlorogenic acid concentrations in leaves and plant growth. This study provides a proof-of-concept that the plant-soil feedback concept can be applied to steer soil microbiomes with the goal of inducing resistance above ground against herbivorous insects.
Collapse
Affiliation(s)
- Ana Pineda
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
| | - Ian Kaplan
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
- Department of EntomologyPurdue UniversityWest LafayetteIN47907USA
| | - S. Emilia Hannula
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
| | - Wadih Ghanem
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
- Department of EntomologyPurdue UniversityWest LafayetteIN47907USA
| | - T. Martijn Bezemer
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
- Institute of BiologySection Plant Ecology and PhytochemistryLeiden UniversityLeiden2300 RAthe Netherlands
| |
Collapse
|
12
|
Topalović O, Bredenbruch S, Schleker ASS, Heuer H. Microbes Attaching to Endoparasitic Phytonematodes in Soil Trigger Plant Defense Upon Root Penetration by the Nematode. FRONTIERS IN PLANT SCIENCE 2020; 11:138. [PMID: 32161610 PMCID: PMC7052486 DOI: 10.3389/fpls.2020.00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/29/2020] [Indexed: 05/26/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are among the most aggressive phytonematodes. While moving through soil to reach the roots of their host, specific microbes attach to the cuticle of the infective second-stage juveniles (J2). Reportedly, the attached microorganisms affect nematodes and reduce their performance on the host plants. We have previously shown that some non-parasitic bacterial strains isolated from the cuticle of Meloidogyne hapla in different soils affected J2 mortality, motility, hatching, and root invasion. Here we tested whether cuticle-attached microbes trigger plant defenses upon penetration of J2. In in vitro assays, M. hapla J2-attached microbes from a suppressive soil induced pathogen-associated molecular pattern-triggered immunity (PTI) in tomato roots. All tested PTI-responsive defense genes were upregulated after root invasion of J2 with attached microbes, compared to surface-sterilized J2, particularly the jasmonic acid-mediated PTI marker genes TFT1 and GRAS4.1. The strain Microbacterium sp. K6, that was isolated from the cuticle, significantly reduced root invasion when attached to the J2. Attached K6 cells supported plant defense and counteracted suppression of plant basal defense in roots by invaded J2. The plant response to the J2-attached K6 cells was stronger in leaves than in roots, and it increased from 1 to 3 days post inoculation (dpi). At 1 dpi, the plant responded to J2-attached K6 cells by ameliorating the J2-triggered down-regulation of defense genes mostly in roots, while at 3 dpi this response was systemic and more pronounced in leaves. In a reactive oxygen species (ROS) assay, the compounds released from J2 with attached K6 cells triggered a stronger ROS burst in tomato roots than the compounds from nematodes without K6, or the metabolites released from strain K6 alone. Leaves showed a 100 times more sensitive response than roots, and the metabolites of K6 with or without J2 induced strong ROS bursts. In conclusion, our results suggest the importance of microorganisms that attach to M. hapla in suppressive soil, inducing early basal defenses in plants and suppressing nematode performance in roots.
Collapse
Affiliation(s)
- Olivera Topalović
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sandra Bredenbruch
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES—Molecular Phytomedicine, Bonn, Germany
| | - A. Sylvia S. Schleker
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES—Molecular Phytomedicine, Bonn, Germany
| | - Holger Heuer
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut—Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
13
|
Manrubia M, van der Putten WH, Weser C, Veen C(GF. Rhizosphere and litter feedbacks to range-expanding plant species and related natives. THE JOURNAL OF ECOLOGY 2020; 108:353-365. [PMID: 32699431 PMCID: PMC7363160 DOI: 10.1111/1365-2745.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/17/2019] [Indexed: 06/11/2023]
Abstract
Plant-soil feedback (PSF) results from the net legacy effect that plants leave in the composition of soil communities and abiotic soil properties. PSF is induced by the rhizosphere and by litter inputs into the soil, however, we have little understanding of their individual contributions. Here, we examine feedback effects from the rhizosphere of living plants, decomposing litter and their combination.We used four pairs of climate warming-induced range-expanding plant species and congeneric natives, and examined PSF effects on plant biomass production, as well as on decomposition in their new range.We tested the hypothesis that the plant rhizosphere provides less negative feedback to range-expanders than to the congeneric natives, and that feedback mediated by litter decomposition does not provide such a difference because decomposers might be less specialized than pathogens. To determine PSF, we used soil from the congener species within each pair as an 'away' soil to indicate whether range-expanders may have lost their specialized soil biota upon arrival in the novel range.Our results show that although range-expanding plant species and their congeneric natives developed neutral PSF in both rhizosphere- and litter-conditioned soils, two of the four range-expanders produced more biomass than natives in soils conditioned by litter, that is, soils with high nutrient content. Shoot litter from two out of four range-expanding species decomposed more than that of natives, but decomposition was unaffected by soil conditioning. Synthesis. We compared PSF effects of range-expanders and congeneric natives mediated via both the rhizosphere and litter using the congeneric species as a control. Under those conditions, PSF effects were neutral and not affected by plant origin. Therefore, we conclude that studies not comparing within plant genera may overestimate the impact of plant origin on PSF. Still, even under those conditions range-expanders appeared to benefit more from high soil nutrient availability than natives, thus providing a possible advantage over congeneric natives.
Collapse
Affiliation(s)
- Marta Manrubia
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Laboratory of NematologyWageningen University and Research CentreWageningenThe Netherlands
| | - Carolin Weser
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Ciska (G. F.) Veen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
14
|
Hannula SE, Ma HK, Pérez-Jaramillo JE, Pineda A, Bezemer TM. Structure and ecological function of the soil microbiome affecting plant-soil feedbacks in the presence of a soil-borne pathogen. Environ Microbiol 2019; 22:660-676. [PMID: 31788934 PMCID: PMC7027455 DOI: 10.1111/1462-2920.14882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
Interactions between plants and soil microbes are important for plant growth and resistance. Through plant–soil‐feedbacks, growth of a plant is influenced by the previous plant that was growing in the same soil. We performed a plant–soil feedback study with 37 grass, forb and legume species, to condition the soil and then tested the effects of plant‐induced changes in soil microbiomes on the growth of the commercially important cut‐flower Chrysanthemum in presence and absence of a pathogen. We analysed the fungal and bacterial communities in these soils using next‐generation sequencing and examined their relationship with plant growth in inoculated soils with or without the root pathogen, Pythium ultimum. We show that a large part of the soil microbiome is plant species‐specific while a smaller part is conserved at the plant family level. We further identified clusters of plant species creating plant growth promoting microbiomes that suppress concomitantly plant pathogens. Especially soil inocula with higher relative abundances of arbuscular mycorrhizal fungi caused positive effects on the Chrysanthemum growth when exposed to the pathogen. We conclude that plants differ greatly in how they influence the soil microbiome and that plant growth and protection against pathogens is associated with a complex soil microbial community.
Collapse
Affiliation(s)
- S Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Hai-Kun Ma
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.,Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Juan E Pérez-Jaramillo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Ana Pineda
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.,Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
15
|
Time after Time: Temporal Variation in the Effects of Grass and Forb Species on Soil Bacterial and Fungal Communities. mBio 2019; 10:mBio.02635-19. [PMID: 31848279 PMCID: PMC6918080 DOI: 10.1128/mbio.02635-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our findings highlight how soil fungal and bacterial communities respond to time, season, and plant species identity. We found that succession shapes the soil bacterial community, while plant species and the type of plant species that grows in the soil drive the assembly of soil fungal communities. Future research on the effects of plants on soil microbes should take into consideration the relative roles of both time and plant growth on creating soil legacies that impact future plants growing in the soil. Understanding the temporal (in)stability of microbial communities in soils will be crucial for predicting soil microbial composition and functioning, especially as plant species compositions will shift with global climatic changes and land-use alterations. As fungal and bacterial communities respond to different environmental cues, our study also highlights that the selection of study organisms to answer specific ecological questions is not trivial and that the timing of sampling can greatly affect the conclusions made from these studies. Microorganisms are found everywhere and have critical roles in most ecosystems, but compared to plants and animals, little is known about their temporal dynamics. Here, we investigated the temporal stability of bacterial and fungal communities in the soil and how their temporal variation varies between grasses and forb species. We established 30 outdoor mesocosms consisting of six plant monocultures and followed microbial communities for an entire year in these soils. We demonstrate that bacterial communities vary greatly over time and that turnover plays an important role in shaping microbial communities. We further show that bacterial communities rapidly shift from one state to another and that this is related to changes in the relative contribution of certain taxa rather than to extinction. Fungal soil communities are more stable over time, and a large part of the variation can be explained by plant species and by whether they are grasses or forbs. Our findings show that the soil bacterial community is shaped by time, while plant group and plant species-specific effects drive soil fungal communities. This has important implications for plant-soil research and highlights that temporal dynamics of soil communities cannot be ignored in studies on plant-soil feedback and microbial community composition and function.
Collapse
|
16
|
Heinen R, Biere A, Bezemer TM. Plant traits shape soil legacy effects on individual plant–insect interactions. OIKOS 2019. [DOI: 10.1111/oik.06812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Robin Heinen
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
- Inst. of Biology, Leiden Univ. Leiden the Netherlands
| | - Arjen Biere
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
| | - T. Martijn Bezemer
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
- Inst. of Biology, Leiden Univ. Leiden the Netherlands
| |
Collapse
|
17
|
Mutyambai DM, Bass E, Luttermoser T, Poveda K, Midega CAO, Khan ZR, Kessler A. More Than “Push” and “Pull”? Plant-Soil Feedbacks of Maize Companion Cropping Increase Chemical Plant Defenses Against Herbivores. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Wang XX, Hoffland E, Mommer L, Feng G, Kuyper TW. Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists. MYCORRHIZA 2019; 29:251-261. [PMID: 30919070 DOI: 10.1007/s00572-019-00885-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Plant-soil feedback (PSF) describes the process whereby plant species modify the soil environment, which subsequently impacts the growth of the same or another plant species. Our aim was to explore PSF by two maize varieties (a landrace and a hybrid variety) and three arbuscular mycorrhizal fungi (AMF) species (Funneliformis mosseae, Claroideoglomus etunicatum, Gigaspora margarita, and the mixture). We carried out a pot experiment with a conditioning and a feedback phase to determine PSF with different species of AMF and with a non-mycorrhizal control. Sterilized soil was conditioned separately by each variety, with or without AMF; in the feedback phase, each soil community was used to grow each in its "home" soil and in the "away" soil. Plant performance was assessed as shoot biomass, phosphorus (P) concentration and P content, and fungal performance was assessed as mycorrhizal colonization and hyphal length density. Both maize varieties were differentially influenced by AMF in the conditioning phase. In the feedback phase, PSF was generally negative for non-mycorrhizal plants or when plants were colonized by G. margarita, whereas PSF was positive in the other three AMF treatments. When plants were grown on home soil, hyphal length density was larger than on away soil. We conclude that different maize varieties can strengthen positive plant-soil feedback for themselves through beneficial mutualists for themselves, but not across the maize varieties.
Collapse
Affiliation(s)
- Xin-Xin Wang
- College of Resources and Environmental Sciences and Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, People's Republic of China
- Mountain Area Research Institute, Agricultural University of Hebei, Baoding, 071001, People's Republic of China
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Ellis Hoffland
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Wageningen University & Research, P.O. Box 47, Wageningen, 6700 AA, The Netherlands
| | - Gu Feng
- College of Resources and Environmental Sciences and Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
19
|
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2019; 10:157. [PMID: 30881364 PMCID: PMC6407669 DOI: 10.3389/fpls.2019.00157] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/29/2019] [Indexed: 05/19/2023]
Abstract
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Collapse
Affiliation(s)
- Alberto Canarini
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
- *Correspondence: Alberto Canarini,
| | - Christina Kaiser
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| | - Andrew Merchant
- Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Andreas Richter
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Modulation of plant-mediated interactions between herbivores of different feeding guilds: Effects of parasitism and belowground interactions. Sci Rep 2018; 8:14424. [PMID: 30258118 PMCID: PMC6158277 DOI: 10.1038/s41598-018-32131-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022] Open
Abstract
Herbivory affects subsequent herbivores, mainly regulated by the phytohormones jasmonic (JA) and salicylic acid (SA). Additionally, organisms such as soil microbes belowground or parasitoids that develop inside their herbivorous hosts aboveground, can change plant responses to herbivory. However, it is not yet well known how organisms of trophic levels other than herbivores, below- and above-ground, alter the interactions between insect species sharing a host plant. Here, we investigated whether the parasitoid Aphidius colemani and different soil microbial communities (created through plant-soil feedbacks) affect the JA and SA signalling pathways in response to the aphid Myzus persicae and the thrips Frankliniella occidentalis, as well as subsequent thrips performance. Our results show that the expression of the JA-responsive gene CaPINII in sweet pepper was more suppressed by aphids than by parasitised aphids. However, parasitism did not affect the expression of CaPAL1, a biosynthetic gene of SA. Furthermore, aphid feeding enhanced thrips performance compared with uninfested plants, but this was not observed when aphids were parasitised. Soils where different plant species were previously grown, did not affect plant responses or the interaction between herbivores. Our study shows that members of the third trophic level can modify herbivore interactions by altering plant physiology.
Collapse
|
21
|
Ma HK, Pineda A, van der Wurff AWG, Bezemer TM. Synergistic and antagonistic effects of mixing monospecific soils on plant-soil feedbacks. PLANT AND SOIL 2018; 429:271-279. [PMID: 30971850 PMCID: PMC6434923 DOI: 10.1007/s11104-018-3694-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/21/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Plants influence the soil they grow in, and this can alter the performance of other, later growing plants in the same soil. This is called plant-soil feedback and is usually tested with monospecific soils, i.e. soils that are conditioned by one plant species. Here, we test if plant-soil feedbacks of inocula consisting of mixtures of monospecific soils can be predicted from the effects of the component inocula. METHODS Chrysanthemum plants were grown in sterile soil inoculated with eight monospecific conditioned soils and with mixtures consisting of all pairwise combinations. Plant biomass and leaf yellowness were measured and the additivity was calculated. RESULTS On average, plant biomass in the mixed inocula was slightly but significantly (6%) lower than predicted. In contrast, when growing in mixed inocula, plants showed 38% less disease symptoms than predicted. Moreover, the larger the difference between the effects of the two monospecific soils on plant growth, the higher the observed effect in the mixture exceeded the predicted effects. CONCLUSIONS We show that mixed monospecific soils interact antagonistically in terms of plant growth, but synergistically for disease symptoms. Our study further advances our understanding of plant-soil feedbacks, and suggests that mixing soils can be a powerful tool to steer soil microbiomes to improve plant-soil feedback effects.
Collapse
Affiliation(s)
- Hai-kun Ma
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Ana Pineda
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Andre W. G. van der Wurff
- Delft Research Group, Section Green Projects, Groen Agro Control, P.O. Box 549, 2600 AM Delft, The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|