1
|
Wang GY, Li YY, Shao KM, Li SL, Guan Y, Guo H, Chen L. Electrophysiological Responses and Field Attractants of Plutella xylostella Adults to Volatiles from Brassica oleracea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8925-8934. [PMID: 40195004 DOI: 10.1021/acs.jafc.5c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), is a major pest of crucifers. Many volatile compounds emitted by cruciferous vegetables are known to mediate the attraction of DBM adults to host plant and oviposition sites. However, development of highly effective attractants for DBM management is still needed. Here, we first analyzed the volatile compounds emitted by macerated broccoli leaves with gas chromatographic-electroantennographic detection and gas chromatography/mass spectrometry. Eight compounds, including benzaldehyde, limonene, phenylacetaldehyde, acetophenone, linalool, 2-phenylethyl alcohol, methyl salicylate, and methyl 2-methoxybenzoate, elicited robust responses from the antennae. Then, we conducted multiple field trapping experiments involving the "addition approach" (individually adding components to the most abundant component, D-limonene) and the "subtraction approach" to evaluate the attractiveness of different blends. We found that a 3-component blend of D-limonene, 2-phenylethyl alcohol, and methyl 2-methoxybenzoate (3:2:1) is the most effective attractant. This blend holds great potential for monitoring and management of P. xylostella populations.
Collapse
Affiliation(s)
- Guang-Yu Wang
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| | - Ya-Ya Li
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| | - Kai-Min Shao
- Department of Electronic Information and Electrical Engineering, Anyang Institute of Technology, Anyang 455099, China
| | - Shen-Lei Li
- Guangzhou Ruifeng Biotechnology Co. Ltd., Guangzhou 511370, China
| | - Yun Guan
- Guangzhou Ruifeng Biotechnology Co. Ltd., Guangzhou 511370, China
| | - Hao Guo
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| | - Li Chen
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Knight AL, Preti M, Basoalto E. Factors Impacting the Use of an Allelochemical Lure in Pome Fruit for Cydia pomonella (L.) Monitoring. INSECTS 2025; 16:172. [PMID: 40003801 PMCID: PMC11856869 DOI: 10.3390/insects16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
A four-component blend comprising pear ester, DMNT, linalool oxide, and acetic acid (CM4K) was identified as a potent allelochemical lure for both sexes of codling moth (CM), Cydia pomonella (L.). Studies conducted from 2020 to 2022 in Washington State (USA) examined factors which could impact the lure's relative performance. The CM4K lure was effective across a range of mating disruption programs and was equally attractive in monitoring wild and sterile CM. The lure remained attractive for at least 10 weeks. Total catch in traps baited with the CM4K was significantly less impacted than a sex pheromone lure located near mating disruption dispensers and female catches were largely unaffected. Traps with the CM4K lure caught significantly more females and fewer males when placed near clusters of fruits in a trellised orchard. Two factors were found to significantly impact the relative performance of the CM4K to sex pheromone lures: the CM4K lure was only equivalent to sex pheromone lures in pear MD orchards, and apple and pear orchards with vigorous weed growth. This is the first report of a monitoring lure for a tortricid moth being negatively impacted by the background odor of non-host weed species present within an orchard.
Collapse
Affiliation(s)
| | - Michele Preti
- Independent Integrated Pest Management consultant and researcher, 48018 Faenza, Italy
| | - Esteban Basoalto
- Facultad de Ciencias Agrarias, Instituto de Producción y Sanidad Vegetal, Universidad Austral de Chile, Valdivia 5110566, Chile;
| |
Collapse
|
3
|
Thöming G. Behavior Matters-Future Need for Insect Studies on Odor-Mediated Host Plant Recognition with the Aim of Making Use of Allelochemicals for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10469-10479. [PMID: 34482687 DOI: 10.1021/acs.jafc.1c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Allelochemicals, chemical cues that, among other things, mediate insect-plant interactions, such as host plant recognition, have attracted notable interest as tools for ecological control of pest insects. Advances have recently been made in methods for sampling and analyzing volatile compounds and technology for tracking insects in their natural habitat. However, progress in odor-mediated behavioral bioassays of insects has been relatively slow. This perspective highlights this odor-mediated insect behavior, particularly in a natural setting and considering the whole behavioral sequence involved in the host location, which is the key to understanding the mechanisms underlying host plant recognition. There is thus a need to focus on elaborate behavioral bioassays in future studies, particularly if the goal is to use allelochemicals in pest control. Future directions for research are discussed.
Collapse
Affiliation(s)
- Gunda Thöming
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| |
Collapse
|
4
|
Meng X, Hu J, Li Y, Dai J, Ouyang G. Screening for effective odors through which Conopomorpha sinensis Bradley (Lepidoptera: Gracillariidae) locates its host. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Conchou L, Lucas P, Deisig N, Demondion E, Renou M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. INSECTS 2021; 12:insects12050409. [PMID: 34062868 PMCID: PMC8147264 DOI: 10.3390/insects12050409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary It is well acknowledged that some of the volatile plant compounds (VPC) naturally present in insect natural habitats alter the perception of their own pheromone when presented individually as a background to pheromone. However, the effects of mixing VPCs as they appear to insects in natural olfactory landscapes are poorly understood. We measured the activity of brain neurons and neurons that detect a sex pheromone component in a moth antenna, while exposed to simple or composite backgrounds of VPCs representative of the odorant variety encountered by this moth. Maps of activities were built using calcium imaging to visualize which brain areas were most affected by VPCs. In the antenna, we observed differences in VPC capacity to elicit firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to volatility. The neuronal network, which reformats the input from antenna neurons in the brain, did not improve pheromone salience. We postulate that moth olfactory system evolved to increase sensitivity and encode fast changes of concentration at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component, VPC salience seems more important than background complexity. Abstract The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis ipsilon while exposed to simple or composite backgrounds of a panel of VPCs representative of the odorant variety encountered by a moth. Maps of activities were built using calcium imaging to visualize which areas in antennal lobes (AL) were affected by VPCs. We compared the VPC activity and their impact as backgrounds at antenna and AL levels, individually or in blends. At periphery, VPCs showed differences in their capacity to elicit Z7-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to vapor pressures. The AL neuronal network, which reformats the ORN input, did not improve pheromone salience. We postulate that the AL network evolved to increase sensitivity and to encode for fast changes of pheromone at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component. VPC salience seems to be more important than background complexity.
Collapse
|
6
|
A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. Sci Rep 2020; 10:12704. [PMID: 32728091 PMCID: PMC7391657 DOI: 10.1038/s41598-020-69468-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/24/2020] [Indexed: 01/14/2023] Open
Abstract
The role of root exudates in mediating plant–microbe interactions has been well documented. However, the function of volatile organic compounds (VOCs) emitted by plant roots has only recently begun to attract attention. This newly recognized relevance of belowground VOCs has so far mostly been tested using systems limited to a two-compartment Petri-dish design. Furthermore, many of the plant–microbe interaction studies have only investigated the effects of microbial VOCs on plant growth. Here, we go two steps further. First we investigated the volatile profile of healthy and pathogen (Fusarium oxysporum) infected tomato roots grown in soil. We then used a unique soil-based olfactometer-choice assay to compare the migration pattern of four beneficial bacteria (Bacillus spp.) towards the roots of the tomato plants. We demonstrate that the blend of root-emitted VOCs differs between healthy and diseased plants. Our results show that VOCs are involved in attracting bacteria to plant roots.
Collapse
|
7
|
Gonzalez F, Borrero‐Echeverry F, Jósvai JK, Strandh M, Unelius CR, Tóth M, Witzgall P, Bengtsson M, Walker WB. Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths. Ecol Evol 2020; 10:7334-7348. [PMID: 32760532 PMCID: PMC7391548 DOI: 10.1002/ece3.6458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- ChemTica InternacionalHerediaCosta Rica
| | - Felipe Borrero‐Echeverry
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Corporación Colombiana de Investgación AgropecuariaAgrosaviaMosqueraColombia
| | | | - Maria Strandh
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Molecular Ecology and Evolution LabDepartment of BiologyLund UniversityLundSweden
| | | | - Miklós Tóth
- Plant Protection Institute CARBudapestHungary
| | - Peter Witzgall
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - William B. Walker
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| |
Collapse
|
8
|
Thöming G, Koczor S, Szentkirályi F, Norli HR, Tasin M, Knudsen GK. Attraction of Chrysotropia ciliata (Neuroptera, Chrysopidae) Males to P-Anisaldehyde, a Compound with Presumed Pheromone Function. J Chem Ecol 2020; 46:597-609. [PMID: 32588285 PMCID: PMC7371651 DOI: 10.1007/s10886-020-01191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022]
Abstract
In a field-trapping experiment with plant volatiles, we observed notably high attraction of green lacewing (Chrysotropia ciliata) males to the compound p-anisaldehyde. Based on this finding, we initiated the present study to elucidate this phenomenon and to investigate the chemical ecology of C. ciliata. Scanning electron microscopy revealed elliptical glands abundantly distributed on the 2nd to 6th abdominal sternites of C. ciliata males, whereas females of the species completely lacked such glands. No p-anisaldehyde was found in extractions of body parts of C. ciliata. Methyl p-anisate and p-methoxybenzoic acid were identified exclusively in the extract from abdominal segments 2–8 of males. Field-trapping experiments revealed no attraction of C. ciliata to either methyl p-anisate or p-methoxybenzoic acid. In contrast, males showed marked attraction to p-anisaldehyde in the field and antennae showed strong responses to this compound. Headspace collections in the field from living insects in their natural environment and during their main daily activity period indicated that p-anisaldehyde was emitted exclusively by C. ciliata males. Our overall results suggest that p-anisaldehyde might serve as a male-produced pheromone that attracts conspecific C. ciliata males. Here, we discuss hypotheses regarding possible mechanisms involved in regulation of p-anisaldehyde production, including involvement of the compounds methyl p-anisate and p-methoxybenzoic acid, and the potential ecological function of p-anisaldehyde in C. ciliata.
Collapse
Affiliation(s)
- Gunda Thöming
- Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Box 115, NO-1431, Ås, PO, Norway.
| | - Sándor Koczor
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Ferenc Szentkirályi
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Hans R Norli
- Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Box 115, NO-1431, Ås, PO, Norway
| | - Marco Tasin
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Geir K Knudsen
- Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Box 115, NO-1431, Ås, PO, Norway
| |
Collapse
|
9
|
Larsson Herrera S, Rikk P, Köblös G, Szelényi MO, Molnár BP, Dekker T, Tasin M. Designing a species-selective lure based on microbial volatiles to target Lobesia botrana. Sci Rep 2020; 10:6512. [PMID: 32300184 PMCID: PMC7162901 DOI: 10.1038/s41598-020-63088-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
Sustainable, low impact control methods, including mating disruption and microbial insecticides against L. botrana have been available for decades. Yet, successful implementation has been restricted to only a few grapevine districts in the world. A limiting factor is the lack of a female attractant to either monitor or control the damaging sex. Volatile attractants for both female and male insects can be used to assess when L. botrana populations exceed economic thresholds, and to decrease the use of synthetic pesticides within both conventional and pheromone programs. Rather than using host-plant volatiles, which are readily masked by background volatiles released by the main crop, we tested the attractiveness of volatiles that signify microbial breakdown and more likely stand out against the background odour. A two-component blend of 2-phenylethanol (2-PET) and acetic acid (AA) caught significant numbers of both sexes. Catches increased with AA and, to a minimal extent, 2-PET loads. However, a higher load of 2-PET also increased bycatches, especially of Lepidoptera and Neuroptera. Major (ethanol, ethyl acetate, 3-methyl-1-butanol) or minor (esters, aldehydes, alcohols and a ketone) fermentation volatiles, did surprisingly not improve the attraction of L. botrana compared to the binary blend of 2-PET and AA alone, but strongly increased bycatches. The most attractive lure may thus not be the best choice in terms of specificity. We suggest that future research papers always disclose all bycatches to permit evaluation of lures in terms of sustainability.
Collapse
Affiliation(s)
| | - Péter Rikk
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Gabriella Köblös
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | | | - Béla Péter Molnár
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Teun Dekker
- SLU, Department of Plant Protection Biology, 230 53, Alnarp, Sweden
| | - Marco Tasin
- SLU, Department of Plant Protection Biology, 230 53, Alnarp, Sweden
| |
Collapse
|
10
|
Leonard RJ, Vergoz V, Proschogo N, McArthur C, Hochuli DF. Petrol exhaust pollution impairs honey bee learning and memory. OIKOS 2018. [DOI: 10.1111/oik.05405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ryan J. Leonard
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Vanina Vergoz
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Nicholas Proschogo
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| | - Dieter F. Hochuli
- School of Life and Environmental Sciences, The Univ. of Sydney; NSW 2006 Australia
| |
Collapse
|