1
|
Lang J, Jiang H, Cheng M, Wang M, Gu J, Dong H, Li M, Guo X, Chen Q, Wang J. Variation of TaMyb10 and their function on grain color and pre-harvest sprouting resistance of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1388-1399. [PMID: 38407913 DOI: 10.1111/tpj.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Pre-harvest sprouting (PHS) is a significant threat to global food security due to its association with losses in both yield and quality. Among the genes involved in PHS resistance in wheat, PHS-3D (TaMyb10-D) plays a crucial role. Here, we characterized the sequence variations of TaMyb10 genes in 416 bread wheat and 302 Aegilops tauschii accessions. Within TaMyb10-A sequences, we identified a deletion ranging from 214 to 305 bp in the signal and amino acid coding region, present in 61.3% of the accessions. Similarly, 79.3% of the TaMyb10-B sequences within the third exon region exhibited a 19 bp deletion. Additionally, 40.8% of the accessions lacked the 2.4 Mb fragment (in/del mutations) on Chr3D, where TaMyb10-D/PHS-3D was located. Interestingly, the geographical distribution of accessions showed little correlation with the divergence of TaMyb10. TaMyb10-A-IIIDele, TaMyb10-B-IVDele, and TaMyb10-D-VDele genotypes were prevalent in wheat populations across continents. Despite their structural variations, the five distinct protein types exhibited comparable ability to bind the promoters of downstream genes in the flavonoid and ABA pathways, such as CHS, DFR, and NCED. Furthermore, the combination of TaMyb10 homologs was significantly associated with grain color and germination percentages. Accessions exclusively harboring TaMyb10-D displayed red seed color and reduced germination percentages, indicating the predominant role of TaMyb10-D compared to TaMyb10-A and TaMyb10-B. This comprehensive investigation enhances our understanding of the structural variations and functional divergence of TaMyb10, providing valuable insights and resources for improving PHS resistance in wheat.
Collapse
Affiliation(s)
- Jing Lang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huayu Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - XiaoJiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Kou C, Peng C, Dong H, Hu L, Xu W. Mapping quantitative trait loci and developing their KASP markers for pre-harvest sprouting resistance of Henan wheat varieties in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1118777. [PMID: 36875573 PMCID: PMC9976778 DOI: 10.3389/fpls.2023.1118777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Pre-harvest Sprouting (PHS) seriously affects wheat quality and yield. However, to date there have been limited reports. It is of great urgency to breed resistance varieties via quantitative trait nucleotides (QTNs) or genes for PHS resistance in white-grained wheat. METHODS 629 Chinese wheat varieties, including 373 local wheat varieties from 70 years ago and 256 improved wheat varieties were phenotyped for spike sprouting (SS) in two environments and genotyped by wheat 660K microarray. These phenotypes were used to associate with 314,548 SNP markers for identifying QTNs for PHS resistance using several multi-locus genome-wide association study (GWAS) methods. Their candidate genes were verified by RNA-seq, and the validated candidate genes were further exploited in wheat breeding. RESULTS As a result, variation coefficients of 50% and 47% for PHS in 629 wheat varieties, respectively, in 2020-2021 and 2021-2022 indicated large phenotypic variation, in particular, 38 white grain varieties appeared at least medium resistance, such as Baipimai, Fengchan 3, and Jimai 20. In GWAS, 22 significant QTNs, with the sizes of 0.06% ~ 38.11%, for PHS resistance were stably identified by multiple multi-locus methods in two environments, e.g., AX-95124645 (chr3D:571.35Mb), with the sizes of 36.390% and 45.850% in 2020-2021 and 2021-2022, respectively, was detected by several multi-locus methods in two environments. As compared with previous studies, the AX-95124645 was used to develop Kompetitive Allele-Specific PCR marker QSS.TAF9-3D (chr3D:569.17Mb~573.55Mb) for the first time, especially, it is available in white-grain wheat varieties. Around this locus, nine genes were significantly differentially expressed, and two of them (TraesCS3D01G466100 and TraesCS3D01G468500) were found by GO annotation to be related to PHS resistance and determined as candidate genes. DISCUSSION The QTN and two new candidate genes related to PHS resistance were identified in this study. The QTN can be used to effectively identify the PHS resistance materials, especially, all the white-grained varieties with QSS.TAF9-3D-TT haplotype are resistant to spike sprouting. Thus, this study provides candidate genes, materials, and methodological basis for breeding wheat PHS resistance in the future.
Collapse
Affiliation(s)
- Cheng Kou
- College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - ChaoJun Peng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - HaiBin Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - Lin Hu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| | - WeiGang Xu
- College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Zhengzhou, Henan, China
- The Shennong laboratory, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Vetch JM, Tillett BJ, Bruckner P, Martin JM, Marlowe K, Hooker MA, See DR, Giroux MJ. TAMFT-3A and TAMFT-3B2 homeologs are associated with wheat preharvest sprouting. THE PLANT GENOME 2022; 15:e20250. [PMID: 35971881 DOI: 10.1002/tpg2.20250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The phenomenon of preharvest sprouting (PHS), caused by rain after physiological maturity and prior to harvest, negatively affects wheat (Triticum aestivum L.) production and end use. Investigating the genetics that control PHS resistance may result in increased control of seed dormancy. Multiple genes involved in the development of seed dormancy are associated with PHS. In this study, the TaMFT (3A, 3B1, 3B2, 3D), TaMKK3-4A, and TaVP1-3B genes were assessed for association with PHS in a double-haploid line (DHL) hard red winter wheat population derived from a BC1 cross between the cultivars Loma and Warhorse, where Loma was the recurrent and PHS susceptible parent. The 162 BC1 DHL lines were grown over two field seasons and PHS susceptibility was assessed by measuring PHS resistance in physiologically mature heads. The PHS variation was associated with the TaMFT-A and the B2 homeolog with Loma carrying mutant forms of each gene. No sequence variation between Loma and Warhorse was detected in the exons of the TaMFT-B1 and D homeologs. No association between PHS resistance and TaMKK3-4A or TaVp1-3B variation was observed, though Loma and Warhorse vary for TaMKK3-4A and TaVp1-3B mutations reported to be PHS associated. Previous research has shown TaMFT-3A as having a large impact on PHS resistance. In the current study, the TaMFT-3A and TaMFT-3B2 alleles each explained 14% of observed PHS variation. Markers for both TaMFT-3A and TaMFT-3B2 should be used in selecting for increased wheat dormancy and PHS resistance.
Collapse
Affiliation(s)
- Justin Michael Vetch
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
- Current address: Dep. of Research Centers, Montana State Univ., Conrad, MT, 59425, USA
| | - Brandon J Tillett
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| | - Philip Bruckner
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| | - John M Martin
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| | - Karol Marlowe
- Current address: Dep. of Research Centers, Montana State Univ., Conrad, MT, 59425, USA
| | | | - Deven Robert See
- Crop and Soil Sciences, Washington State Univ. College of Agricultural Human and Natural Resource Sciences, 291B, Johnson Hall, Pullman, WA, 99164, USA
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164, USA
| | - Michael J Giroux
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| |
Collapse
|
4
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Liu S, Wang D, Lin M, Sehgal SK, Dong L, Wu Y, Bai G. Artificial selection in breeding extensively enriched a functional allelic variation in TaPHS1 for pre-harvest sprouting resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:339-350. [PMID: 33068119 DOI: 10.1007/s00122-020-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Pre-harvest sprouting (PHS) causes significant losses in wheat yield and quality worldwide. Previously, we cloned a PHS resistance gene, TaPHS1, and identified two causal mutations for reduced seed dormancy (SD) and increased PHS susceptibility. Here we identified a novel allelic variation of C to T transition in 3'-UTR of TaPHS1, which associated with reduced SD and PHS resistance. The T allele occurred in wild wheat progenitors and was likely the earliest functional mutation in TaPHS1 for PHS susceptibility. Allele frequency analysis revealed low frequency of the T allele in wild diploid and tetraploid wheat progenitors, but very high frequency in modern wheat cultivars and breeding lines, indicating that artificial selection quickly enriched the T allele during modern breeding. The T allele was significantly associated with short SD in both T. aestivum and T. durum, the two most cultivated species of wheat. This variation together with previously reported functional sequence variations co-regulated TaPHS1 expression levels and PHS resistance in different germplasms. Haplotype analysis of the four functional variations identified the best PHS resistance haplotype of TaPHS1. The resistance haplotype can be used in marker-assisted selection to transfer TaPHS1 to new wheat cultivars.
Collapse
Affiliation(s)
- Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetic Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Wang W, Pan Y, Wang L, Zhou H, Song G, Wang Y, Liu J, Li A. Optimal Dietary Ferulic Acid for Suppressing the Obesity-Related Disorders in Leptin-Deficient Obese C57BL/6J -ob/ob Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4250-4258. [PMID: 30907082 DOI: 10.1021/acs.jafc.8b06760] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ferulic acid (FA) is a major polyphenolic compound and has been shown to improve the glucose and lipid homeostasis in high-fat diet-induced obese mice. Here, we found the optimal level of dietary FA to ameliorate obesity and obesity-correlated disorders, and identified the responses of gut microbiota to dietary FA in genetic leptin-deficient obese ( ob/ob) mice. The ob/ob mice exhibited persistent higher body weights, feed efficiency, white adipose tissue weights, and hepatic lipid accumulation, compared to those of the wild-type mice. However, 0.5% dietary FA suppressed these symptoms in ob/ob mice. The diversity of gut microbiota and the total abundance of obesity- and anti-obesity-related genera were not influenced after FA intervention in ob/ob mice. These data suggest that sufficient intake of FA (0.5%) could be useful for treating obesity or obesity-related diseases, and this weight-control effect is possibly not correlated with the gut-brain axis.
Collapse
Affiliation(s)
- Weiwei Wang
- Academy of State Administration of Grain , Beijing , P.R. China 100037
| | - Yiou Pan
- Academy of State Administration of Grain , Beijing , P.R. China 100037
- Henan University of Science and Technology , Luoyang , P.R. China 471023
| | - Li Wang
- Academy of State Administration of Grain , Beijing , P.R. China 100037
| | - Hang Zhou
- Academy of State Administration of Grain , Beijing , P.R. China 100037
| | - Ge Song
- Academy of State Administration of Grain , Beijing , P.R. China 100037
| | - Yongwei Wang
- Academy of State Administration of Grain , Beijing , P.R. China 100037
| | - Jianxue Liu
- Henan University of Science and Technology , Luoyang , P.R. China 471023
| | - Aike Li
- Academy of State Administration of Grain , Beijing , P.R. China 100037
| |
Collapse
|
7
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|