1
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Alhusayni S, Kersten N, Huisman R, Geurts R, Klein J. Ectopic expression of the GRAS-type transcriptional regulator NSP2 in Parasponia triggers contrasting effects on symbioses. FRONTIERS IN PLANT SCIENCE 2024; 15:1468812. [PMID: 39539299 PMCID: PMC11557437 DOI: 10.3389/fpls.2024.1468812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Introduction Plants strictly control root endosymbioses with nutrient-scavenging arbuscular endomycorrhizal fungi or nodule inducing diazotrophic bacteria. The GRAS-type transcriptional regulator NODULATION SIGNALING PATHWAY 2 (NSP2) is a conserved hub in this process. The NSP2-regulated transcriptional network is instrumental in balancing nutrient homeostasis with symbiotic interactions. NSP2 activity is modulated post-transcriptionally by a specific microRNA. Overriding this control mechanism by ectopic expression of a miRNA-resistant NSP2 transgene enhances the symbiotic permissiveness to arbuscular endomycorrhizal fungi. Such engineered plants may possess enhanced capacities for nutrient uptake. However, the trade-off of this strategy on plant development or other symbiotic interactions, like nodulation, is yet to be fully understood. Method We used the nodulating Cannabaceae species Parasponia andersonii as an experimental system to study the effect of ectopic NSP2 expression. Parasponia and legumes (Fabaceae) diverged 100 million years ago, providing a unique comparative system to dissect the nodulation trait. Results Six independent transgenic Parasponia lines were generated that differed in the level of NSP2 expression in the root from 6 to 95-fold higher when compared to the empty vector control plants. Analysis of these plants revealed a positive correlation between mycorrhization and the NSP2 expression level, as well as with the expression of the symbiosis transcription factor CYCLOPS and the rate-limiting enzyme in the carotenoid biosynthetic pathway PHYTOENE SYNTHASE1 (PSY1). Yet ectopic expression of NSP2 affected plant architecture and root nodule organogenesis. Discussion This indicates a significant trade-off when leveraging NSP2 over-expression to enhance endomycorrhization.
Collapse
Affiliation(s)
- Sultan Alhusayni
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nick Kersten
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Rik Huisman
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Joël Klein
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
Holme IB, Ingvardsen CR, Dionisio G, Podzimska‐Sroka D, Kristiansen K, Feilberg A, Brinch‐Pedersen H. CRISPR/Cas9-mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:484-496. [PMID: 37823527 PMCID: PMC10826993 DOI: 10.1111/pbi.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Improving tolerance to ethylene-induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene-signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age-dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.
Collapse
Affiliation(s)
- Inger B. Holme
- Department of Agroecology, Faculty of Technical SciencesAarhus UniversitySlagelseDenmark
| | | | - Giuseppe Dionisio
- Department of Agroecology, Faculty of Technical SciencesAarhus UniversitySlagelseDenmark
| | | | | | - Anders Feilberg
- Department of Biological and Chemical Engineering, Faculty of Technical SciencesAarhus UniversityAarhusDenmark
| | - Henrik Brinch‐Pedersen
- Department of Agroecology, Faculty of Technical SciencesAarhus UniversitySlagelseDenmark
| |
Collapse
|
4
|
Alhusayni S, Roswanjaya YP, Rutten L, Huisman R, Bertram S, Sharma T, Schon M, Kohlen W, Klein J, Geurts R. A rare non-canonical splice site in Trema orientalis SYMRK does not affect its dual symbiotic functioning in endomycorrhiza and rhizobium nodulation. BMC PLANT BIOLOGY 2023; 23:587. [PMID: 37996841 PMCID: PMC10668435 DOI: 10.1186/s12870-023-04594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK. RESULTS We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare. CONCLUSION SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.
Collapse
Affiliation(s)
- Sultan Alhusayni
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biological Sciences Department, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Luuk Rutten
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Rik Huisman
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Simon Bertram
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Trupti Sharma
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael Schon
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joël Klein
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Wilkinson H, Coppock A, Richmond BL, Lagunas B, Gifford ML. Plant-Environment Response Pathway Regulation Uncovered by Investigating Non-Typical Legume Symbiosis and Nodulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1964. [PMID: 37653881 PMCID: PMC10223263 DOI: 10.3390/plants12101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Nitrogen is an essential element needed for plants to survive, and legumes are well known to recruit rhizobia to fix atmospheric nitrogen. In this widely studied symbiosis, legumes develop specific structures on the roots to host specific symbionts. This review explores alternate nodule structures and their functions outside of the more widely studied legume-rhizobial symbiosis, as well as discussing other unusual aspects of nodulation. This includes actinorhizal-Frankia, cycad-cyanobacteria, and the non-legume Parasponia andersonii-rhizobia symbioses. Nodules are also not restricted to the roots, either, with examples found within stems and leaves. Recent research has shown that legume-rhizobia nodulation brings a great many other benefits, some direct and some indirect. Rhizobial symbiosis can lead to modifications in other pathways, including the priming of defence responses, and to modulated or enhanced resistance to biotic and abiotic stress. With so many avenues to explore, this review discusses recent discoveries and highlights future directions in the study of nodulation.
Collapse
Affiliation(s)
- Helen Wilkinson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Alice Coppock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
6
|
Hemalatha P, Abda EM, Shah S, Venkatesa Prabhu S, Jayakumar M, Karmegam N, Kim W, Govarthanan M. Multi-faceted CRISPR-Cas9 strategy to reduce plant based food loss and waste for sustainable bio-economy - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117382. [PMID: 36753844 DOI: 10.1016/j.jenvman.2023.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Currently, international development requires innovative solutions to address imminent challenges like climate change, unsustainable food system, food waste, energy crisis, and environmental degradation. All the same, addressing these concerns with conventional technologies is time-consuming, causes harmful environmental impacts, and is not cost-effective. Thus, biotechnological tools become imperative for enhancing food and energy resilience through eco-friendly bio-based products by valorisation of plant and food waste to meet the goals of circular bioeconomy in conjunction with Sustainable Developmental Goals (SDGs). Genome editing can be accomplished using a revolutionary DNA modification tool, CRISPR-Cas9, through its uncomplicated guided mechanism, with great efficiency in various organisms targeting different traits. This review's main objective is to examine how the CRISPR-Cas system, which has positive features, could improve the bioeconomy by reducing food loss and waste with all-inclusive food supply chain both at on-farm and off-farm level; utilising food loss and waste by genome edited microorganisms through food valorisation; efficient microbial conversion of low-cost substrates as biofuel; valorisation of agro-industrial wastes; mitigating greenhouse gas emissions through forestry plantation crops; and protecting the ecosystem and environment. Finally, the ethical implications and regulatory issues that are related to CRISPR-Cas edited products in the international markets have also been taken into consideration.
Collapse
Affiliation(s)
- Palanivel Hemalatha
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Kings Road, Koronivia, P. O. Box 1544, Nausori, Republic of Fiji
| | - S Venkatesa Prabhu
- Department of Chemical Engineering, Center of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - M Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
7
|
Jain D, Jones L, Roy S. Gene editing to improve legume-rhizobia symbiosis in a changing climate. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102324. [PMID: 36535148 DOI: 10.1016/j.pbi.2022.102324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the last three years, several gene editing techniques have been developed for both model and crop legumes. CRISPR-Cas9-based tools, in particular, are outpacing other comparable gene editing technologies used in legume hosts and their microbial symbionts to understand the molecular basis of symbiotic nitrogen-fixation. Gene editing has helped identify new gene functions, validate genetic screens, resolve gene redundancy, examine the role of tandemly duplicated genes, and investigate symbiotic signaling networks in non-model plants. In this review, we discuss the advances made in understanding the legume-rhizobia symbiosis through the use of gene editing and highlight studies conducted under varying environmental conditions. We reason that future climate-hardy legumes must be able to better integrate environmental signals with nitrogen fixation by fine-tuning long distance signaling, continuing to select efficient rhizobial partners, and adjusting their molecular circuitry to function optimally under variable light and nutrient availability and rising atmospheric carbon dioxide.
Collapse
Affiliation(s)
- Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Lauren Jones
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
8
|
CRISPR-Based Genome Editing and Its Applications in Woody Plants. Int J Mol Sci 2022; 23:ijms231710175. [PMID: 36077571 PMCID: PMC9456532 DOI: 10.3390/ijms231710175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.
Collapse
|
9
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
10
|
Pak S, Li C. Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. FORESTRY RESEARCH 2022; 2:6. [PMID: 39525414 PMCID: PMC11524270 DOI: 10.48130/fr-2022-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2024]
Abstract
With the advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system, plant genome editing has entered a new era of robust and precise editing for any genes of interest. The development of various CRISPR/Cas toolkits has enabled new genome editing outcomes that not only target indel mutations but also enable base editing and prime editing. The application of the CRISPR/Cas toolkits has rapidly advanced breeding and crop improvement of economically important species. CRISPR/Cas toolkits have also been applied to a wide variety of tree species, including apple, bamboo, Cannabaceae, cassava, citrus, cacao tree, coffee tree, grapevine, kiwifruit, pear, pomegranate, poplar, ratanjoyt, and rubber tree. The application of editing to these species has resulted in significant discoveries related to critical genes associated with growth, secondary metabolism, and stress and disease resistance. However, most studies on tree species have involved only preliminary optimization of editing techniques, and a more in-depth study of editing techniques for CRISPR/Cas-based editing of tree species has the potential to rapidly accelerate tree breeding and trait improvements. Moreover, tree genome editing still relies mostly on Cas9-based indel mutation and Agrobacterium-mediated stable transformation. Transient transformation for transgene-free genome editing is preferred, but it typically has very low efficiency in tree species, substantially limiting its potential utility. In this work, we summarize the current status of tree genome editing practices using the CRISPR/Cas system and discuss limitations that impede the efficient application of CRISPR/Cas toolkits for tree genome editing, as well as future prospects.
Collapse
Affiliation(s)
- Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
12
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
13
|
An Y, Geng Y, Yao J, Wang C, Du J. An Improved CRISPR/Cas9 System for Genome Editing in Populus by Using Mannopine Synthase (MAS) Promoter. FRONTIERS IN PLANT SCIENCE 2021; 12:703546. [PMID: 34322148 PMCID: PMC8311491 DOI: 10.3389/fpls.2021.703546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Gene editing technology in woody plants has great potential for understanding gene function, and altering traits affecting economically and ecologically important traits. Gene editing applications in woody species require a high genome editing efficiency due to the difficulty during transformation and complexities resulting from gene redundancy. In this study, we used poplar 84K (Populus alba × P. glandulosa), which is a model hybrid for studying wood formation and growth. We developed a new CRISPR/Cas9 system to edit multiple genes simultaneously. Using this system, we successfully knocked out multiple targets of the PHYTOENE DESATURASE 8 in poplar. We found the mutation rate of our CRISPR/Cas9 system is higher (67.5%) than existing reports in woody trees. We further improved the mutation rate up to 75% at editing sites through the usage of the mannopine synthase (MAS) promoter to drive Cas9. The MAS-CRISPR/Cas9 is an improved genome-editing tool for woody plants with a higher efficiency and a higher mutation rate than currently available technologies.
Collapse
Affiliation(s)
- Yi An
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Ya Geng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Junguang Yao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Du
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Shen D, Holmer R, Kulikova O, Mannapperuma C, Street NR, Yan Z, van der Maden T, Bu F, Zhang Y, Geurts R, Magne K. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1366-1386. [PMID: 33735477 PMCID: PMC9543857 DOI: 10.1111/tpj.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
Tree stems undergo a massive secondary growth in which secondary xylem and phloem tissues arise from the vascular cambium. Vascular cambium activity is driven by endogenous developmental signalling cues and environmental stimuli. Current knowledge regarding the genetic regulation of cambium activity and secondary growth is still far from complete. The tropical Cannabaceae tree Parasponia andersonii is a non-legume research model of nitrogen-fixing root nodulation. Parasponia andersonii can be transformed efficiently, making it amenable for CRISPR-Cas9-mediated reverse genetics. We considered whether P. andersonii also could be used as a complementary research system to investigate tree-related traits, including secondary growth. We established a developmental map of stem secondary growth in P. andersonii plantlets. Subsequently, we showed that the expression of the co-transcriptional regulator PanNODULE ROOT1 (PanNOOT1) is essential for controlling this process. PanNOOT1 is orthologous to Arabidopsis thaliana BLADE-ON-PETIOLE1 (AtBOP1) and AtBOP2, which are involved in the meristem-to-organ-boundary maintenance. Moreover, in species forming nitrogen-fixing root nodules, NOOT1 is known to function as a key nodule identity gene. Parasponia andersonii CRISPR-Cas9 loss-of-function Pannoot1 mutants are altered in the development of the xylem and phloem tissues without apparent disturbance of the cambium organization and size. Transcriptomic analysis showed that the expression of key secondary growth-related genes is significantly down-regulated in Pannoot1 mutants. This allows us to conclude that PanNOOT1 positively contributes to the regulation of stem secondary growth. Our work also demonstrates that P. andersonii can serve as a tree research system.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Rens Holmer
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Zhichun Yan
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Thomas van der Maden
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Yuanyuan Zhang
- Laboratory of Plant PhysiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708 PBThe Netherlands
- Present address:
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Kévin Magne
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris‐SaclayCNRSINRAEUniv EvryOrsay91405France
| |
Collapse
|
15
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
16
|
Rutten L, Miyata K, Roswanjaya YP, Huisman R, Bu F, Hartog M, Linders S, van Velzen R, van Zeijl A, Bisseling T, Kohlen W, Geurts R. Duplication of Symbiotic Lysin Motif Receptors Predates the Evolution of Nitrogen-Fixing Nodule Symbiosis. PLANT PHYSIOLOGY 2020; 184:1004-1023. [PMID: 32669419 PMCID: PMC7536700 DOI: 10.1104/pp.19.01420] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/07/2020] [Indexed: 05/02/2023]
Abstract
Rhizobium nitrogen-fixing nodule symbiosis occurs in two taxonomic lineages: legumes (Fabaceae) and the genus Parasponia (Cannabaceae). Both symbioses are initiated upon the perception of rhizobium-secreted lipochitooligosaccharides (LCOs), called Nod factors. Studies in the model legumes Lotus japonicus and Medicago truncatula showed that rhizobium LCOs are perceived by a heteromeric receptor complex of distinct Lys motif (LysM)-type transmembrane receptors named NOD FACTOR RECEPTOR1 (LjNFR1) and LjNFR5 (L. japonicus) and LYSM DOMAIN CONTAINING RECEPTOR KINASE3 (MtLYK3)-NOD FACTOR PERCEPTION (MtNFP; M. truncatula). Recent phylogenomic comparative analyses indicated that the nodulation traits of legumes, Parasponia spp., as well as so-called actinorhizal plants that establish a symbiosis with diazotrophic Frankia spp. bacteria share an evolutionary origin about 110 million years ago. However, the evolutionary trajectory of LysM-type LCO receptors remains elusive. By conducting phylogenetic analysis, transcomplementation studies, and CRISPR-Cas9 mutagenesis in Parasponia andersonii, we obtained insight into the origin of LCO receptors essential for nodulation. We identified four LysM-type receptors controlling nodulation in P. andersonii: PanLYK1, PanLYK3, PanNFP1, and PanNFP2 These genes evolved from ancient duplication events predating and coinciding with the origin of nodulation. Phylogenetic and functional analyses associated the occurrence of a functional NFP2-orthologous receptor to LCO-driven nodulation. Legumes and Parasponia spp. use orthologous LysM-type receptors to perceive rhizobium LCOs, suggesting a shared evolutionary origin of LCO-driven nodulation. Furthermore, we found that both PanLYK1 and PanLYK3 are essential for intracellular arbuscule formation of mutualistic endomycorrhizal fungi. PanLYK3 also acts as a chitin oligomer receptor essential for innate immune signaling, demonstrating functional analogy to CHITIN ELECITOR RECEPTOR KINASE-type receptors.
Collapse
Affiliation(s)
- Luuk Rutten
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Kana Miyata
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre of Technology for Agricultural Production, Agency for the Assessment and Application of Technology, 10340 Jakarta, Indonesia
| | - Rik Huisman
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Marijke Hartog
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Sidney Linders
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Arjan van Zeijl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Prabhukarthikeyan SR, Parameswaran C, Keerthana U, Teli B, Jag PTK, Cayalvizhi B, Panneerselvam P, Senapati A, Nagendran K, Kumari S, Yadav MK, Aravindan S, Sanghamitra S. Understanding the Plant-microbe Interactions in CRISPR/CAS9 Era: Indeed a Sprinting Start in Marathon. Curr Genomics 2020; 21:429-443. [PMID: 33093805 PMCID: PMC7536795 DOI: 10.2174/1389202921999200716110853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, eco-friendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/CAS9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/CAS9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/CAS9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.
Collapse
Affiliation(s)
| | | | - Umapathy Keerthana
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Basavaraj Teli
- Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | | | | | - Periyasamy Panneerselvam
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Ansuman Senapati
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Krishnan Nagendran
- Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, Uttar Pradesh, India
| | - Shweta Kumari
- Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Sundaram Aravindan
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Samantaray Sanghamitra
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| |
Collapse
|
18
|
Shen D, Xiao TT, van Velzen R, Kulikova O, Gong X, Geurts R, Pawlowski K, Bisseling T. A Homeotic Mutation Changes Legume Nodule Ontogeny into Actinorhizal-Type Ontogeny. THE PLANT CELL 2020; 32:1868-1885. [PMID: 32276984 PMCID: PMC7268803 DOI: 10.1105/tpc.19.00739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Some plants fix atmospheric nitrogen by hosting symbiotic diazotrophic rhizobia or Frankia bacteria in root organs known as nodules. Such nodule symbiosis occurs in 10 plant lineages in four taxonomic orders: Fabales, Fagales, Cucurbitales, and Rosales, which are collectively known as the nitrogen-fixing clade. Nodules are divided into two types based on differences in ontogeny and histology: legume-type and actinorhizal-type nodules. The evolutionary relationship between these nodule types has been a long-standing enigma for molecular and evolutionary biologists. Recent phylogenomic studies on nodulating and nonnodulating species in the nitrogen-fixing clade indicated that the nodulation trait has a shared evolutionary origin in all 10 lineages. However, this hypothesis faces a conundrum in that legume-type and actinorhizal-type nodules have been regarded as fundamentally different. Here, we analyzed the actinorhizal-type nodules formed by Parasponia andersonii (Rosales) and Alnus glutinosa (Fagales) and found that their ontogeny is more similar to that of legume-type nodules (Fabales) than generally assumed. We also show that in Medicago truncatula, a homeotic mutation in the co-transcriptional regulator gene NODULE ROOT1 (MtNOOT1) converts legume-type nodules into actinorhizal-type nodules. These experimental findings suggest that the two nodule types have a shared evolutionary origin.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Ting Ting Xiao
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Robin van Velzen
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
- Biosystematics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Olga Kulikova
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Xiaoyun Gong
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - René Geurts
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, Graduate School Experimental Plant Sciences, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
19
|
Bu F, Rutten L, Roswanjaya YP, Kulikova O, Rodriguez‐Franco M, Ott T, Bisseling T, van Zeijl A, Geurts R. Mutant analysis in the nonlegume Parasponia andersonii identifies NIN and NF-YA1 transcription factors as a core genetic network in nitrogen-fixing nodule symbioses. THE NEW PHYTOLOGIST 2020; 226:541-554. [PMID: 31863481 PMCID: PMC7154530 DOI: 10.1111/nph.16386] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 05/13/2023]
Abstract
●Nitrogen-fixing nodulation occurs in 10 taxonomic lineages, with either rhizobia or Frankia bacteria. To establish such an endosymbiosis, two processes are essential: nodule organogenesis and intracellular bacterial infection. In the legume-rhizobium endosymbiosis, both processes are guarded by the transcription factor NODULE INCEPTION (NIN) and its downstream target genes of the NUCLEAR FACTOR Y (NF-Y) complex. ●It is hypothesized that nodulation has a single evolutionary origin c. 110 Ma, followed by many independent losses. Despite a significant body of knowledge of the legume-rhizobium symbiosis, it remains elusive which signalling modules are shared between nodulating species in different taxonomic clades. We used Parasponia andersonii to investigate the role of NIN and NF-YA genes in rhizobium nodulation in a nonlegume system. ●Consistent with legumes, P. andersonii PanNIN and PanNF-YA1 are coexpressed in nodules. By analyzing single, double and higher-order CRISPR-Cas9 knockout mutants, we show that nodule organogenesis and early symbiotic expression of PanNF-YA1 are PanNIN-dependent and that PanNF-YA1 is specifically required for intracellular rhizobium infection. ●This demonstrates that NIN and NF-YA1 have conserved symbiotic functions. As Parasponia and legumes diverged soon after the birth of the nodulation trait, we argue that NIN and NF-YA1 represent core transcriptional regulators in this symbiosis.
Collapse
Affiliation(s)
- Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Luuk Rutten
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
- Center of Technology for Agricultural ProductionAgency for the Assessment and Application of Technology (BPPT)10340JakartaIndonesia
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | | | - Thomas Ott
- Cell BiologyFaculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Ton Bisseling
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Arjan van Zeijl
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
20
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
21
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
22
|
Wang J, Wu H, Chen Y, Yin T. Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:996. [PMID: 32719704 PMCID: PMC7347981 DOI: 10.3389/fpls.2020.00996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 05/12/2023]
Abstract
Although the CRISPR/Cas9 system has been widely used for crop breeding, its application for the genetic improvement of trees has been limited, partly because of the outcrossing nature and substantial genomic heterozygosity of trees. Shanxin yang (Populus davidiana × P. bolleana), is a commercially important poplar clone that is widely grown in northern China. An established transformation protocol for this interspecific hybrid enables researchers to simultaneously investigate the efficiency and specificity of the CRISPR/Cas9-mediated manipulation of a highly heterozygous genome. Using the phytoene desaturase gene (PDS) as an example, we revealed that the CRISPR/Cas9 system could efficiently edit the Shanxin yang genome. Two sgRNAs were designed and incorporated into a single binary vector containing the Cas9 expression cassette. Among 62 independent transgenic lines, 85.5% exhibited an exclusively albino phenotype, revealing the total loss of PDS function. The Illumina sequencing results confirmed the targeted mutation of PdbPDS homologs induced by CRISPR/Cas9, and small insertions/deletions were the most common mutations. Biallelic and homozygous knockout mutations were detected at both target sites of the T0 transformants. Off-target activity was detected for sgRNA2 with a frequency of 3.2%. Additionally, the SNP interference of targeting specificity was assessed based on the sequence variation among PdbPDS homologs. A single mismatch at 19- or 10-bp from the PAM was tolerated by the CRISPR/Cas9 system. Therefore, multiple homologous genes were simultaneously edited despite the presence of a mismatch between the sgRNA and the target site. The establishment of a viable CRISPR/Cas9-based strategy for editing the Shanxin yang genome will not only accelerate the breeding process, but may also be relevant for other economically or scientifically important non-model plants species.
Collapse
|
23
|
Shan S, Soltis PS, Soltis DE, Yang B. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11314. [PMID: 31993256 PMCID: PMC6976890 DOI: 10.1002/aps3.11314] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/26/2019] [Indexed: 05/03/2023]
Abstract
The past six years have seen the rapid growth of studies of CRISPR/Cas9 in plant genome editing, a method that enormously facilitates both basic research and practical applications. Most studies have focused on genetic model species, but plant species that are not genetic models may also be economically important or biologically significant, or both. However, developing the CRISPR/Cas9 system in a nongenetic model is challenging. Here, we summarize CRISPR/Cas9 applications in 45 plant genera across 24 families and provide a reference for practical application of CRISPR in nongenetic model plant systems. Suggestions for selecting plant species and target genes are given for proof-of-principle CRISPR studies, and the processes of vector construction are reviewed. We recommend using transient assays to identify a desired CRISPR/Cas9 system in a nongenetic model. We then review methods of plant transformation and describe approaches, using regenerated transgenic plants, for evaluating CRISPR editing results. Lastly, potential future applications of CRISPR in nongenetic model plant species are discussed. This review provides a road map for developing CRISPR in nongenetic models, an application that holds enormous potential in plant biology.
Collapse
Affiliation(s)
- Shengchen Shan
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida32611‐0180USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611‐7800USA
| | - Pamela S. Soltis
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida32611‐0180USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611‐7800USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611‐5585USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32610USA
| | - Douglas E. Soltis
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida32611‐0180USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611‐7800USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611‐5585USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32610USA
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611‐8525USA
| | - Bing Yang
- Division of Plant SciencesUniversity of MissouriColumbiaMissouri65211USA
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| |
Collapse
|
24
|
Xiong X, Liu W, Jiang J, Xu L, Huang L, Cao J. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Mol Genet Genomics 2019; 294:1251-1261. [PMID: 31129735 DOI: 10.1007/s00438-019-01564-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
Conventional methods for gene function study in Brassica campestris have lots of drawbacks, which greatly hinder the identification of important genes' functions and molecular breeding. The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) system is a versatile tool for genome editing that has been widely utilized in many plant species and has many advantages over conventional methods for gene function study. However, the application of CRISPR/Cas9 system in B. campestris remains unreported. The pectin-methylesterase genes Bra003491, Bra007665, and Bra014410 were selected as the targets of the CRISPR/Cas9 system. A single-targeting vector and a multitargeting vector were constructed. Different types of mutations were detected in T0 generation through Agrobacterium transformation. The mutation rate of the three designed sgRNA seeds varied from 20 to 56%. Although the majority of T0 mutants were chimeric, four homozygous mutants were identified. Transformation with the multitargeting vector generated one line with a large fragment deletion and one line with mutations in two target genes. Mutations in Bra003491 were stable and inherited by T1 and T2 generations. Nine mutants which did not contain T-DNA insertions were also obtained. No mutations were detected in predicted potential off-target sites. Our work demonstrated that CRISPR/Cas9 system is efficient on single and multiplex genome editing without off-targeting in B. campestris and that the mutations are stable and inheritable. Our results may greatly facilitate gene functional studies and the molecular breeding of B. campestris and other plants.
Collapse
Affiliation(s)
- Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liai Xu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
25
|
van Velzen R, Doyle JJ, Geurts R. A Resurrected Scenario: Single Gain and Massive Loss of Nitrogen-Fixing Nodulation. TRENDS IN PLANT SCIENCE 2019; 24:49-57. [PMID: 30409687 DOI: 10.1016/j.tplants.2018.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 05/26/2023]
Abstract
Root nodule endosymbiosis with nitrogen-fixing bacteria provides plants with unlimited access to fixed nitrogen, but at a significant energetic cost. Nodulation is generally considered to have originated in parallel in different lineages, but this hypothesis downplays the genetic complexity of nodulation and requires independent recruitment of many common features across lineages. Recent phylogenomic studies revealed that genes that function in establishing or maintaining nitrogen-fixing nodules are independently lost in non-nodulating relatives of nitrogen-fixing plants. In our opinion, these data are best explained by a scenario of a single gain followed by massively parallel loss of nitrogen-fixing root nodules triggered by events at geological scale.
Collapse
Affiliation(s)
- Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708PB, Wageningen, The Netherlands
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Breeding & Genetics and Section of Plant Biology, 240 Emerson Hall, Cornell University, Ithaca, NY 14853, USA
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ané JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GKS, Parniske M, Delaux PM, Cheng S. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 2018; 361:science.aat1743. [DOI: 10.1126/science.aat1743] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
27
|
Bewg WP, Ci D, Tsai CJ. Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability. FRONTIERS IN PLANT SCIENCE 2018; 9:1732. [PMID: 30532764 PMCID: PMC6265510 DOI: 10.3389/fpls.2018.01732] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/07/2018] [Indexed: 05/19/2023]
Abstract
The CRISPR technology continues to diversify with a broadening array of applications that touch all kingdoms of life. The simplicity, versatility and species-independent nature of the CRISPR system offers researchers a previously unattainable level of precision and control over genomic modifications. Successful applications in forest, fruit and nut trees have demonstrated the efficacy of CRISPR technology at generating null mutations in the first generation. This eliminates the lengthy process of multigenerational crosses to obtain homozygous knockouts (KO). The high degree of genome heterozygosity in outcrossing trees is both a challenge and an opportunity for genome editing: a challenge because sequence polymorphisms at the target site can render CRISPR editing ineffective; yet an opportunity because the power and specificity of CRISPR can be harnessed for allele-specific editing. Examination of CRISPR/Cas9-induced mutational profiles from published tree studies reveals the potential involvement of multiple DNA repair pathways, suggesting that the influence of sequence context at or near the target sites can define mutagenesis outcomes. For commercial production of elite trees that rely on vegetative propagation, available data suggest an excellent outlook for stable CRISPR-induced mutations and associated phenotypes over multiple clonal generations.
Collapse
Affiliation(s)
- William Patrick Bewg
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Dong Ci
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States
- Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Chung-Jui Tsai,
| |
Collapse
|