1
|
Cao Y, Chen Q, Xu X, Fernie AR, Li J, Zhang Y. Insights from natural rubber biosynthesis evolution for pathway engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00090-1. [PMID: 40254503 DOI: 10.1016/j.tplants.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Natural rubber (NR), valued for its elasticity and impact resistance, is essential for numerous industrial and medical applications, with global demand continuously rising. While approximately 2500 plant species from more than 40 families can produce rubber, the majority is sourced from Hevea brasiliensis grown in tropical regions. Alternative rubber-producing plants, such as Parthenium argentatum and Taraxacum kok-saghyz, offer enhanced environmental adaptability and species diversity, making them promising candidates for rubber production. Recent genome sequencing has shed light on rubber biosynthesis pathways, although the mechanisms involved in producing different forms of polyisoprene across species remain unclear. We explore the evolution of rubber biosynthesis and discuss synthetic biological strategies for enhancing NR-production in subtropical plants and a broader range of plant materials (e.g., Manilkara zapota).
Collapse
Affiliation(s)
- Yinhong Cao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qingwen Chen
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Xu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jiayang Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China.
| | - Youjun Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Müller B, Niephaus E, Eisenreich W, Bröker JN, Twyman RM, Prüfer D, Schulze Gronover C. The cis-prenyltransferase protein family in Taraxacum koksaghyz. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17233. [PMID: 39915980 PMCID: PMC11803133 DOI: 10.1111/tpj.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025]
Abstract
The cis-prenyltransferase (cisPT) enzyme family is involved in diverse biological processes that require the synthesis of linear isoprenoid compounds. Taraxacum koksaghyz is a rubber-producing species and potential crop that has eight cisPT homologs (TkCPT1-8) but their distribution and functions are unclear. We compared the structural organization and sequence homology of the proteins, and defined two groups: TkCPT and TkCPT-like (TkCPTL) proteins that form heteromeric cisPT enzymes (TkCPT1-4), and TkCPT proteins that function as homomeric cisPTs (TkCPT5-8). We found that TkCPT1 and TkCPT2 are predominantly expressed in latex whereas TkCPT3 and TkCPT6-8 are predominantly expressed in leaves. TkCPT4 was constitutively expressed in all T. koksaghyz tissues and TkCPT5 mRNA was detected in flowers. The TkCPT1-4 subunits localized to the endoplasmic reticulum whereas TkCPT5-7 were located in chloroplasts. TkCPT1-4 interacted with TkCPTL1-2, forming heteromeric complexes that complemented yeast lacking cisPT. Homomeric TkCPT6 could also complement yeast lacking cisPT but we observed no cisPT activity for TkCPT5, TkCPT7, or TkCPT8 in yeast functional complementation assays. TkCPT1/TkCPTL1 and TkCPT2/TkCPTL1 expressed in yeast produced extra-long-chain polyisoprenes, whereas TkCPT3/TkCPTL1 and TkCPT4/TkCPTL1 produced long-chain dolichols and polyisoprenes, TkCPT5 and TkCPT6 produced medium-chain polyisoprenes, and TkCPT7 and TkCPT8 catalyzed the formation of nerol. The complexity of cisPT proteins in T. koksaghyz suggests that they synthesize different metabolites in a tissue-specific manner, and thus play distinct roles in isoprenoid metabolism. This is the first comprehensive analysis of the localization, interactions, and products of the entire T. koksaghyz cisPT family in vivo, also revealing a novel pentaprenol found specifically in flowers.
Collapse
Affiliation(s)
- Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)Johann‐Krane‐Weg 4248149MünsterGermany
| | - Eva Niephaus
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)Johann‐Krane‐Weg 4248149MünsterGermany
| | - Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ)Technical University of Munich (TUM)Lichtenbergstr. 485747GarchingGermany
| | - Jan Niklas Bröker
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)Johann‐Krane‐Weg 4248149MünsterGermany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)Johann‐Krane‐Weg 4248149MünsterGermany
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 848143MünsterGermany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)Johann‐Krane‐Weg 4248149MünsterGermany
| |
Collapse
|
3
|
Umar AW, Ahmad N, Xu M. Reviving Natural Rubber Synthesis via Native/Large Nanodiscs. Polymers (Basel) 2024; 16:1468. [PMID: 38891415 PMCID: PMC11174458 DOI: 10.3390/polym16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Natural rubber (NR) is utilized in more than 40,000 products, and the demand for NR is projected to reach $68.5 billion by 2026. The primary commercial source of NR is the latex of Hevea brasiliensis. NR is produced by the sequential cis-condensation of isopentenyl diphosphate (IPP) through a complex known as the rubber transferase (RTase) complex. This complex is associated with rubber particles, specialized organelles for NR synthesis. Despite numerous attempts to isolate, characterize, and study the RTase complex, definitive results have not yet been achieved. This review proposes an innovative approach to overcome this longstanding challenge. The suggested method involves isolating the RTase complex without using detergents, instead utilizing the native membrane lipids, referred to as "natural nanodiscs", and subsequently reconstituting the complex on liposomes. Additionally, we recommend the adaptation of large nanodiscs for the incorporation and reconstitution of the RTase complex, whether it is in vitro transcribed or present within the natural nanodiscs. These techniques show promise as a viable solution to the current obstacles. Based on our experimental experience and insights from published literature, we believe these refined methodologies can significantly enhance our understanding of the RTase complex and its role in in vitro NR synthesis.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China
| |
Collapse
|
4
|
Kuroiwa F, Suda H, Yabuki M, Atsuzawa K, Yamaguchi H, Toyota M, Kaneko Y, Yamashita S, Takahashi S, Tozawa Y. Cell-free translation system with artificial lipid-monolayer particles as a unique tool for characterizing lipid-monolayer binding proteins. Biosci Biotechnol Biochem 2024; 88:555-560. [PMID: 38444196 DOI: 10.1093/bbb/zbae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Methods for functional analysis of proteins specifically localizing to lipid monolayers such as rubber particles and lipid droplets are limited. We have succeeded in establishing a system in which artificially prepared lipid monolayer particles are added to a cell-free translation system to confirm the properties of proteins that specifically bind to lipid monolayers in a translation-coupled manner.
Collapse
Affiliation(s)
- Fu Kuroiwa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hiraku Suda
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Maho Yabuki
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kimie Atsuzawa
- Comprehensive Analysis Center for Science, Saitama University, Saitama, Japan
| | | | - Masatsugu Toyota
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yasuko Kaneko
- Department of Natural Science in the Faculty of Education, Saitama University, Saitama, Japan
| | - Satoshi Yamashita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
5
|
Kwon M, Hodgins CL, Salama EM, Dias KR, Parikh A, Mackey AV, Catenza KF, Vederas JC, Ro DK. New insights into natural rubber biosynthesis from rubber-deficient lettuce mutants expressing goldenrod or guayule cis-prenyltransferase. THE NEW PHYTOLOGIST 2023; 239:1098-1111. [PMID: 37247337 DOI: 10.1111/nph.18994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023]
Abstract
Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.
Collapse
Affiliation(s)
- Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Connor L Hodgins
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Eman M Salama
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Kayla R Dias
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Aalap Parikh
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ashlyn V Mackey
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Karizza F Catenza
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
6
|
Gutensohn M, Hartzell E, Dudareva N. Another level of complex-ity: The role of metabolic channeling and metabolons in plant terpenoid metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:954083. [PMID: 36035727 PMCID: PMC9399743 DOI: 10.3389/fpls.2022.954083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Terpenoids constitute one of the largest and most diverse classes of plant metabolites. While some terpenoids are involved in essential plant processes such as photosynthesis, respiration, growth, and development, others are specialized metabolites playing roles in the interaction of plants with their biotic and abiotic environment. Due to the distinct functions and properties of specific terpenoid compounds, there is a growing interest to introduce or modify their production in plants by metabolic engineering for agricultural, pharmaceutical, or industrial applications. The MVA and MEP pathways and the prenyltransferases providing the general precursors for terpenoid formation, as well as the enzymes of the various downstream metabolic pathways leading to the formation of different groups of terpenoid compounds have been characterized in detail in plants. In contrast, the molecular mechanisms directing the metabolic flux of precursors specifically toward one of several potentially competing terpenoid biosynthetic pathways are still not well understood. The formation of metabolons, multi-protein complexes composed of enzymes catalyzing sequential reactions of a metabolic pathway, provides a promising concept to explain the metabolic channeling that appears to occur in the complex terpenoid biosynthetic network of plants. Here we provide an overview about examples of potential metabolons involved in plant terpenoid metabolism that have been recently characterized and the first attempts to utilize metabolic channeling in terpenoid metabolic engineering. In addition, we discuss the gaps in our current knowledge and in consequence the need for future basic and applied research.
Collapse
Affiliation(s)
- Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Erin Hartzell
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Biopolymer production in microbiology by application of metabolic engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Germacrene A Synthases for Sesquiterpene Lactone Biosynthesis Are Expressed in Vascular Parenchyma Cells Neighboring Laticifers in Lettuce. PLANTS 2022; 11:plants11091192. [PMID: 35567193 PMCID: PMC9099558 DOI: 10.3390/plants11091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Sesquiterpene lactone (STL) and natural rubber (NR) are characteristic isoprenoids in lettuce (Lactuca sativa). Both STL and NR co-accumulate in laticifers, pipe-like structures located along the vasculature. NR-biosynthetic genes are exclusively expressed in laticifers, but cell-type specific expression of STL-biosynthetic genes has not been studied. Here, we examined the expression pattern of germacrene A synthase (LsGAS), which catalyzes the first step in STL biosynthesis in lettuce. Quantitative PCR and Illumina read mapping revealed that the transcripts of two GAS isoforms (LsGAS1/LsGAS2) are expressed two orders of magnitude (~100–200) higher in stems than laticifers. This result implies that the cellular site for LsGAS1/2 expression is not in laticifers. To gain more insights, promoters of LsGAS1/2 were cloned and fused to β-glucuronidase (GUS), followed by transformations of lettuce with these promoter-GUS constructs. In in situ GUS assays, the GUS expression driven by the LsGAS1/2 promoters was tightly associated with vascular bundles. High-resolution microsections showed that GUS signals are not present in laticifers but are detected in the vascular parenchyma cells neighboring the laticifers. These results suggest that expression of LsGAS1/2 occurs in the parenchyma cells neighboring laticifers, while the resulting STL metabolites accumulate in laticifers. It can be inferred that active metabolite-trafficking occurs from the parenchyma cells to laticifers in lettuce.
Collapse
|
9
|
Downregulation of Squalene Synthase Broadly Impacts Isoprenoid Biosynthesis in Guayule. Metabolites 2022; 12:metabo12040303. [PMID: 35448489 PMCID: PMC9030042 DOI: 10.3390/metabo12040303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Production of natural rubber by Parthenium argentaum (guayule) requires increased yield for economic sustainability. An RNAi gene silencing strategy was used to engineer isoprenoid biosynthesis by downregulation of squalene synthase (SQS), such that the pool of farnesyl diphosphate (FPP) substrate might instead be available to initiate natural rubber synthesis. Downregulation of SQS resulted in significantly reduced squalene and slightly increased rubber, but not in the same tissues nor to the same extent, partially due to an apparent negative feedback regulatory mechanism that downregulated mevalonate pathway isoprenoid production, presumably associated with excess geranyl pyrophosphate levels. A detailed metabolomics analysis of isoprenoid production in guayule revealed significant differences in metabolism in different tissues, including in active mevalonate and methylerythritol phosphate pathways in stem tissue, where rubber and squalene accumulate. New insights and strategies for engineering isoprenoid production in guayule were identified.
Collapse
|
10
|
Kuroiwa F, Nishino A, Mandal Y, Honzawa M, Suenaga-Hiromori M, Suzuki K, Takani Y, Miyagi-Inoue Y, Yamaguchi H, Yamashita S, Takahashi S, Tozawa Y. Reconstitution of prenyltransferase activity on nanodiscs by components of the rubber synthesis machinery of the Para rubber tree and guayule. Sci Rep 2022; 12:3734. [PMID: 35260628 PMCID: PMC8904820 DOI: 10.1038/s41598-022-07564-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
Natural rubber of the Para rubber tree (Hevea brasiliensis) is synthesized as a result of prenyltransferase activity. The proteins HRT1, HRT2, and HRBP have been identified as candidate components of the rubber biosynthetic machinery. To clarify the contribution of these proteins to prenyltransferase activity, we established a cell-free translation system for nanodisc-based protein reconstitution and measured the enzyme activity of the protein-nanodisc complexes. Co-expression of HRT1 and HRBP in the presence of nanodiscs yielded marked polyisoprene synthesis activity. By contrast, neither HRT1, HRT2, or HRBP alone nor a complex of HRT2 and HRBP manifested such activity. Similar analysis of guayule (Parthenium argentatum) proteins revealed that three HRT1 homologs (PaCPT1-3) manifested prenyltransferase activity only when co-expressed with PaCBP, the homolog of HRBP. Our results thus indicate that two heterologous subunits form the core prenyltransferase of the rubber biosynthetic machinery. A recently developed structure modeling program predicted the structure of such heterodimer complexes including HRT1/HRBP and PaCPT2/PaCBP. HRT and PaCPT proteins were also found to possess affinity for a lipid membrane in the absence of HRBP or PaCBP, and structure modeling implicated an amphipathic α-helical domain of HRT1 and PaCPT2 in membrane binding of these proteins.
Collapse
Affiliation(s)
- Fu Kuroiwa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | - Akira Nishino
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | - Yasuko Mandal
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | - Masataka Honzawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | | | - Kakeru Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | - Yukie Takani
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | | | | | - Satoshi Yamashita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan.
| |
Collapse
|
11
|
Sompiyachoke K, Nagasaka A, Ito T, Hemmi H. Identification and biochemical characterization of a heteromeric cis-prenyltransferase from the thermophilic archaeon Archaeoglobus fulgidus. J Biochem 2022; 171:641-651. [PMID: 35195245 DOI: 10.1093/jb/mvac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022] Open
Abstract
cis-Prenyltransferases (cPTs) form linear polyprenyl pyrophosphates, the precursors of polyprenyl or dolichyl phosphates that are essential for cell function in all living organisms. Polyprenyl phosphate serves as a sugar-carrier for pesptidoglycan cell wall synthesis in bacteria, a role which dolichyl phosphate performs analogously for protein glycosylation in eukaryotes and archaea. Bacterial cPTs are characterized by their homodimeric structure, while cPTs from eukaryotes usually require two distantly homologous subunits for enzymatic activity. This study identifies the subunits of heteromeric cPT, Af1219 and Af0707, from a thermophilic sulfur-reducing archaeon, Archaeoglobus fulgidus. Both subunits are indispensable for cPT activity, and their protein-protein interactions were demonstrated by a pulldown assay. Gel filtration chromatography and chemical cross-linking experiments suggest that Af1219 and Af0707 likely form a heterotetramer complex. Although this expected subunit composition agrees with a reported heterotetrameric structure of human hCIT/NgBR cPT complex, the similarity of the quaternary structures is likely a result of convergent evolution.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- School of Agricultural Sciences and Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan
| | - Arisa Nagasaka
- School of Agricultural Sciences and Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan
| | - Tomokazu Ito
- School of Agricultural Sciences and Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan
| | - Hisashi Hemmi
- School of Agricultural Sciences and Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan
| |
Collapse
|
12
|
Dong C, Ponciano G, Huo N, Gu Y, Ilut D, McMahan C. RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Sci Rep 2021; 11:21610. [PMID: 34732788 PMCID: PMC8566568 DOI: 10.1038/s41598-021-01026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The drought-adapted shrub guayule (Parthenium argentatum) produces rubber, a natural product of major commercial importance, and two co-products with potential industrial use: terpene resin and the carbohydrate fructan. The rubber content of guayule plants subjected to water stress is higher compared to that of well-irrigated plants, a fact consistently reported in guayule field evaluations. To better understand how drought influences rubber biosynthesis at the molecular level, a comprehensive transcriptome database was built from drought-stressed guayule stem tissues using de novo RNA-seq and genome-guided assembly, followed by annotation and expression analysis. Despite having higher rubber content, most rubber biosynthesis related genes were down-regulated in drought-stressed guayule, compared to well-irrigated plants, suggesting post-transcriptional effects may regulate drought-induced rubber accumulation. On the other hand, terpene resin biosynthesis genes were unevenly affected by water stress, implying unique environmental influences over transcriptional control of different terpene compounds or classes. Finally, drought induced expression of fructan catabolism genes in guayule and significantly suppressed these fructan biosynthesis genes. It appears then, that in guayule cultivation, irrigation levels might be calibrated in such a regime to enable tunable accumulation of rubber, resin and fructan.
Collapse
Affiliation(s)
- Chen Dong
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Grisel Ponciano
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Naxin Huo
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Yong Gu
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Daniel Ilut
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Colleen McMahan
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
13
|
Kajiura H, Yoshizawa T, Tokumoto Y, Suzuki N, Takeno S, Takeno KJ, Yamashita T, Tanaka SI, Kaneko Y, Fujiyama K, Matsumura H, Nakazawa Y. Structure-function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis. Commun Biol 2021; 4:215. [PMID: 33594248 PMCID: PMC7887238 DOI: 10.1038/s42003-021-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/24/2020] [Indexed: 12/03/2022] Open
Abstract
Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms—EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants. Kajiura and Yoshizawa et al. identify three new prenyltransferases in the tree Eucommia ulmoides that synthesize exceptionally high molecular weight trans-1,4-polyisoprene (TPI). Through crystal structure and mutational analyses, they identify key residues required for TPI synthesis and reveal its functional importance in seed development.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.,Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kanokwan Jumtee Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Takuya Yamashita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shun-Ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan. .,Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minami-josanjima, Tokushima, 770-8513, Japan.
| |
Collapse
|
14
|
Barnes EK, Kwon M, Hodgins CL, Qu Y, Kim SW, Yeung EC, Ro DK. The promoter sequences of lettuce cis-prenyltransferase and its binding protein specify gene expression in laticifers. PLANTA 2021; 253:51. [PMID: 33507397 DOI: 10.1007/s00425-021-03566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Promoters of lettuce cis-prenyltransferase 3 (LsCPT3) and CPT-binding protein 2 (LsCBP2) specify gene expression in laticifers, as supported by in situ β-glucuronidase stains and microsection analysis. Lettuce (Lactuca sativa) has articulated laticifers alongside vascular bundles. In the cytoplasm of laticifers, natural rubber (cis-1,4-polyisoprene) is synthesized by cis-prenyltransferase (LsCPT3) and CPT-binding protein (LsCBP2), both of which form an enzyme complex. Here we determined the gene structures of LsCPT3 and LsCBP2 and characterized their promoter activities using β-glucuronidase (GUS) reporter assays in stable transgenic lines of lettuce. LsCPT3 has a single 7.4-kb intron while LsCBP2 has seven introns including a 940-bp intron in the 5'-untranslated region (UTR). Serially truncated LsCPT3 promoters (2.3 kb, 1.6 kb, and 1.1 kb) and the LsCBP2 promoter with (1.7 kb) or without (0.8 kb) the 940-bp introns were fused to GUS to examine their promoter activities. In situ GUS stains of the transgenic plants revealed that the 1.1-kb LsCPT3 and 0.8-kb LsCBP2 promoter without the 5'-UTR intron are sufficient to express GUS exclusively in laticifers. Fluorometric assays showed that the LsCBP2 promoter was several-fold stronger than the CaMV35S promoter and was ~ 400 times stronger than the LsCPT3 promoter in latex. Histochemical analyses confirmed that both promoters express GUS exclusively in laticifers, recognized by characteristic fused multicellular structures. We concluded that both the LsCPT3 and LsCBP2 promoters specify gene expression in laticifers, and the LsCBP2 promoter displays stronger expression than the CaMV35S promoter in laticifers. For the LsCPT3 promoter, it appears that unknown cis-elements outside of the currently examined LsCPT3 promoter are required to enhance LsCPT3 expression.
Collapse
Affiliation(s)
- Elysabeth K Barnes
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Connor L Hodgins
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yang Qu
- Department of Chemistry, University of New Brunswick Fredericton, Fredericton, E3B 5A3, Canada
| | - Seon-Won Kim
- Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
15
|
Edani BH, Grabińska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, Ha Y, Sessa WC. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci U S A 2020; 117:20794-20802. [PMID: 32817466 PMCID: PMC7456142 DOI: 10.1073/pnas.2008381117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.
Collapse
Affiliation(s)
- Ban H Edani
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Kariona A Grabińska
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Rong Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Benjamin Siciliano
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Ya Ha
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520;
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520;
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
16
|
Lin CY, Eudes A. Strategies for the production of biochemicals in bioenergy crops. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:71. [PMID: 32318116 PMCID: PMC7158082 DOI: 10.1186/s13068-020-01707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 05/12/2023]
Abstract
Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
17
|
Chen CC, Zhang L, Yu X, Ma L, Ko TP, Guo RT. Versatile cis-isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
18
|
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2041-2061. [PMID: 31150158 PMCID: PMC6790360 DOI: 10.1111/pbi.13181] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.
Collapse
Affiliation(s)
- Sam Cherian
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Research & Development CenterDRB Holding Co. LTDBusanKorea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Katrina Cornish
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
19
|
Long-Chain Polyisoprenoids Are Synthesized by AtCPT1 in Arabidopsis thaliana. Molecules 2019; 24:molecules24152789. [PMID: 31370240 PMCID: PMC6695881 DOI: 10.3390/molecules24152789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/17/2022] Open
Abstract
Arabidopsis roots accumulate a complex mixture of dolichols composed of three families, (i.e., short-, medium- and long-chain dolichols), but until now none of the cis-prenyltransferases (CPTs) predicted in the Arabidopsis genome has been considered responsible for their synthesis. In this report, using homo- and heterologous (yeast and tobacco) models, we have characterized the AtCPT1 gene (At2g23410) which encodes a CPT responsible for the formation of long-chain dolichols, Dol-18 to -23, with Dol-21 dominating, in Arabidopsis. The content of these dolichols was significantly reduced in AtCPT1 T-DNA insertion mutant lines and highly increased in AtCPT1-overexpressing plants. Similar to the majority of eukaryotic CPTs, AtCPT1 is localized to the endoplasmic reticulum (ER). Functional complementation tests using yeast rer2Δ or srt1Δ mutants devoid of medium- or long-chain dolichols, respectively, confirmed that this enzyme synthesizes long-chain dolichols, although the dolichol chains thus formed are somewhat shorter than those synthesized in planta. Moreover, AtCPT1 acts as a homomeric CPT and does not need LEW1 for its activity. AtCPT1 is the first plant CPT producing long-chain polyisoprenoids that does not form a complex with the NgBR/NUS1 homologue.
Collapse
|
20
|
Cheng S, Liu X, Jiang G, Wu J, Zhang JL, Lei D, Yuan YJ, Qiao J, Zhao GR. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae. ACS Synth Biol 2019; 8:968-975. [PMID: 31063692 DOI: 10.1021/acssynbio.9b00135] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Limonene, a plant-derived natural cyclic monoterpene, is widely used in the pharmaceutical, food, and cosmetics industries. The conventional limonene biosynthetic (CLB) pathway in engineered Saccharomyces cerevisiae consists of heterologous limonene synthase (LS) using endogenous substrate geranyl diphosphate (GPP) and suffers from poor production of limonene. In this study, we report on an orthogonal engineering strategy in S. cerevisiae for improving the production of limonene. We reconstructed the orthogonal limonene biosynthetic (OLB) pathway composed of SlNDPS1 that catalyzes IPP and DMAPP to NPP ( cis-GPP) and plant LS that converts NPP to limonene. We find that the OLB pathway is more efficient for production of limonene than the CLB pathway. When expression of the competing gene ERG20 was chromosomally regulated by the glucose-sensing promoter HXT1, the OLB pathway-harboring strain produced 917.7 mg/L of limonene in fed-batch fermentation, a 6-fold increase of the CLB pathway, representing the highest titer reported to date. Orthogonal engineering exhibits great potential for production of terpenoids in S. cerevisiae.
Collapse
Affiliation(s)
- Si Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guozhen Jiang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jihua Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jin-lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| |
Collapse
|