1
|
Dai H, Hu L, Wang J, Yue Z, Wang J, Chen T, Li J, Dou T, Yu J, Liu Z. Constructing a Novel Disease Resistance Mechanism Model for Cruciferous Crops: An Example From Black Rot. MOLECULAR PLANT PATHOLOGY 2025; 26:e70060. [PMID: 39924905 PMCID: PMC11808048 DOI: 10.1111/mpp.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Cruciferous crops are essential components of global agricultural production due to their rich nutritional value and extensive economic benefits. Black rot caused by Xanthomonas campestris pv. campestris (Xcc) has caused significant losses to cruciferous crops. Therefore, studying the resistance mechanisms of cruciferous crops to improve the disease resistance of cruciferous crops is of significant practical importance. This review introduces the biological characteristics and epidemiological patterns of the Xcc. The main resistance mechanisms including the physical barrier functions, immune responses, systemic resistance, regulation of photosynthesis, antimicrobial effects of secondary metabolites, production and regulation of reactive oxygen species, and the signalling pathways of salicylic acid, jasmonic acid and ethylene of cruciferous crops to Xcc are also summarised. Comprehensive knowledge of these resistance mechanisms will provide theoretical support for enhancing disease resistance in crops.
Collapse
Affiliation(s)
- Haojie Dai
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Linli Hu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jie Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zhibin Yue
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jue Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tongyan Chen
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jinbao Li
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tingting Dou
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jihua Yu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zeci Liu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
2
|
Zhou C, Xu L, Zuo R, Bai Z, Fu T, Zeng L, Qin L, Zhang X, Shen C, Liu F, Gao F, Xie M, Tong C, Ren L, Huang J, Liu L, Liu S. Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Brassica napus Against Xanthomonas campestris. Int J Mol Sci 2025; 26:367. [PMID: 39796224 PMCID: PMC11721368 DOI: 10.3390/ijms26010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Rapeseed (Brassica napus L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by Xanthomonas campestris pv. campestris (Xcc). Despite the identification of several quantitative trait loci (QTLs) associated with resistance to black rot in Brassica crops, the underlying molecular mechanisms remain largely unexplored. In this study, we investigated Xcc-induced transcriptomic and metabolic changes in the leaves of two rapeseed varieties: Westar (susceptible) and ZS5 (resistant). Our findings indicated that Xcc infection elicited more pronounced overall transcriptomic and metabolic changes in Westar compared to ZS5. Transcriptomic analyses revealed that the phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, tryptophan metabolism, and phenylalanine metabolism were enriched in both varieties. Notably, photosynthesis was down-regulated in Westar after infection, whereas this down-regulation occurred at a later stage in ZS5. Integrated analyses of transcriptome and metabolome revealed that the tryptophan metabolism pathway was enriched in both varieties. Indolic glucosinolates and indole-3-acetic acid (IAA) are two metabolites derived from tryptophan. The expression of genes involved in the indolic glucosinolate pathway and the levels of indolic glucosinolates were significantly elevated in both varieties post-infection. Additionally, exogenous application of IAA promoted the development of black rot, whereas the use of an IAA synthesis inhibitor attenuated black rot development in both resistant and susceptible rapeseed varieties. These findings provide valuable molecular insights into the interactions between rapeseed and Xcc, facilitating the advancement of black rot resistance breeding in Brassica crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lijiang Liu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (C.Z.)
| | | |
Collapse
|
3
|
Dos Santos C, Franco OL. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112226. [PMID: 37299204 DOI: 10.3390/plants12112226] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Throughout evolution, plants have developed a highly complex defense system against different threats, including phytopathogens. Plant defense depends on constitutive and induced factors combined as defense mechanisms. These mechanisms involve a complex signaling network linking structural and biochemical defense. Antimicrobial and pathogenesis-related (PR) proteins are examples of this mechanism, which can accumulate extra- and intracellular space after infection. However, despite their name, some PR proteins are present at low levels even in healthy plant tissues. When they face a pathogen, these PRs can increase in abundance, acting as the first line of plant defense. Thus, PRs play a key role in early defense events, which can reduce the damage and mortality caused by pathogens. In this context, the present review will discuss defense response proteins, which have been identified as PRs, with enzymatic action, including constitutive enzymes, β-1,3 glucanase, chitinase, peroxidase and ribonucleases. From the technological perspective, we discuss the advances of the last decade applied to the study of these enzymes, which are important in the early events of higher plant defense against phytopathogens.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil
| |
Collapse
|
4
|
Wu H, Li Y, Wang Y, Yu J, Bao X, Hu M. Effect of recombinant human fibroblast growth factor 21 on the mineralization of cementoblasts and its related mechanism. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:140-148. [PMID: 37056179 PMCID: PMC10427260 DOI: 10.7518/hxkq.2023.2022375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVES To investigate the effect of recombinant human fibroblast growth factor 21 (rhFGF21) on the proliferation and mineralization of cementoblasts and its mechanism. METHODS Hematoxylin eosin, immunohistochemical staining, and immunofluorescence were used to detect the expression and distribution of fibroblast growth factor 21 (FGF21) in rat periodontal tissues and cementoblasts (OCCM-30), separately. Cell Counting Kit-8 was used to detect the proliferation of OCCM-30 under treatment with rhFGF21. Alkaline phosphatase staining and Alizarin Red staining were used to detect the mineralization state of OCCM-30 after 3 and 7 days of mineralization induction. The transcription and protein expression of the osteogenic-related genes Runx2 and Osterix were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot analysis. The expression levels of genes of transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling pathway in OCCM-30 were detected through PCR array analysis. RESULTS FGF21 was expressed in rat periodontal tissues and OCCM-30. Although rhFGF21 had no significant effect on the proliferation of OCCM-30, treatment with 50 ng/mL rhFGF21 could promote the mineralization of OCCM-30 cells after 7 days of mineralization induction. The transcriptional levels of Runx2 and Osterix increased significantly at 3 days of mineralization induction and decreased at 5 days of mineralization induction. Western blot analysis showed that the protein expression levels of Runx2 and Osterix increased during mineralization induction. rhFGF21 up-regulated Bmpr1b protein expression in cells. CONCLUSIONS rhFGF21 can promote the mineralization ability of OCCM-30. This effect is related to the activation of the TGFβ/BMP signaling pathway.
Collapse
Affiliation(s)
- Hao Wu
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Ying Li
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yuzhuo Wang
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jize Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
- Dept. of Implantation, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xingfu Bao
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Min Hu
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
5
|
Yadav BG, Aakanksha, Kumar R, Yadava SK, Kumar A, Ramchiary N. Understanding the Proteomes of Plant Development and Stress Responses in Brassica Crops. J Proteome Res 2023; 22:660-680. [PMID: 36786770 DOI: 10.1021/acs.jproteome.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.
Collapse
Affiliation(s)
- Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| |
Collapse
|
6
|
Sun Q, Xu Z, Huang W, Li D, Zeng Q, Chen L, Li B, Zhang E. Integrated metabolome and transcriptome analysis reveals salicylic acid and flavonoid pathways' key roles in cabbage's defense responses to Xanthomonas campestris pv. campestris. FRONTIERS IN PLANT SCIENCE 2022; 13:1005764. [PMID: 36388482 PMCID: PMC9659849 DOI: 10.3389/fpls.2022.1005764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a vascular bacteria pathogen causing black rot in cabbage. Here, the resistance mechanisms of cabbage against Xcc infection were explored by integrated metabolome and transcriptome analysis. Pathogen perception, hormone metabolisms, sugar metabolisms, and phenylpropanoid metabolisms in cabbage were systemically re-programmed at both transcriptional and metabolic levels after Xcc infection. Notably, the salicylic acid (SA) metabolism pathway was highly enriched in resistant lines following Xcc infection, indicating that the SA metabolism pathway may positively regulate the resistance of Xcc. Moreover, we also validated our hypothesis by showing that the flavonoid pathway metabolites chlorogenic acid and caffeic acid could effectively inhibit the growth of Xcc. These findings provide valuable insights and resource datasets for further exploring Xcc-cabbage interactions and help uncover molecular breeding targets for black rot-resistant varieties in cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Li
- *Correspondence: Baohua Li, ; Enhui Zhang,
| | | |
Collapse
|
7
|
Tortosa M, Velasco P, Rodríguez VM, Cartea ME. Changes in Brassica oleracea Leaves Infected With Xanthomonas campestris pv. campestris by Proteomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:781984. [PMID: 35211128 PMCID: PMC8860909 DOI: 10.3389/fpls.2021.781984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Understanding plant's response mechanisms against pathogenesis is fundamental for the development of resistant crop varieties and more productive agriculture. In this regard, "omic" approaches are heralded as valuable technologies. In this work, combining isobaric tags for relative and absolute quantification (iTRAQ) technology with mass spectrometry, the proteomes from leaves of Brassica oleracea plants infected with Xanthomonas campestris pv. campestris (Xcc), and control plants at two different post-infection times were compared. Stronger proteomic changes were obtained at 12 days post-infection in comparison with 3 days. The responses observed involved different cell processes, from primary metabolism, such as photosynthesis or photorespiration, to other complex processes such as redox homeostasis, hormone signaling, or defense mechanisms. Most of the proteins decreased in the earlier response were involved in energetic metabolism, whereas later response was characterized by a recovery of primary metabolism. Furthermore, our results indicated that proteolysis machinery and reactive oxygen species (ROS) homeostasis could be key processes during this plant-pathogen interaction. Current data provide new insights into molecular mechanisms that may be involved in defense responses of B. oleracea to Xcc.
Collapse
Affiliation(s)
| | | | | | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain
| |
Collapse
|
8
|
Sun M, Duan Y, Liu JP, Fu J, Huang Y. Efficacy of Dimethyl Trisulfide on the Suppression of Ring Rot Disease Caused by Botryosphaeria dothidea and Induction of Defense-Related Genes on Apple Fruits. Front Microbiol 2022; 13:796167. [PMID: 35197948 PMCID: PMC8859264 DOI: 10.3389/fmicb.2022.796167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is prevalent in main apple-producing areas in China, bringing substantial economic losses to the growers. In the present study, we demonstrated the inhibitory effect of dimethyl trisulfide (DT), one of the main activity components identified in Chinese leek (Allium tuberosum) volatile, on the apple ring rot on postharvest fruits. In in vitro experiment, 250 μL/L DT completely suppressed the mycelia growth of B. dothidea. In in vivo experiment, 15.63 μL/L DT showed 97% inhibition against the apple ring rot on postharvest fruit. In addition, the soluble sugar content, vitamin C content, and the soluble sugar/titratable acidity ratio of the DT-treated fruit were significantly higher than those of the control fruit. On this basis, we further explored the preliminary underlying mechanism. Microscopic observation revealed that DT seriously disrupted the normal morphology of B. dothidea. qRT-PCR determination showed the defense-related genes in DT-treated fruit were higher than those in the control fruit by 4.13–296.50 times, which showed that DT inhibited apple ring rot on postharvest fruit by suppressing the growth of B. dothidea, and inducing the defense-related genes in apple fruit. The findings of this study provided an efficient, safe, and environment-friendly alternative to control the apple ring rot on apple fruit.
Collapse
Affiliation(s)
- Meng Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jun Ping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jing Fu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Yonghong Huang,
| |
Collapse
|
9
|
Shaw RK, Shen Y, Wang J, Sheng X, Zhao Z, Yu H, Gu H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. FRONTIERS IN PLANT SCIENCE 2021; 12:742553. [PMID: 34938304 PMCID: PMC8687090 DOI: 10.3389/fpls.2021.742553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Di Silvestre D, Vigani G, Mauri P, Hammadi S, Morandini P, Murgia I. Network Topological Analysis for the Identification of Novel Hubs in Plant Nutrition. FRONTIERS IN PLANT SCIENCE 2021; 12:629013. [PMID: 33679842 PMCID: PMC7928335 DOI: 10.3389/fpls.2021.629013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
Network analysis is a systems biology-oriented approach based on graph theory that has been recently adopted in various fields of life sciences. Starting from mitochondrial proteomes purified from roots of Cucumis sativus plants grown under single or combined iron (Fe) and molybdenum (Mo) starvation, we reconstructed and analyzed at the topological level the protein-protein interaction (PPI) and co-expression networks. Besides formate dehydrogenase (FDH), already known to be involved in Fe and Mo nutrition, other potential mitochondrial hubs of Fe and Mo homeostasis could be identified, such as the voltage-dependent anion channel VDAC4, the beta-cyanoalanine synthase/cysteine synthase CYSC1, the aldehyde dehydrogenase ALDH2B7, and the fumaryl acetoacetate hydrolase. Network topological analysis, applied to plant proteomes profiled in different single or combined nutritional conditions, can therefore assist in identifying novel players involved in multiple homeostatic interactions.
Collapse
Affiliation(s)
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, ITB-CNR, Segrate, Italy
| | - Sereen Hammadi
- Proteomic and Metabolomic Laboratory, ITB-CNR, Segrate, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Irene Murgia
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Irene Murgia,
| |
Collapse
|