1
|
Emeriewen OF, Wöhner TW, Flachowsky H, Peil A. Chromosome-scale genome assembly of the fire blight resistant Malus fusca accession MAL0045, donor of FB_Mfu10. Sci Data 2025; 12:873. [PMID: 40425629 PMCID: PMC12116750 DOI: 10.1038/s41597-025-05232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
The wild apple, Malus fusca accession MAL0045, is highly resistant to fire blight disease, caused by the bacterial pathogen, Erwinia amylovora. A major resistance locus, FB_Mfu10 was identified on chromosome 10 of MAL0045 including other contributory loci on chromosomes 16, 4, and 15. Here, we report a chromosome-scale genome assembly of MAL0045 to facilitate the studies of its fire blight resistance. PacBio sequencing and Illumina sequencing for Hi-C contig anchorage were employed to obtain the genome. A total of 669.46 Mb sequences were anchored onto 17 chromosomes, taking up 99.75% of total contig length. Contigs anchored onto chromosomes were further ordered and orientated, where a total of 637.67 Mb sequences were anchored onto chromosomes in proper order and orientation, resulting in a final anchoring ratio of 95.25%. The BUSCO score of this assembly is 97.46%. Further, a total of 47,388 genes were predicted via ab initio, homology-based, and RNAseq methodologies. The availability of this genome will facilitate functional and comparative genomics studies, especially about the donors of fire blight resistance in Malus.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- ulius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany.
| | - Thomas Wolfgang Wöhner
- ulius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany.
| | - Henryk Flachowsky
- ulius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany
| | - Andreas Peil
- ulius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany
| |
Collapse
|
2
|
Emeriewen OF, Zetzsche H, Wöhner TW, Flachowsky H, Peil A. A putative gene-for-gene relationship between the Erwinia amylovora effector gene eop1 and the FB_Mar12 resistance locus of Malus × arnoldiana accession MAL0004. FRONTIERS IN PLANT SCIENCE 2024; 15:1472536. [PMID: 39703557 PMCID: PMC11656051 DOI: 10.3389/fpls.2024.1472536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
The bacterial pathogen Erwinia amylovora causes fire blight on rosaceous plants, including apples and their wild relatives. The pathogen uses the type III secretion pathogenicity island to inject effector proteins, such as Eop1, into host plants, leading to disease phenotypes in susceptible genotypes. In contrast, resistant genotypes exhibit quantitative resistance associated with genomic regions and/or R-gene-mediated qualitative resistance to withstand the pathogen. In Malus, strong resistance is observed in some wild species accessions, for example, in Malus xarnoldiana accession MAL0004. The resistance locus FB_Mar12, previously identified on linkage group 12 (LG12) of MAL0004, is one of two gene loci in Malus proven to withstand highly virulent North American strains of E. amylovora. This suggests the influence of a major gene, with a few candidate genes proposed within the FB_Mar12 region. In this report, we provide evidence that this gene locus is completely broken down by a mutant strain of the E. amylovora effector protein Eop1 (Δeop1) following artificial shoot inoculations of an 'Idared' × MAL0004 F1 progeny set, indicating a gene-for-gene interaction. Interestingly, Δeop1 does not overcome the resistance of the FB_Mar12 donor MAL0004 itself, but only the QTL on LG12, an indication that other resistance factors, possibly QTLs/genes are contributing to the fire blight resistance of MAL0004.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Holger Zetzsche
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Thomas Wolfgang Wöhner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Andreas Peil
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
3
|
Emeriewen OF, Richter K, Flachowsky H, Peil A. Quantitative Trait Locus Mapping for Fire Blight Resistance in an F 2 Population of Malus fusca MAL0045 Uncovers Novel Resistance Loci. PHYTOPATHOLOGY 2023; 113:2222-2229. [PMID: 37856693 DOI: 10.1094/phyto-05-23-0159-sa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Several fire blight resistance loci in Malus genotypes map on different linkage groups (LGs) representing chromosomes of the domesticated apple. Prior genetics studies primarily focused on F1 populations. A strong resistance quantitative trait locus (QTL) explained up to 66% of phenotypic variance in an F1 progeny derived from crossing the highly resistant wild apple genotype Malus fusca MAL0045 and the highly susceptible apple cultivar 'Idared', which was previously mapped on LG10 (Mfu10) of MAL0045. Strains of the causative bacterial pathogen Erwinia amylovora, notably those that show a single nucleotide polymorphism in the avrRpt2EA effector protein sequence at position 156 (e.g., Ea3049), are more virulent and overcome some known fire blight resistance donors and their QTLs. However, MAL0045 is resistant to Ea3049 and Mfu10 is not overcome, but most of the F1 progeny were highly susceptible to this strain. This phenomenon led to the assumption that other putative resistance factors not segregating in the F1 progeny might be present in the genome of MAL0045. Here, we crossed F1 progeny together to obtain 135 F2 individuals. Facilitated by genotyping-by-sequencing and phenotypic assessments, we identified and mapped two novel resistance QTLs in these F2 individuals on LGs 4 and 15, which were not identified in the F1. To our knowledge, these are the first resistance QTLs mapped in F2 progeny in Malus. In addition, we report that neither MAL0045 nor Mfu10 is broken down by a highly aggressive U.S. strain, LA635, after analyses in the original F1 individuals. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Klaus Richter
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Andreas Peil
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| |
Collapse
|
4
|
Francis JS, Mueller TG, Vannette RL. Intraspecific variation in realized dispersal probability and host quality shape nectar microbiomes. THE NEW PHYTOLOGIST 2023; 240:1233-1245. [PMID: 37614102 DOI: 10.1111/nph.19195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/16/2023] [Indexed: 08/25/2023]
Abstract
Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood. We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants. There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal. These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.
Collapse
Affiliation(s)
- Jacob S Francis
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Tobias G Mueller
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
6
|
Buziashvili A, Yemets A. Lactoferrin and its role in biotechnological strategies for plant defense against pathogens. Transgenic Res 2023; 32:1-16. [PMID: 36534334 PMCID: PMC9761627 DOI: 10.1007/s11248-022-00331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Agricultural crops are susceptible to many diseases caused by various pathogens, such as viruses, bacteria and fungi. This paper reviews the general principles of plant protection against pathogens, as well as the role of iron and antimicrobial peptide metabolism in plant immunity. The article highlights the principles of antibacterial, fungicidal and antiviral action of lactoferrin, a mammalian secretory glycoprotein, and lactoferrin peptides, and their role in protecting plants from phytopathogens. This review offers a comprehensive analysis and shows potential prospects of using the lactoferrin gene to enhance plant resistance to various phytopathogens, as well as the advantages of this biotechnological approach over existing methods of protecting plants against various diseases.
Collapse
Affiliation(s)
- Anastasiia Buziashvili
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo Str., 2a, Kyiv, 04123 Ukraine
| | - Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo Str., 2a, Kyiv, 04123 Ukraine
| |
Collapse
|
7
|
Schlathölter I, Broggini GAL, Streb S, Studer B, Patocchi A. Field study of the fire-blight-resistant cisgenic apple line C44.4.146. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1160-1175. [PMID: 36609772 DOI: 10.1111/tpj.16083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Cisgenesis, the genetic modification of a plant with genes from a sexually compatible plant, was used to confer fire blight resistance to the cultivar 'Gala Galaxy' by amendment of the resistance gene FB_MR5, resulting in the line C44.4.146. To verify whether cisgenesis changed other tree-, flower- or fruit-related traits, a 5-year field trial was conducted with trees of C44.4.146 and multiple control genotypes, including members of the 'Gala' sports group. None of the 44 investigated tree-, flower- or fruit-related traits significantly differed between C44.4.146 and at least one of the control genotypes in all observation years. However, fruits of C44.4.146 and its wild-type 'Gala Galaxy' from tissue culture were paler in color than fruits of 'Gala Galaxy' that had not undergone tissue culture. There was no significant and consistently detected difference in the fruit flesh and peel metabolome of C44.4.146 compared with the control genotypes. Finally, the disease resistance of C44.4.146 was confirmed also when the fire blight pathogen was inoculated through the flowers. We conclude that the use of cisgenesis to confer fire blight resistance to 'Gala Galaxy' in C44.4.146 did not have unintended effects, and that the in vitro establishment of 'Gala Galaxy' had a greater effect on C44.4.146 properties than its generation applying cisgenesis.
Collapse
Affiliation(s)
- Ina Schlathölter
- Breeding Research, Research Division Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, 8820, Waedenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Giovanni A L Broggini
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Sebastian Streb
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Andrea Patocchi
- Breeding Research, Research Division Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, 8820, Waedenswil, Switzerland
| |
Collapse
|
8
|
Chavonet E, Gaucher M, Warneys R, Bodelot A, Heintz C, Juillard A, Cournol R, Widmalm G, Bowen JK, Hamiaux C, Brisset MN, Degrave A. Search for host defense markers uncovers an apple agglutination factor corresponding with fire blight resistance. PLANT PHYSIOLOGY 2022; 188:1350-1368. [PMID: 34904175 PMCID: PMC8825249 DOI: 10.1093/plphys/kiab542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
Pathenogenesis-related (PR) proteins are extensively used as molecular markers to dissect the signaling cascades leading to plant defense responses. However, studies focusing on the biochemical or biological properties of these proteins remain rare. Here, we identify and characterize a class of apple (Malus domestica) PR proteins, named M. domestica AGGLUTININS (MdAGGs), belonging to the amaranthin-like lectin family. By combining molecular and biochemical approaches, we show that abundant production of MdAGGs in leaf tissues corresponds with enhanced resistance to the bacterium Erwinia amylovora, the causal agent of the disease fire blight. We also show that E. amylovora represses the expression of MdAGG genes by injecting the type 3 effector DspA/E into host cells and by secreting bacterial exopolysaccharides. Using a purified recombinant MdAGG, we show that the protein agglutinates E. amylovora cells in vitro and binds bacterial lipopolysaccharides at low pH, conditions reminiscent of the intercellular pH occurring in planta upon E. amylovora infection. We finally provide evidence that negatively charged polysaccharides, such as the free exopolysaccharide amylovoran progressively released by the bacteria, act as decoys relying on charge-charge interaction with the MdAGG to inhibit agglutination. Overall, our results suggest that the production of this particular class of PR proteins may contribute to apple innate immunity mechanisms active against E. amylovora.
Collapse
Affiliation(s)
- Erwan Chavonet
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Gaucher
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Romain Warneys
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Antoine Bodelot
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Christelle Heintz
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Anthony Juillard
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Raphaël Cournol
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Göran Widmalm
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Marie-Noëlle Brisset
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Alexandre Degrave
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
9
|
Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M. Status of fire blight resistance breeding in Malus. JOURNAL OF PLANT PATHOLOGY 2021; 103:3-12. [PMID: 0 DOI: 10.1007/s42161-020-00581-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/21/2020] [Indexed: 05/20/2023]
|
10
|
Yuan X, Hulin MT, Sundin GW. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. JOURNAL OF PLANT PATHOLOGY 2021; 103:25-39. [PMID: 0 DOI: 10.1007/s42161-020-00623-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
|
11
|
Emeriewen OF, Flachowsky H, Peil A. Characterization of genomic DNA sequence of the candidate gene for FB_Mfu10 associated with fire blight resistance in Malus species. BMC Res Notes 2021; 14:291. [PMID: 34315526 PMCID: PMC8314441 DOI: 10.1186/s13104-021-05709-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Objective The proposed candidate gene underlying the Malus fusca fire blight resistance locus on chromosome 10 was previously predicted to possess 880 amino acids and 8 exons. Eight base pair (8 bp) insertion/deletion in the first exon potentially distinguished resistant genotypes from susceptible ones. This study aimed at analyzing the candidate gene sequence in another set of original resistant and susceptible progeny, characterizing the sequence in a transgenic line transformed with the candidate gene under its own native promoter, as well as deciphering the potential genomic differences between this candidate gene and its homolog in the ‘Golden Delicious’ doubled haploid genome (GDDH13). Results Sequences of amplicons of part of the candidate gene amplified in two progenies that showed resistant and susceptible fire blight phenotypes, confirmed the 8 bp insertion that distinguishes susceptible and resistant progenies. The transgenic line was positive for the candidate gene sequence, confirming a successful transfer into the background of apple cultivar ‘Pinova’, and possessed the same genomic sequence as the progeny with a resistant phenotype. Sequence analysis showed that the homolog gene on GDDH13 possesses a significant 18 bp deletion in exon 1 leading to a difference of 15 amino acid from the protein sequence of the candidate gene. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05709-2.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research On Fruit Crops, Dresden, Germany.
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research On Fruit Crops, Dresden, Germany
| | - Andreas Peil
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research On Fruit Crops, Dresden, Germany
| |
Collapse
|
12
|
Bénéjam J, Ravon E, Gaucher M, Brisset MN, Durel CE, Perchepied L. Acibenzolar- S-Methyl and Resistance Quantitative Trait Loci Complement Each Other to Control Apple Scab and Fire Blight. PLANT DISEASE 2021; 105:1702-1710. [PMID: 33190613 DOI: 10.1094/pdis-07-20-1439-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diversifying disease control methods is a key strategy to sustainably reduce pesticides. Plant genetic resistance has long been used to create resistant varieties. Plant resistance inducers (PRI) are also considered to promote crop health, but their effectiveness is partial and can vary according to the environment and the plant genotype. We investigated the putative interaction between intrinsic (genetic) and PRI-induced resistance in apple when affected by scab and fire blight diseases. A large F1 mapping population was challenged by each disease after a pre-treatment with acibenzolar-S-methyl (ASM) and compared with the water control. Apple scab and fire blight resistance quantitative trait loci (QTLs) were detected in both conditions and compared. ASM exhibited a strong effectiveness in reducing both diseases. When combined, QTL-controlled and ASM-induced resistance acted complementarily to reduce the symptoms from 85 to 100%, depending on the disease. In our conditions, resistance QTLs were only slightly or rarely affected by ASM treatment, despite their probable implication in various stages of the resistance buildup. Implications of these results are discussed considering already known results, the underlying mechanisms, cross protection of both types of resistance against pathogen adaptation, and practical application in orchard conditions.
Collapse
Affiliation(s)
- Juliette Bénéjam
- Univ Angers, INRAE, Institut Agro, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Elisa Ravon
- Univ Angers, INRAE, Institut Agro, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Gaucher
- Univ Angers, INRAE, Institut Agro, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | - Charles-Eric Durel
- Univ Angers, INRAE, Institut Agro, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Laure Perchepied
- Univ Angers, INRAE, Institut Agro, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
13
|
Schröpfer S, Vogt I, Broggini GAL, Dahl A, Richter K, Hanke MV, Flachowsky H, Peil A. Transcriptional profile of AvrRpt2 EA-mediated resistance and susceptibility response to Erwinia amylovora in apple. Sci Rep 2021; 11:8685. [PMID: 33888770 PMCID: PMC8062453 DOI: 10.1038/s41598-021-88032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Most of the commercial apple cultivars are highly susceptible to fire blight, which is the most devastating bacterial disease affecting pome fruits. Resistance to fire blight is described especially in wild Malus accessions such as M. × robusta 5 (Mr5), but the molecular basis of host resistance response to the pathogen Erwinia amylovora is still largely unknown. The bacterial effector protein AvrRpt2EA was found to be the key determinant of resistance response in Mr5. A wild type E. amylovora strain and the corresponding avrRpt2EA deletion mutant were used for inoculation of Mr5 to induce resistance or susceptible response, respectively. By comparison of the transcriptome of both responses, 211 differentially expressed genes (DEGs) were identified. We found that heat-shock response including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs) are activated in apple specifically in the susceptible response, independent of AvrRpt2EA. Further analysis on the expression progress of 81 DEGs by high-throughput real-time qPCR resulted in the identification of genes that were activated after inoculation with E. amylovora. Hence, a potential role of these genes in the resistance to the pathogen is postulated, including genes coding for enzymes involved in formation of flavonoids and terpenoids, ribosome-inactivating enzymes (RIPs) and a squamosa promoter binding-like (SPL) transcription factor.
Collapse
Affiliation(s)
- Susan Schröpfer
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326, Dresden, Germany
| | - Isabelle Vogt
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326, Dresden, Germany
| | | | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Klaus Richter
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Magda-Viola Hanke
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326, Dresden, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326, Dresden, Germany
| | - Andreas Peil
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326, Dresden, Germany.
| |
Collapse
|
14
|
Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight. PLANTS 2021; 10:plants10020409. [PMID: 33671812 PMCID: PMC7926451 DOI: 10.3390/plants10020409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/01/2022]
Abstract
Breeding apple cultivars with durable genetic resistance is a potential long-term solution to fire blight, a devastating bacterial disease caused by Erwinia amylovora. However, phenotyping resistance/susceptibility to fire blight is challenging due to E. amylovora strain virulence, differential host × strain interactions, quantitative host resistance, environmental influences on disease, and impacts of tree vigor on susceptibility. Inheritance of resistance/susceptibility to fire blight is complex and phenotypic information alone is insufficient to guide breeding decisions targeting resistance. Several quantitative trait loci (QTLs) associated with resistance/susceptibility to fire blight have been detected throughout the apple genome. Most resistance alleles at fire blight QTLs have been identified in wild Malus germplasm with poor fruit quality, which limits their breeding utility. Several QTLs have been identified in populations derived from cultivars and reduced-susceptibility alleles have been characterized in multiple important breeding parents. Although resistance to fire blight is an attractive target for DNA-informed breeding, relatively few trait-predictive DNA tests for breeding relevant fire blight QTLs are available. Here we discuss (1) considerations and challenges associated with phenotyping resistance/susceptibility to fire blight; (2) sources of resistance that have been identified for use as parents; and (3) our perspective on short and long-term strategies to breed apple cultivars with durable resistance to fire blight with emphasis on the potential contributions of reduced susceptibility alleles to achieve this goal.
Collapse
|
15
|
Kostick SA, Teh SL, Norelli JL, Vanderzande S, Peace C, Evans KM. Fire blight QTL analysis in a multi-family apple population identifies a reduced-susceptibility allele in 'Honeycrisp'. HORTICULTURE RESEARCH 2021; 8:28. [PMID: 33518709 PMCID: PMC7847996 DOI: 10.1038/s41438-021-00466-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 05/17/2023]
Abstract
Breeding apple cultivars with resistance offers a potential solution to fire blight, a damaging bacterial disease caused by Erwinia amylovora. Most resistance alleles at quantitative trait loci (QTLs) were previously characterized in diverse Malus germplasm with poor fruit quality, which reduces breeding utility. This study utilized a pedigree-based QTL analysis approach to elucidate the genetic basis of resistance/susceptibility to fire blight from multiple genetic sources in germplasm relevant to U.S. apple breeding programs. Twenty-seven important breeding parents (IBPs) were represented by 314 offspring from 32 full-sib families, with 'Honeycrisp' being the most highly represented IBP. Analyzing resistance/susceptibility data from a two-year replicated field inoculation study and previously curated genome-wide single nucleotide polymorphism data, QTLs were consistently mapped on chromosomes (Chrs.) 6, 7, and 15. These QTLs together explained ~28% of phenotypic variation. The Chr. 6 and Chr. 15 QTLs colocalized with previously reported QTLs, while the Chr. 7 QTL is possibly novel. 'Honeycrisp' inherited a rare reduced-susceptibility allele at the Chr. 6 QTL from its grandparent 'Frostbite'. The highly resistant IBP 'Enterprise' had at least one putative reduced-susceptibility allele at all three QTLs. In general, lower susceptibility was observed for individuals with higher numbers of reduced-susceptibility alleles across QTLs. This study highlighted QTL mapping and allele characterization of resistance/susceptibility to fire blight in complex pedigree-connected apple breeding germplasm. Knowledge gained will enable more informed parental selection and development of trait-predictive DNA tests for pyramiding favorable alleles and selection of superior apple cultivars with resistance to fire blight.
Collapse
Affiliation(s)
- Sarah A Kostick
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA, 98801, USA
| | - Soon Li Teh
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA, 98801, USA
| | - John L Norelli
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kate M Evans
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA, 98801, USA.
| |
Collapse
|
16
|
Emeriewen OF, Richter K, Flachowsky H, Malnoy M, Peil A. Genetic Analysis and Fine Mapping of the Fire Blight Resistance Locus of Malus ×arnoldiana on Linkage Group 12 Reveal First Candidate Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:667133. [PMID: 33959143 PMCID: PMC8093435 DOI: 10.3389/fpls.2021.667133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/24/2021] [Indexed: 05/03/2023]
Abstract
Malus ×arnoldiana accession MAL0004 has been found to be resistant to moderately and highly virulent strains of the fire blight causal pathogen - the Gram-negative bacterium, Erwinia amylovora. Genetic analyses with an F1 segregating population derived from crossing the highly susceptible apple cultivar 'Idared' and MAL0004 led to the detection and mapping of the fire blight resistance locus of M. ×arnoldiana to linkage group (LG)12 (FB_Mar12). FB_Mar12 mapped at the distal end of LG12 below the apple SSR Hi07f01 in an interval of approximately 6 cM (Centimorgan), where both the fire blight resistance loci of M. floribunda 821 and 'Evereste' were located. We fine mapped the region containing FB_Mar12 using 892 progenies. Mining of the region of interest (ROI) on the 'Golden Delicious' doubled haploid genome (GDDH13) identified the presence of 2.3 Mb (megabases) in the homologous region. Of 40 primer pairs designed within this region, 20 were polymorphic and nine were mapped, leading to the identification of 24 significant recombinant individuals whose phenotypes were informative in determining the precise position of the locus within a 0.57 cM interval. Analyses of tightly linked marker sequences on the M. baccata draft genome revealed scaffolds of interest putatively harboring the resistance loci of M. ×arnoldiana, a hybrid between M. baccata and M. floribunda. Open reading frame (ORF) analyses led to the prediction of first fire blight resistance candidate genes with serine/threonine kinase and leucine-rich repeat domains, including homologs of previously identified 'Evereste' candidate genes. We discuss the implications of these results on breeding for resistance to fire blight.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
- Ofere Francis Emeriewen,
| | - Klaus Richter
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Andreas Peil
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
- *Correspondence: Andreas Peil,
| |
Collapse
|
17
|
Emeriewen OF, Richter K, Berner T, Keilwagen J, Schnable PS, Malnoy M, Peil A. Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci Rep 2020; 10:16358. [PMID: 33005026 PMCID: PMC7529804 DOI: 10.1038/s41598-020-73393-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Although, the Pacific crabapple, Malus fusca, is a hardy and disease resistant species, studies relating to the genetics of its unique traits are very limited partly due to the lack of a genetic map of this interesting wild apple. An accession of M. fusca (MAL0045) of Julius Kühn-Institut collection in Germany is highly resistant to fire blight disease, incited by different strains of the causative pathogen—Erwinia amylovora. This is the most destructive bacterial disease of Malus of which most of the domesticated apples (Malus domestica) are susceptible. Using a scarcely dense genetic map derived from a population of 134 individuals of MAL0045 × ‘Idared’, the locus (Mfu10) controlling fire blight resistance mapped on linkage group 10 (LG10) and explained up to 66% of the phenotypic variance with different strains. Although the development of robust and tightly linked molecular markers on LG10 through chromosome walking approach led to the identification of a major candidate gene, any minor effect locus remained elusive possibly due to the lack of marker density of the entire genetic map. Therefore, we have developed a dense genetic map of M. fusca using tunable genotyping-by-sequencing (tGBS) approach. Of thousands of de novo SNPs identified, 2677 were informative in M. fusca and 90.5% of these successfully mapped. In addition, integration of SNP data and microsatellite (SSR) data resulted in a final map comprising 17 LGs with 613 loci spanning 1081.35 centi Morgan (cM). This map will serve as a template for mapping using different strains of the pathogen.
Collapse
Affiliation(s)
- Ofere Francis Emeriewen
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden, Germany.
| | - Klaus Richter
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Thomas Berner
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Jens Keilwagen
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Patrick S Schnable
- Data2Bio LLC, Ames, IA, 50011-3650, USA.,Plant Sciences Institute, Iowa State University, 2035B Carver, Ames, IA, 50011-3650, USA
| | - Mickael Malnoy
- Research and Innovation Centre, Genomics and Biology of Fruit Crops Department, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele all 'Adige (Trentino), Italy
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden, Germany.
| |
Collapse
|
18
|
Tegtmeier R, Pompili V, Singh J, Micheletti D, Silva KJP, Malnoy M, Khan A. Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Sci Rep 2020; 10:16317. [PMID: 33004843 PMCID: PMC7529791 DOI: 10.1038/s41598-020-73284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Development of apple (Malus domestica) cultivars resistant to fire blight, a devastating bacterial disease caused by Erwinia amylovora, is a priority for apple breeding programs. Towards this goal, the inactivation of members of the HIPM and DIPM gene families with a role in fire blight susceptibility (S genes) can help achieve sustainable tolerance. We have investigated the genomic diversity of HIPM and DIPM genes in Malus germplasm collections and used a candidate gene-based association mapping approach to identify SNPs (single nucleotide polymorphisms) with significant associations to fire blight susceptibility. A total of 87 unique SNP variants were identified in HIPM and DIPM genes across 93 Malus accessions. Thirty SNPs showed significant associations (p < 0.05) with fire blight susceptibility traits, while two of these SNPs showed highly significant (p < 0.001) associations across two different years. This research has provided knowledge about genetic diversity in fire blight S genes in diverse apple accessions and identified candidate HIPM and DIPM alleles that could be used to develop apple cultivars with decreased fire blight susceptibility via marker-assisted breeding or biotechnological approaches.
Collapse
Affiliation(s)
- Richard Tegtmeier
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Diego Micheletti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
19
|
Zhang WB, Yan HL, Zhu ZC, Zhang C, Du PX, Zhao WJ, Li WM. Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit. J Zhejiang Univ Sci B 2020; 21:716-726. [PMID: 32893528 DOI: 10.1631/jzus.b2000281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The general secretory (Sec) pathway represents a common mechanism by which bacteria secrete proteins, including virulence factors, into the extracytoplasmic milieu. However, there is little information about this system, as well as its associated secretory proteins, in relation to the fire blight pathogen Erwinia amylovora. In this study, data mining revealed that E. amylovora harbors all of the essential components of the Sec system. Based on this information, we identified putative Sec-dependent secretory proteases in E. amylovora on a genome-wide scale. Using the programs SignalP, LipoP, and Phobius, a total of 15 putative proteases were predicted to contain the N-terminal signal peptides (SPs) that might link them to the Sec-dependent pathway. The activities of the predicted SPs were further validated using an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system that confirmed their extracytoplasmic property. Transcriptional analyses showed that the expression of 11 of the 15 extracytoplasmic protease genes increased significantly when E. amylovora was used to inoculate immature pears, suggesting their potential roles in plant infection. The results of this study support the suggestion that E. amylovora might employ the Sec system to secrete a suite of proteases to enable successful infection of plants, and shed new light on the interaction of E. amylovora with host plants.
Collapse
Affiliation(s)
- Wang-Bin Zhang
- College of Plant Science, Tarim University, Alar 843300, China.,Southern Xinjiang Key Laboratory of Integrated Pest Management, Tarim University, Alar 843300, China
| | - Hai-Lin Yan
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zong-Cai Zhu
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Xiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei-Min Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Pontes JGDM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP. Virulence Factors in the Phytopathogen-Host Interactions: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7555-7570. [PMID: 32559375 DOI: 10.1021/acs.jafc.0c02389] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.
Collapse
Affiliation(s)
| | - Laura Soler Fernandes
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
| | | | - Ljubica Tasic
- Laboratório de Quı́mica Biológica (LQB), IQ-UNICAMP, Campinas, SP, Brazil
| | - Taicia Pacheco Fill
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6154, 13083970 Campinas, SP, Brazil
| |
Collapse
|
21
|
An Erwinia amylovora uracil transporter mutant retains virulence on immature apple and pear fruit. Microb Pathog 2020; 147:104363. [PMID: 32615243 DOI: 10.1016/j.micpath.2020.104363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Erwinia amylovora is the causal agent of fire blight, a devastating disease of apples and pears. A previous study revealed that an E. amylovora uracil auxotroph was still virulent and can cause disease, suggesting that uracil can be obtained from the host environment. The E. amylovora genome contains a locus encoding for a uracil transporter belonging to the nucleobase cation symporter 2 family, displaying a high level of amino acid sequence similarity to the Escherichia coli UraA. Expression of E. amylovora UraA in nucleobase transporter-deficient E. coli strains, coupled with radiolabeled uptake studies reveal that E. amylovora UraA is a high affinity uracil transporter with a Km of 0.57 μM. Both E. coli and E. amylovora carrying extra copies of E. amylovora UraA are sensitive to growth on the toxic analog 5-fluorouracil. An E. amylovora ΔuraA::Camr mutant is still able to grow and cause disease symptoms on immature pears and apples.
Collapse
|
22
|
Peil A, Hübert C, Wensing A, Horner M, Emeriewen OF, Richter K, Wöhner T, Chagné D, Orellana-Torrejon C, Saeed M, Troggio M, Stefani E, Gardiner SE, Hanke MV, Flachowsky H, Bus VG. Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation. BMC PLANT BIOLOGY 2019; 19:532. [PMID: 31791233 PMCID: PMC6889339 DOI: 10.1186/s12870-019-2154-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/21/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. RESULTS We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible 'Idared' and 'Royal Gala' in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the 'Idared' × Mr5 population with Erwinia amylovora over several years, and of the 'Royal Gala' × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the 'Idared' × Mr5 and an 'M9' × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. CONCLUSIONS This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.
Collapse
Affiliation(s)
- Andreas Peil
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Christine Hübert
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer str. 101, 69221 Dossenheim, Germany
| | - Annette Wensing
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer str. 101, 69221 Dossenheim, Germany
| | - Mary Horner
- The New Zealand Institute for Plant and Food Research Limited (PFR), Hawke’s Bay Research Centre, Private Bag 1401, Havelock North, 4157 New Zealand
| | - Ofere Francis Emeriewen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Klaus Richter
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Thomas Wöhner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - David Chagné
- PFR, Palmerston North Research Centre, Private Bag 1600, Palmerston North, 4442 New Zealand
| | | | - Munazza Saeed
- PFR, Palmerston North Research Centre, Private Bag 1600, Palmerston North, 4442 New Zealand
| | - Michela Troggio
- Research and Innovation Centre, Edmund Mach Foundation, 38010 San Michele all’Adige, Italy
| | - Erika Stefani
- Research and Innovation Centre, Edmund Mach Foundation, 38010 San Michele all’Adige, Italy
| | - Susan E. Gardiner
- PFR, Palmerston North Research Centre, Private Bag 1600, Palmerston North, 4442 New Zealand
| | - Magda-Viola Hanke
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Vincent G.M. Bus
- The New Zealand Institute for Plant and Food Research Limited (PFR), Hawke’s Bay Research Centre, Private Bag 1401, Havelock North, 4157 New Zealand
| |
Collapse
|