1
|
Wu Q, Feng Z, Tsukagoshi H, Yang M, Ao Y, Fujiwara T, Kamiya T. Early differentiation of Casparian strip mediated by nitric oxide is required for efficient K transport under low K conditions in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:467-477. [PMID: 37422899 DOI: 10.1111/tpj.16384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
The Casparian strip (CS) is a cell wall modification made of lignin that functions as an apoplastic barrier in the root endodermis to restrict nutrient and water transport between the soil and stele. CS formation is affected by nutritional conditions, and its physiological roles have been discussed. This study found that low K condition affects CS permeability, lignin deposition, and MYB36 mRNA accumulation. To understand the mechanism underlying these findings, we focused on nitric oxide (NO). NO is known to act as a signaling molecule and participates in cell wall synthesis, especially for lignin composition. However, the mechanism by which NO affects lignin deposition and corrects CS formation in the plant roots remains unclear. Through combining fluorescent observation with histological stains, we demonstrated that the root endodermal cell lignification response to low-potassium (K) conditions is mediated by NO through the MYB36-associated lignin-polymerizing pathway. Furthermore, we discovered the noteworthy ability of NO to maintain nutrient homeostasis for adaptation to low K conditions by affecting the correct apoplastic barrier formation of CS. Collectively, our results suggest that NO is required for the lignification and apoplastic barrier formation in the root endodermis during adaptation to low K conditions, which revealing the novel physiological roles of CS under low nutrient conditions and making a significant contribution to CS biology.
Collapse
Affiliation(s)
- Qi Wu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Zhihang Feng
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 464-8601, Aichi, Japan
| | - Miaoyan Yang
- Suzhou Chien-Shiung Institute of Technology, Suzhou, 215411, China
| | - Yan Ao
- Suzhou Chien-Shiung Institute of Technology, Suzhou, 215411, China
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
3
|
Sharma A, Prakash S, Chattopadhyay D. Killing two birds with a single stone-genetic manipulation of cytokinin oxidase/dehydrogenase ( CKX) genes for enhancing crop productivity and amelioration of drought stress response. Front Genet 2022; 13:941595. [PMID: 35923693 PMCID: PMC9340367 DOI: 10.3389/fgene.2022.941595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
The development of high-yielding, bio-fortified, stress-tolerant crop cultivars is the need of the hour in the wake of increasing global food insecurity, abrupt climate change, and continuous shrinking of resources and landmass suitable for agriculture. The cytokinin group of phytohormones positively regulates seed yield by simultaneous regulation of source capacity (leaf senescence) and sink strength (grain number and size). Cytokinins also regulate root-shoot architecture by promoting shoot growth and inhibiting root growth. Cytokinin oxidase/dehydrogenase (CKX) are the only enzymes that catalyze the irreversible degradation of active cytokinins and thus negatively regulate the endogenous cytokinin levels. Genetic manipulation of CKX genes is the key to improve seed yield and root-shoot architecture through direct manipulation of endogenous cytokinin levels. Downregulation of CKX genes expressed in sink tissues such as inflorescence meristem and developing seeds, through reverse genetics approaches such as RNAi and CRISPR/Cas9 resulted in increased yield marked by increased number and size of grains. On the other hand, root-specific expression of CKX genes resulted in decreased endogenous cytokinin levels in roots which in turn resulted in increased root growth indicated by increased root branching, root biomass, and root-shoot biomass ratio. Enhanced root growth provided enhanced tolerance to drought stress and improved micronutrient uptake efficiency. In this review, we have emphasized the role of CKX as a genetic factor determining yield, micronutrient uptake efficiency, and response to drought stress. We have summarised the efforts made to increase crop productivity and drought stress tolerance in different crop species through genetic manipulation of CKX family genes.
Collapse
|
4
|
Azospirillum brasilense Bacteria Promotes Mn2+ Uptake in Maize with Benefits to Leaf Photosynthesis. Microorganisms 2022; 10:microorganisms10071290. [PMID: 35889009 PMCID: PMC9319945 DOI: 10.3390/microorganisms10071290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Azospirillum brasilense is a prolific grass-root colonizing bacteria well-known for its ability to promote plant growth in several cereal crops. Here we show that one of the mechanisms of action in boosting plant performance is through increased assimilation of the micronutrient manganese by the host. Using radioactive 52Mn2+ (t½ 5.59 d), we examined the uptake kinetics of this micronutrient in young maize plants, comparing the performance of three functional mutants of A. brasilense, including HM053, a high auxin-producing and high N2-fixing strain; ipdC, a strain with a reduced auxin biosynthesis capacity; and FP10, a strain deficient in N2-fixation that still produces auxin. HM053 had the greatest effect on host 52Mn2+ uptake, with a significant increase seen in shoot radioactivity relative to non-inoculated controls. LA-ICP-MS analysis of root sections revealed higher manganese distributions in the endodermis of HM053-inoculated plants and overall higher manganese concentrations in leaves. Finally, increased leaf manganese concentration stimulated photosynthesis as determined by measuring leaf fixation of radioactive 11CO2 with commensurate increases in chlorophyll concentration.
Collapse
|
5
|
Kolbeck A, Marhavý P, De Bellis D, Li B, Kamiya T, Fujiwara T, Kalmbach L, Geldner N. CASP microdomain formation requires cross cell wall stabilization of domains and non-cell autonomous action of LOTR1. eLife 2022; 11:69602. [PMID: 35029147 PMCID: PMC8794472 DOI: 10.7554/elife.69602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in lotr1 leads to fully functional CSDs at ectopic positions, forming ‘half strips’. LOTR1 action in the endodermis requires its expression in the stele. LOTR1 endodermal expression cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish LOTR1 as a crucial player in CSD positioning acting in a directional, non-cell-autonomous manner to restrict and coordinate CS positioning.
Collapse
Affiliation(s)
- Andreas Kolbeck
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Peter Marhavý
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Baohai Li
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, University of Tokyo, Tokyo, Japan
| | - Lothar Kalmbach
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
van Bel AJE. The plant axis as the command centre for (re)distribution of sucrose and amino acids. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153488. [PMID: 34416599 DOI: 10.1016/j.jplph.2021.153488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phythopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany.
| |
Collapse
|
7
|
Zhao Y, Liu Y, Ji X, Sun J, Lv S, Yang H, Zhao X, Hu X. Physiological and proteomic analyses reveal cAMP‐regulated key factors in maize root tolerance to heat stress. Food Energy Secur 2021. [DOI: 10.1002/fes3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yulong Zhao
- State Key Laboratory of Wheat & Maize Crop Science College of Agronomy Henan Agricultural University Zhengzhou China
| | - Yanpei Liu
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Xiaoming Ji
- College of Tobacco Henan Agricultural University Zhengzhou China
| | - Jinfeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement Key Laboratory of Plant Stress Biology School of Life Sciences Henan University Kaifeng China
| | - Shanshan Lv
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Xia Zhao
- Cereal institute Henan Academy of Agricultural Sciences Zhengzhou China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| |
Collapse
|
8
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|