1
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Uncovering natural allelic and structural variants of OsCENH3 gene by targeted resequencing and in silico mining in genus Oryza. Sci Rep 2023; 13:830. [PMID: 36646847 PMCID: PMC9842635 DOI: 10.1038/s41598-023-28053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Plant breeding efforts to boost rice productivity have focused on developing a haploid development pipeline. CENH3 gene has emerged as a leading player that can be manipulated to engineer haploid induction system. Currently, allele mining for the OsCENH3 gene was done by PCR-based resequencing of 33 wild species accessions of genus Oryza and in silico mining of alleles from pre-existing data. We have identified and characterized CENH3 variants in genus Oryza. Our results indicated that the majority CENH3 alleles present in the Oryza gene pool carry synonymous substitutions. A few non-synonymous substitutions occur in the N-terminal Tail domain (NTT). SNP A/G at position 69 was found in accessions of AA genome and non-AA genome species. Phylogenetic analysis revealed that non-synonymous substitutions carrying alleles follow pre-determined evolutionary patterns. O. longistaminata accessions carry SNPs in four codons along with indels in introns 3 and 6. Fifteen haplotypes were mined from our panel; representative mutant alleles exhibited structural variations upon modeling. Structural analysis indicated that more than one structural variant may be exhibited by different accessions of single species (Oryza barthii). NTT allelic mutants, though not directly implicated in HI, may show variable interactions. HI and interactive behavior could be ascertained in future investigations.
Collapse
|
3
|
Alejo-Vinogradova MT, Ornelas-Ayala D, Vega-León R, Garay-Arroyo A, García-Ponce B, R Álvarez-Buylla E, Sanchez MDLP. Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:38-49. [PMID: 34518884 DOI: 10.1093/jxb/erab421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.
Collapse
Affiliation(s)
- M Teresa Alejo-Vinogradova
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| |
Collapse
|
4
|
Wear EE, Song J, Zynda GJ, Mickelson-Young L, LeBlanc C, Lee TJ, Deppong DO, Allen GC, Martienssen RA, Vaughn MW, Hanley-Bowdoin L, Thompson WF. Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots. PLoS Genet 2020; 16:e1008623. [PMID: 33052904 PMCID: PMC7588055 DOI: 10.1371/journal.pgen.1008623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/26/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Plant cells undergo two types of cell cycles–the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2’-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed. In traditional cell division, or mitosis, a cell’s genetic material is duplicated and then split between two daughter cells. In contrast, in some specialized cell types, the DNA is duplicated a second time without an intervening division step, resulting in cells that carry twice as much DNA. This phenomenon, which is called the endocycle, is common during plant development. At each step, DNA replication follows an ordered program in which highly compacted DNA is unraveled and replicated in sections at different times during the synthesis (S) phase. In plants, it is unclear whether traditional and endocycle programs are the same, especially since endocycling cells are typically in the process of differentiation. Using root tips of maize, we found that in comparison to replication in the mitotic cell cycle, there is a small portion of the genome whose replication in the endocycle is shifted in time, usually to later in S phase. Some of these regions are scattered around the genome and mostly coincide with active genes. However, the most prominent shifts occur in centromeres. The shift to later replication in centromeres is noteworthy because they orchestrate the process of separating duplicated chromosomes into daughter cells, a function that is not needed in the endocycle.
Collapse
Affiliation(s)
- Emily E. Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Gregory J. Zynda
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chantal LeBlanc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - William F. Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
5
|
Keçeli BN, Jin C, Van Damme D, Geelen D. Conservation of centromeric histone 3 interaction partners in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5237-5246. [PMID: 32369582 PMCID: PMC7475239 DOI: 10.1093/jxb/eraa214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
The loading and maintenance of centromeric histone 3 (CENH3) at the centromere are critical processes ensuring appropriate kinetochore establishment and equivalent segregation of the homologous chromosomes during cell division. CENH3 loss of function is lethal, whereas mutations in the histone fold domain are tolerated and lead to chromosome instability and chromosome elimination in embryos derived from crosses with wild-type pollen. A wide range of proteins in yeast and animals have been reported to interact with CENH3. The histone fold domain-interacting proteins are potentially alternative targets for the engineering of haploid inducer lines, which may be important when CENH3 mutations are not well supported by a given crop. Here, we provide an overview of the corresponding plant orthologs or functional homologs of CENH3-interacting proteins. We also list putative CENH3 post-translational modifications that are also candidate targets for modulating chromosome stability and inheritance.
Collapse
Affiliation(s)
- Burcu Nur Keçeli
- Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links, Ghent, Belgium
| | - Chunlian Jin
- Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links, Ghent, Belgium
| | - Daniel Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department Plants and Crops, unit HortiCell, Coupure Links, Ghent, Belgium
- Corresponding author:
| |
Collapse
|
6
|
Dvořák Tomaštíková E, Rutten T, Dvořák P, Tugai A, Ptošková K, Petrovská B, van Damme D, Houben A, Doležel J, Demidov D. Functional Divergence of Microtubule-Associated TPX2 Family Members in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21062183. [PMID: 32235723 PMCID: PMC7139753 DOI: 10.3390/ijms21062183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023] Open
Abstract
TPX2 (Targeting Protein for Xklp2) is an evolutionary conserved microtubule-associated protein important for microtubule nucleation and mitotic spindle assembly. The protein was described as an activator of the mitotic kinase Aurora A in humans and the Arabidopsis AURORA1 (AUR1) kinase. In contrast to animal genomes that encode only one TPX2 gene, higher plant genomes encode a family with several TPX2-LIKE gene members (TPXL). TPXL genes of Arabidopsis can be divided into two groups. Group A proteins (TPXL2, 3, 4, and 8) contain Aurora binding and TPX2_importin domains, while group B proteins (TPXL1, 5, 6, and 7) harbor an Xklp2 domain. Canonical TPX2 contains all the above-mentioned domains. We confirmed using in vitro kinase assays that the group A proteins contain a functional Aurora kinase binding domain. Transient expression of Arabidopsis TPX2-like proteins in Nicotiana benthamiana revealed preferential localization to microtubules and nuclei. Co-expression of AUR1 together with TPX2-like proteins changed the localization of AUR1, indicating that these proteins serve as targeting factors for Aurora kinases. Taken together, we visualize the various localizations of the TPX2-LIKE family in Arabidopsis as a proxy to their functional divergence and provide evidence of their role in the targeted regulation of AUR1 kinase activity.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (B.P.); (J.D.)
- Correspondence: (E.D.T.); (D.D.); Tel.: +420-585-238-725 (E.D.T.); +49-394825-733 (D.D.)
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany; (T.R.); (A.T.); (A.H.)
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic;
| | - Alisa Tugai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany; (T.R.); (A.T.); (A.H.)
| | - Klara Ptošková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (B.P.); (J.D.)
| | - Beáta Petrovská
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (B.P.); (J.D.)
| | - Daniel van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany; (T.R.); (A.T.); (A.H.)
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (B.P.); (J.D.)
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, 06466 Seeland, Germany; (T.R.); (A.T.); (A.H.)
- Correspondence: (E.D.T.); (D.D.); Tel.: +420-585-238-725 (E.D.T.); +49-394825-733 (D.D.)
| |
Collapse
|