1
|
Mayo-Smith M, Poulet A, Zhang L, Peng Y, Goldstone D, Putterill J. Medicago Mting1 Mting2 double knockout mutants are extremely dwarfed and never flower implicating essential MtING functions in growth and flowering. BMC PLANT BIOLOGY 2025; 25:410. [PMID: 40169950 PMCID: PMC11960017 DOI: 10.1186/s12870-025-06432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Optimal flowering time is critical to agricultural productivity. Despite this, flowering regulation in the Fabaceae (legume) family is not fully understood. For example, FLC and CO control Arabidopsis flowering, but do not regulate flowering in the temperate legume Medicago. Little is known about the genetic roles of the two plant ING genes. They encode proteins with conserved ING and PHD finger domains predicted to function as epigenetic readers. Previously, using CRISPR-Cas9 knock outs, we reported that Medicago MtING2 promotes flowering and growth. However, surprisingly, Mting2 PHD finger mutants flowered similarly to wild type. Additionally, MtING1 did not regulate flowering because Mting1 mutants flowered like wild type. METHODS To further dissect the combined genetic function of MtING1 and MtING2 and their PHD fingers, we cross-pollinated Mting1 and Mting2 single mutants to create two double mutants: The Mting1-7 Mting2-2 double knockout mutant and the Mting1-1 Mting2-11 double PHD finger mutant. Mutant phenotypes were assessed in floral-inductive conditions. We used fluorescence confocal microscopy and in vitro protein biophysical analysis to investigate the subcellular localization and oligomerization of the proteins. We carried out gene expression analysis by RNA-seq and RT-qPCR to determine how the two genes affect transcript accumulation to influence growth and flowering. RESULTS The Mting double knockout mutants displayed a striking, non-flowering, highly dwarfed phenotype indicating overlapping and complementary functions. Conversely Mting double PHD finger mutants showed only mild dwarfing and weak delays to flowering, indicating that the PHD fingers did not have a major impact on MtING function. MtING proteins localised to the nucleus, consistent with their predicted roles as histone readers, but did not interact in solution. Large changes to gene expression were seen in the Mting2-2 single mutant and the double knockout mutant, with key flowering genes downregulated and predicted floral repressors elevated. Furthermore, the MtINGs promoted the expression of Medicago homologs of target genes of the Arabidopsis NuA4 HAT complex. CONCLUSIONS Our findings demonstrate the key combined function the MtING genes play in regulation of global gene expression, flowering time and wider development and implicate an important role in epigenetic regulation via HAT complexes.
Collapse
Affiliation(s)
- Matthew Mayo-Smith
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand
| | - Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Lulu Zhang
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - David Goldstone
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
2
|
Candela-Ferre J, Pérez-Alemany J, Diego-Martin B, Pandey V, Wohlschlegel J, Lozano-Juste J, Gallego-Bartolomé J. Plant BCL-DOMAIN HOMOLOG proteins play a conserved role in SWI/SNF complex stability. Proc Natl Acad Sci U S A 2025; 122:e2413346122. [PMID: 39823297 PMCID: PMC11761322 DOI: 10.1073/pnas.2413346122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 01/19/2025] Open
Abstract
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of bdh mutants, revealing the role of BDH in hypocotyl cell elongation. Through detailed analysis of BDH domains, we identified a plant-specific N-terminal domain that facilitates the interaction between BDH and the rest of the complex. Additionally, we uncovered the critical role of the BDH β-hairpin domain, which is phylogenetically related to mammalian BCL7 SWI/SNF subunits. While phylogenetic analyses did not identify BDH/BCL7 orthologs in fungi, structure prediction modeling demonstrated strong similarities between the SWI/SNF catalytic modules of plants, animals, and fungi and revealed the yeast Rtt102 protein as a structural homolog of BDH and BCL7. This finding is supported by the ability of Rtt102 to interact with the Arabidopsis catalytic module subunit ARP7 and partially rescue the bdh mutant phenotypes. Further experiments revealed that BDH promotes the stability of the ARP4-ARP7 heterodimer, leading to the partial destabilization of ARP4 in the SWI/SNF complexes. In summary, our study unveils the molecular function of BDH proteins in plant SWI/SNF complexes and suggests that β-hairpin-containing proteins are evolutionarily conserved subunits crucial for ARP heterodimer stability and SWI/SNF activity across eukaryotes.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| |
Collapse
|
3
|
Chatterjee D, Zhang Z, Lin PY, Wang PH, Sidhu GK, Yennawar NH, Hsieh JWA, Chen PY, Song R, Meyers BC, Chopra S. Maize unstable factor for orange1 encodes a nuclear protein that affects redox accumulation during kernel development. THE PLANT CELL 2024; 37:koae301. [PMID: 39589935 DOI: 10.1093/plcell/koae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The basal endosperm transfer layer (BETL) of the maize (Zea mays L.) kernel is composed of transfer cells for nutrient transport to nourish the developing kernel. To understand the spatiotemporal processes required for BETL development, we characterized 2 unstable factor for orange1 (Zmufo1) mutant alleles. The BETL defects in these mutants were associated with high levels of reactive oxygen species, oxidative DNA damage, and cell death. Interestingly, antioxidant supplementation in in vitro cultured kernels alleviated the cellular defects in mutants. Transcriptome analysis of the loss-of-function Zmufo1 allele showed differential expression of tricarboxylic acid cycle, redox homeostasis, and BETL-related genes. The basal endosperms of the mutant alleles had high levels of acetyl-CoA and elevated histone acetyltransferase activity. The BETL cell nuclei showed reduced electron-dense regions, indicating sparse heterochromatin distribution in the mutants compared with wild-type. Zmufo1 overexpression further reduced histone methylation marks in the enhancer and gene body regions of the pericarp color1 (Zmp1) reporter gene. Zmufo1 encodes an intrinsically disordered nuclear protein with very low sequence similarity to known proteins. Yeast two-hybrid and luciferase complementation assays established that ZmUFO1 interacts with proteins that play a role in chromatin remodeling, nuclear transport, and transcriptional regulation. This study establishes the critical function of Zmufo1 during basal endosperm development in maize kernels.
Collapse
Affiliation(s)
- Debamalya Chatterjee
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ziru Zhang
- National Center for Maize Improvement, China Agricultural University, Beijing 100083, China
| | - Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Po-Hao Wang
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gurpreet K Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- X-Ray Crystallography Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Rentao Song
- National Center for Maize Improvement, China Agricultural University, Beijing 100083, China
| | - Blake C Meyers
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Candela-Ferre J, Pérez-Alemany J, Diego-Martin B, Pandey V, Wohlschlegel JA, Lozano-Juste J, Gallego-Bartolomé J. Plant BCL-Domain Homologues play a conserved role in SWI/SNF complex stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612632. [PMID: 39345447 PMCID: PMC11429869 DOI: 10.1101/2024.09.17.612632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-Domain Homolog (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of bdh mutants, revealing a previously overlooked impact on hypocotyl cell elongation. Through detailed analysis of BDH domains, we identified a plant-specific N-terminal domain that facilitates the interaction between BDH and the rest of the complex. Additionally, we uncovered the critical role of the BDH β-hairpin domain, which is phylogenetically related to metazoan BCL7 SWI/SNF subunits. While phylogenetic analyses did not identify BDH/BCL7 orthologs in fungi, structure prediction modeling demonstrated strong similarities between the SWI/SNF catalytic modules of plants, animals, and fungi, and revealed the yeast Rtt102 protein as a structural homolog of BDH and BCL7. This finding is supported by the ability of Rtt102 to interact with the Arabidopsis catalytic module subunit ARP7 and partially rescue the bdh mutant phenotypes. Further experiments revealed that BDH promotes the stability of the ARP4-ARP7 heterodimer, leading to the partial destabilization of ARP4 in the SWI/SNF complexes. In summary, our study unveils the molecular function of BDH proteins in plant SWI/SNF complexes and suggests that β-hairpin-containing proteins are evolutionarily conserved subunits crucial for ARP heterodimer stability and SWI/SNF activity across eukaryotes.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
5
|
Domingo G, Marsoni M, Davide E, Fortunato S, de Pinto MC, Bracale M, Molla G, Gehring C, Vannini C. The cAMP-dependent phosphorylation footprint in response to heat stress. PLANT CELL REPORTS 2024; 43:137. [PMID: 38713285 PMCID: PMC11076351 DOI: 10.1007/s00299-024-03213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Eleonora Davide
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari "Aldo Moro", Piazza Umberto I, 70121, Bari, Italy
| | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Gianluca Molla
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
6
|
Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:645-656. [PMID: 36703573 DOI: 10.1111/tpj.16115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Henna Kapoor
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Hanna Markusch
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
7
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Katagiri S, Kamiyama Y, Yamashita K, Iizumi S, Suzuki R, Aoi Y, Takahashi F, Kasahara H, Kinoshita T, Umezawa T. Accumulation of Phosphorylated SnRK2 Substrate 1 Promotes Drought Escape in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:259-268. [PMID: 37971366 DOI: 10.1093/pcp/pcad146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Plants adopt optimal tolerance strategies depending on the intensity and duration of stress. Retaining water is a priority under short-term drought conditions, whereas maintaining growth and reproduction processes takes precedence over survival under conditions of prolonged drought. However, the mechanism underlying changes in the stress response depending on the degree of drought is unclear. Here, we report that SNF1-related protein kinase 2 (SnRK2) substrate 1 (SNS1) is involved in this growth regulation under conditions of drought stress. SNS1 is phosphorylated and stabilized by SnRK2 protein kinases reflecting drought conditions. It contributes to the maintenance of growth and promotion of flowering as drought escape by repressing stress-responsive genes and inducing FLOWERING LOCUS T (FT) expression, respectively. SNS1 interacts with the histone methylation reader proteins MORF-related gene 1 (MRG1) and MRG2, and the SNS1-MRG1/2 module cooperatively regulates abscisic acid response. Taken together, these observations suggest that the phosphorylation and accumulation of SNS1 in plants reflect the intensity and duration of stress and can serve as a molecular scale for maintaining growth and adopting optimal drought tolerance strategies under stress conditions.
Collapse
Affiliation(s)
- Sotaro Katagiri
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588 Japan
| | - Yoshiaki Kamiyama
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588 Japan
| | - Kota Yamashita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588 Japan
| | - Sara Iizumi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588 Japan
| | - Risa Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588 Japan
| | - Yuki Aoi
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes F06160, France
| | - Fuminori Takahashi
- Graduate School of Industrial Science and Technology, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku, 125-8585 Japan
| | - Hiroyuki Kasahara
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, 183-0054 Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Furocho, Nagoya, 464-8602 Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588 Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, 183-0054 Japan
| |
Collapse
|
9
|
Zheng SY, Guan BB, Yuan DY, Zhao QQ, Ge W, Tan LM, Chen SS, Li L, Chen S, Xu RM, He XJ. Dual roles of the Arabidopsis PEAT complex in histone H2A deubiquitination and H4K5 acetylation. MOLECULAR PLANT 2023; 16:1847-1865. [PMID: 37822080 DOI: 10.1016/j.molp.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.
Collapse
Affiliation(s)
- Si-Yao Zheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bin-Bin Guan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Wang B, Zhou X, Kettenbach AN, Mitchell HD, Markillie LM, Loros JJ, Dunlap JC. A crucial role for dynamic expression of components encoding the negative arm of the circadian clock. Nat Commun 2023; 14:3371. [PMID: 37291101 PMCID: PMC10250352 DOI: 10.1038/s41467-023-38817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| | - Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Hugh D Mitchell
- Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| |
Collapse
|
11
|
Li L, Li Q, Chen B, Wang J, Ding F, Wang P, Zhang X, Hou J, Luo R, Li X, Zheng J, Yang S, Yang L, Zhu L, Sun S, Ma C, Li Q, Li Y, Hu J. Identification of candidate genes that regulate the trade-off between seedling cold tolerance and fruit quality in melon ( Cucumis melo L.). HORTICULTURE RESEARCH 2023; 10:uhad093. [PMID: 37416729 PMCID: PMC10321389 DOI: 10.1093/hr/uhad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/01/2023] [Indexed: 07/08/2023]
Abstract
Trade-offs between survival and growth are widely observed in plants. Melon is an annual, trailing herb that produces economically valuable fruits that are traditionally cultivated in early spring in China. Melon seedlings are sensitive to low temperatures, and thus usually suffer from cold stress during the early growth period. However, little is known about the mechanism behind the trade-offs between seedling cold tolerance and fruit quality in melon. In this study, a total of 31 primary metabolites were detected from the mature fruits of eight melon lines that differ with respect to seedling cold tolerance; these included 12 amino acids, 10 organic acids, and 9 soluble sugars. Our results showed that concentrations of most of the primary metabolites in the cold-resistant melons were generally lower than in the cold-sensitive melons; the greatest difference in metabolite levels was observed between the cold-resistant line H581 and the moderately cold-resistant line HH09. The metabolite and transcriptome data for these two lines were then subjected to weighted correlation network analysis, resulting in the identification of five key candidate genes underlying the balancing between seedling cold tolerance and fruit quality. Among these genes, CmEAF7 might play multiple roles in regulating chloroplast development, photosynthesis, and the ABA pathway. Furthermore, multi-method functional analysis showed that CmEAF7 can certainly improve both seedling cold tolerance and fruit quality in melon. Our study identified an agriculturally important gene, CmEAF7, and provides a new insight into breeding methods to develop melon cultivars with seedling cold tolerance and high fruit quality.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Bin Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Panqiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingwen Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Changsheng Ma
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Qin Li
- The Seed Management Station of Zhengzhou City, Zhengzhou 450001, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Wang B, Zhou X, Kettenbach AN, Mitchell HD, Markillie LM, Loros JJ, Dunlap JC. A crucial role for dynamic expression of components encoding the negative arm of the circadian clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538162. [PMID: 37162945 PMCID: PMC10168201 DOI: 10.1101/2023.04.24.538162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency ( frq ). FRQ interacts with FRH (FRQ-interacting helicase) and CK-1 forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8 , that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone hH2Az , and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify new auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.
Collapse
|
13
|
Liu W, Lin S, Li L, Tai Z, Liu JX. Zebrafish ELL-associated factors Eaf1/2 modulate erythropoiesis via regulating gata1a expression and WNT signaling to facilitate hypoxia tolerance. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:10. [PMID: 37002435 PMCID: PMC10066051 DOI: 10.1186/s13619-022-00154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 04/04/2023]
Abstract
EAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1-/- and eaf2-/-) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1-/- and eaf2-/- mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf. Mechanistically, eaf1-/- and eaf2-/- mutants exhibited significant changes in the expression of epigenetic modified histones, with a significant increase in the binding enrichment of modified histone H3K27me3 in gata1a promoter rather than scl and lmo2 promoters. Additionally, eaf1-/- and eaf2-/- mutants exhibited a dynamic expression of canonical WNT/β-catenin signaling during erythropoiesis, with significant reduction in p-β-Catenin level and in the binding enrichment of both scl and lmo2 promoters with the WNT transcriptional factor TCF4 at 24 hpf. These findings demonstrate an important role of Eaf1/2 in erythropoiesis in zebrafish and may have shed some light on regeneration medicine for anemia and related diseases and on molecular basis for fish economic or productive traits, such as growth, disease resistance, hypoxia tolerance, and so on.
Collapse
Affiliation(s)
- WenYe Liu
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - ShuHui Lin
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - LingYa Li
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - ZhiPeng Tai
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jing-Xia Liu
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
14
|
Huang Y, Cai W, Lu Q, Lv J, Wan M, Guan D, Yang S, He S. PMT6 Is Required for SWC4 in Positively Modulating Pepper Thermotolerance. Int J Mol Sci 2023; 24:ijms24054849. [PMID: 36902276 PMCID: PMC10003703 DOI: 10.3390/ijms24054849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
High temperature stress (HTS), with growth and development impairment, is one of the most important abiotic stresses frequently encountered by plants, in particular solanacaes such as pepper, that mainly distribute in tropical and subtropical regions. Plants activate thermotolerance to cope with this stress; however, the underlying mechanism is currently not fully understood. SWC4, a shared component of SWR1- and NuA4 complexes implicated in chromatin remodeling, was previously found to be involved in the regulation of pepper thermotolerance, but the underlying mechanism remains poorly understood. Herein, PMT6, a putative methyltranferase was originally found to interact with SWC4 by co-immunoprecipitation (Co-IP)-combined LC/MS assay. This interaction was further confirmed by bimolecular fluorescent complimentary (BiFC) and Co-IP assay, and PMT6 was further found to confer SWC4 methylation. By virus-induced gene silencing, it was found that PMT6 silencing significantly reduced pepper basal thermotolerance and transcription of CaHSP24 and significantly reduced the enrichment of chromatin-activation-related H3K9ac, H4K5ac, and H3K4me3 in TSS of CaHSP24, which was previously found to be positively regulated by CaSWC4. By contrast, the overexpression of PMT6 significantly enhanced basal thermotolerance of pepper plants. All these data indicate that PMT6 acts as a positive regulator in pepper thermotolerance, likely by methylating SWC4.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Lv
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyun Wan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.Y.); (S.H.)
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.Y.); (S.H.)
| |
Collapse
|
15
|
Jaudal M, Mayo‐Smith M, Poulet A, Whibley A, Peng Y, Zhang L, Thomson G, Trimborn L, Jacob Y, van Wolfswinkel JC, Goldstone DC, Wen J, Mysore KS, Putterill J. MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1029-1050. [PMID: 36178149 PMCID: PMC9828230 DOI: 10.1111/tpj.15994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.
Collapse
Affiliation(s)
- Mauren Jaudal
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthew Mayo‐Smith
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Axel Poulet
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Annabel Whibley
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Yongyan Peng
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Lulu Zhang
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Geoffrey Thomson
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Laura Trimborn
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Institute for Plant Sciences, BiocenterUniversity of CologneZülpicher Str. 47b50674CologneGermany
| | - Yannick Jacob
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Josien C. van Wolfswinkel
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - David C. Goldstone
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiangqi Wen
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Kirankumar S. Mysore
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
16
|
Barrero-Gil J, Bouza-Morcillo L, Espinosa-Cores L, Piñeiro M, Jarillo JA. H4 acetylation by the NuA4 complex is required for plastid transcription and chloroplast biogenesis. NATURE PLANTS 2022; 8:1052-1063. [PMID: 36038656 DOI: 10.1038/s41477-022-01229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis is crucial in plant development, as it is essential for the transition to autotrophic growth. This process is light-induced and relies on the orchestrated transcription of nuclear and plastid genes, enabling the effective assembly and regulation of the photosynthetic machinery. Here we reveal a new regulation level for this process by showing the involvement of chromatin remodelling in the nuclear control of plastid gene expression for proper chloroplast biogenesis and function. The two Arabidopsis homologues of yeast EPL1 protein, components of the NuA4 histone acetyltransferase complex, are essential for plastid transcription and correct chloroplast development and performance. We show that EPL1 proteins are light-regulated and necessary for concerted expression of nuclear genes encoding most components of chloroplast transcriptional machinery, directly mediating H4K5ac deposition at these loci and promoting the expression of plastid genes required for chloroplast biogenesis. These data unveil a NuA4-mediated mechanism regulating chloroplast biogenesis that links the transcription of nuclear and plastid genomes during chloroplast development.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Laura Bouza-Morcillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Loreto Espinosa-Cores
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| |
Collapse
|
17
|
Wang J, Jian A, Wan H, Lei D, Zhou J, Zhu S, Ren Y, Lin Q, Lei C, Wang J, Zhao Z, Guo X, Zhang X, Cheng Z, Tao D, Jiang L, Zhao Z, Wan J. Genetic characterization and fine mapping of qHMS4 responsible for pollen sterility in hybrids between Oryza sativa L. and Oryza glaberrima Steud. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:47. [PMID: 37313516 PMCID: PMC10248710 DOI: 10.1007/s11032-022-01306-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
African cultivated rice (Oryza glaberrima Steud) contains many favorable genes for tolerance to biotic and abiotic stresses and F1 hybrids between Asian cultivated rice (Oryza sativa L.) show strong heterosis. However, the hybrids of two species often exhibit hybrid sterility. Here, we identified a male sterility locus qHMS4 on chromosome 4 (Chr.4), which induces pollen semi-sterility in F1 hybrids of japonica rice variety Dianjingyou1 (DJY1) and a near-isogenic line (NIL) carrying a Chr.4 segment from Oryza glaberrima accession IRGC101854. Cytological observations indicated that non-functional pollen grains produced by the hybrids and lacking starch accumulation abort at the late bicellular stage. Molecular genetic analysis revealed distorted segregation in male gametogenesis carrying qHMS4 allele from DJY1. Fine-mapping of qHMS4 using an F2 population of 22,500 plants delimited qHMS4 to a region of 110-kb on the short arm of Chr.4. Sequence analysis showed that the corresponding sequence region in DJY1 and Oryza glaberrima were 114-kb and 323-kb, respectively, and that the sequence homology was very poor. Gene prediction analysis identified 16 and 46 open reading frames (ORFs) based on the sequences of DJY1 and O. glaberrima, respectively, among which 3 ORFs were shared by both. Future map-based cloning of qHMS4 will help to understand the underlying molecular mechanism of hybrid sterility between the two cultivated rice species. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01306-8.
Collapse
Affiliation(s)
- Jian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Anqi Jian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hua Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dekun Lei
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiawu Zhou
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Zhou JX, Su XM, Zheng SY, Wu CJ, Su YN, Jiang Z, Li L, Chen S, He XJ. The Arabidopsis NuA4 histone acetyltransferase complex is required for chlorophyll biosynthesis and photosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:901-914. [PMID: 35043580 DOI: 10.1111/jipb.13227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/29/2023]
Abstract
Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.
Collapse
Affiliation(s)
- Jin-Xing Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100091, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100091, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Si-Yao Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chan-Juan Wu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper. PLoS Genet 2022; 18:e1010023. [PMID: 35226664 PMCID: PMC8884482 DOI: 10.1371/journal.pgen.1010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.
Collapse
|
20
|
NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat Commun 2022; 13:277. [PMID: 35022409 PMCID: PMC8755797 DOI: 10.1038/s41467-021-27882-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes. Function of nucleosomal acetyltransferase of H4 (NuA4), one major complex of HAT, remains unclear in plants. Here, the authors generate mutants targeting two components of the putative NuA4 complex in Arabidopsis (EAF1 and EPL1) and show their roles in photosynthesis genes regulation through H4K5ac and H2A.Z acetylation.
Collapse
|
21
|
Barrero-Gil J, Mouriz A, Piqueras R, Salinas J, Jarillo JA, Piñeiro M. A MRG-operated chromatin switch at SOC1 attenuates abiotic stress responses during the floral transition. PLANT PHYSIOLOGY 2021; 187:462-471. [PMID: 34618146 PMCID: PMC8418395 DOI: 10.1093/plphys/kiab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Plants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed. Here, we reveal a molecular mechanism of stress response attenuation during the onset of flowering in Arabidopsis (Arabidopsis thaliana). We show that Arabidopsis MORF-RELATED GENE (MRG) proteins, components of the NuA4 histone acetyltransferase complex that bind trimethylated-lysine 36 in histone H3 (H3K36me3), function as a chromatin switch on the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to coordinate flowering initiation with plant responsiveness to hostile environments. MRG proteins are required to activate SOC1 expression during flowering induction by promoting histone H4 acetylation. In turn, SOC1 represses a broad array of genes that mediate abiotic stress responses. We propose that during the transition from vegetative to reproductive growth, the MRG-SOC1 module constitutes a central hub in a mechanism that tunes down stress responses to enhance the reproductive success and plant fitness at the expense of costly efforts for adaptation to challenging environments.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Raquel Piqueras
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - José A. Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
22
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|