1
|
Nakamura T, Osawa Y, Ogura R, Hiratsuka K. Suppression of defense gene expression under nutrient-rich condition in Arabidopsis seedlings. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:479-483. [PMID: 40083567 PMCID: PMC11897736 DOI: 10.5511/plantbiotechnology.24.0726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 03/16/2025]
Abstract
Plant hormones like salicylic acid (SA) and jasmonic acid (JA) play crucial roles in regulating defense gene expression systems. SA mainly regulates defense against biotrophic pathogens, while JA mediates defense against necrotrophic pathogens. Compounds called plant activators including probenazole, acibenzolar-s-methyl and 2,6-dichloroisonicotinic acid (INA) activate plant immune systems, providing protection against pathogens. Unlike conventional pesticides that directly target pathogens, plant activators boost the host's defense mechanisms, potentially reducing the likelihood of drug resistance development. Various high-throughput screening systems (HTS) have been developed with the aim of searching for plant activators. Transgenic Arabidopsis lines expressing luciferase under the control of defense gene promoters allow us to monitor the activity of defense-related gene in vivo. To investigate the influence of nutrients on the HTS system, we conducted luciferase assays using Arabidopsis seedlings and observed the suppression of defense gene expression in response to the treatment of plant activators. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to monitor the expression levels of endogenous genes in response to nutrient-rich conditions and confirmed the suppression effect of defense gene expression as observed in the luciferase reporter assays. The findings highlight the importance of considering nutrient effects when evaluating plant activators and screening for compounds that induce defense gene expression under nutrient-rich conditions.
Collapse
Affiliation(s)
- Tetsutaro Nakamura
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Yukiko Osawa
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Rieko Ogura
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
- Yokohama Bio Technology Company Limited, 79-1 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kazuyuki Hiratsuka
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
2
|
Rzemieniewski J, Leicher H, Lee HK, Broyart C, Nayem S, Wiese C, Maroschek J, Camgöz Z, Olsson Lalun V, Djordjevic MA, Vlot AC, Hückelhoven R, Santiago J, Stegmann M. CEP signaling coordinates plant immunity with nitrogen status. Nat Commun 2024; 15:10686. [PMID: 39681561 DOI: 10.1038/s41467-024-55194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv. tomato. We show that effective immunity requires CEP perception by tissue-specific CEP RECEPTOR 1 (CEPR1) and CEPR2. Moreover, we identify the related RECEPTOR-LIKE KINASE 7 (RLK7) as a CEP4-specific CEP receptor contributing to CEP-mediated immunity, suggesting a complex interplay of multiple CEP ligands and receptors in different tissues during biotic stress. CEPs have a known role in the regulation of root growth and systemic nitrogen (N)-demand signaling. We provide evidence that CEPs and their receptors promote immunity in an N status-dependent manner, suggesting a previously unknown molecular crosstalk between plant nutrition and cell surface immunity. We propose that CEPs and their receptors are central regulators for the adaptation of biotic stress responses to plant-available resources.
Collapse
Affiliation(s)
- Jakub Rzemieniewski
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Henriette Leicher
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Shahran Nayem
- Helmholtz Zentrum Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Christian Wiese
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julian Maroschek
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Zeynep Camgöz
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vilde Olsson Lalun
- Department of Biosciences Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - A Corina Vlot
- Helmholtz Zentrum Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Martin Stegmann
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute of Botany, Molecular Botany, Ulm University, Ulm, Germany.
| |
Collapse
|
3
|
Cheng C, Wu H, Zhang Y. Characterization and functional analysis of gerbera plant defensin ( PDF) genes reveal the role of GhPDF2.4 in defense against the root rot pathogen Phytophthora cryptogea. ABIOTECH 2024; 5:325-338. [PMID: 39279851 PMCID: PMC11399501 DOI: 10.1007/s42994-024-00146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/24/2024] [Indexed: 09/18/2024]
Abstract
Gerbera (Gerbera hybrida), a major fresh cut flower crop, is very susceptible to root rot disease. Although plant defensins (PDFs), a major group of plant antimicrobial peptides, display broad-spectrum antifungal and antibacterial activities, PDF genes in gerbera have not been systematically characterized. Here, we identified and cloned nine PDF genes from gerbera and divided them into two classes based on phylogenetic analysis. Most Class I GhPDF genes were highly expressed in petioles, whereas all Class II GhPDF genes were highly expressed in roots. Phytophthora cryptogea inoculation strongly upregulated all Class II GhPDF genes in roots and upregulated all Class I GhPDF genes in petioles. Transient overexpression of GhPDF1.5 and GhPDF2.4 inhibited P. cryptogea infection in tobacco (Nicotiana benthamiana) leaves. Transient overexpression of GhPDF2.4, but not GhPDF1.5, significantly upregulated ACO and LOX gene expression in tobacco leaves, indicating that overexpressing GhPDF2.4 activated the jasmonic acid/ethylene defense pathway and that the two types of GhPDFs have different modes of action. Prokaryotically expressed recombinant GhPDF2.4 inhibited mycelial growth and delayed the hyphal swelling of P. cryptogea, in vitro, indicating that GhPDF2.4 is a morphogenetic defensin. Moreover, the addition of GhPDF2.4 to plant culture medium alleviated the root rot symptoms of in vitro-grown gerbera seedlings and greatly reduced pathogen titer in P. cryptogea-inoculated gerbera roots in the early stages of treatment. Our study provides a basis for the use of GhPDFs, especially GhPDF2.4, for controlling root rot disease in gerbera. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00146-8.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetables and Flowers, College of Horticulture, Shanxi Agricultural University, Jinzhong, 030801 China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huan Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yongyan Zhang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetables and Flowers, College of Horticulture, Shanxi Agricultural University, Jinzhong, 030801 China
| |
Collapse
|
4
|
Smith F, Luna E. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits? Biochem J 2023; 480:1791-1804. [PMID: 37975605 PMCID: PMC10657175 DOI: 10.1042/bcj20230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Anthropogenic emissions have caused atmospheric carbon dioxide (CO2) concentrations to double since the industrial revolution. Although this could benefit plant growth from the 'CO2 fertilisation' effect, recent studies report conflicting impacts of elevated CO2 (eCO2) on plant-pathogen interactions. Fungal pathogens are the leading cause of plant disease. Since climate change has been shown to affect the distribution and virulence of these pathogens, it is important to understand how their plant hosts may also respond. This review assesses existing reports of positive, negative, and neutral effects of eCO2 on plant immune responses to fungal pathogen infection. The interaction between eCO2 and immunity appears specific to individual pathosystems, dependent on environmental context and driven by the interactions between plant defence mechanisms, suggesting no universal effect can be predicted for the future. This research is vital for assessing how plants may become more at risk under climate change and could help to guide biotechnological efforts to enhance resistance in vulnerable species. Despite the importance of understanding the effects of eCO2 on plant immunity for protecting global food security, biodiversity, and forests in a changing climate, many plant-pathogen interactions are yet to be investigated. In addition, further research into the effects of eCO2 in combination with other environmental factors associated with climate change is needed. In this review, we highlight the risks of eCO2 to plants and point to the research required to address current unknowns.
Collapse
Affiliation(s)
- Freya Smith
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| |
Collapse
|
5
|
Rehman M, Saeed MS, Fan X, Salam A, Munir R, Yasin MU, Khan AR, Muhammad S, Ali B, Ali I, Khan J, Gan Y. The Multifaceted Role of Jasmonic Acid in Plant Stress Mitigation: An Overview. PLANTS (BASEL, SWITZERLAND) 2023; 12:3982. [PMID: 38068618 PMCID: PMC10708320 DOI: 10.3390/plants12233982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2025]
Abstract
Plants, being sessile, have developed complex signaling and response mechanisms to cope with biotic and abiotic stressors. Recent investigations have revealed the significant contribution of phytohormones in enabling plants to endure unfavorable conditions. Among these phytohormones, jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates (JAs), are of particular importance and are involved in diverse signal transduction pathways to regulate various physiological and molecular processes in plants, thus protecting plants from the lethal impacts of abiotic and biotic stressors. Jasmonic acid has emerged as a central player in plant defense against biotic stress and in alleviating multiple abiotic stressors in plants, such as drought, salinity, vernalization, and heavy metal exposure. Furthermore, as a growth regulator, JA operates in conjunction with other phytohormones through a complex signaling cascade to balance plant growth and development against stresses. Although studies have reported the intricate nature of JA as a biomolecular entity for the mitigation of abiotic stressors, their underlying mechanism and biosynthetic pathways remain poorly understood. Therefore, this review offers an overview of recent progress made in understanding the biosynthesis of JA, elucidates the complexities of its signal transduction pathways, and emphasizes its pivotal role in mitigating abiotic and biotic stressors. Moreover, we also discuss current issues and future research directions for JAs in plant stress responses.
Collapse
Affiliation(s)
- Muhammad Rehman
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Muhammad Sulaman Saeed
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Raheel Munir
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Muhammad Umair Yasin
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Sajid Muhammad
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Bahar Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Imran Ali
- Department of Botany, Kohat University Science and Technology, Kohat 26000, Pakistan
| | - Jamshaid Khan
- Department of Biotechnology and Genetic Engineering, Kohat University Science and Technology, Kohat 26000, Pakistan
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| |
Collapse
|
6
|
Gauthier K, Pankovic D, Nikolic M, Hobert M, Germeier CU, Ordon F, Perovic D, Niehl A. Nutrients and soil structure influence furovirus infection of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1200674. [PMID: 37600210 PMCID: PMC10436314 DOI: 10.3389/fpls.2023.1200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Soil-borne wheat mosaic virus (SBWMV) and Soil-borne cereal mosaic virus (SBCMV), genus Furovirus, family Virgaviridae, cause significant crop losses in cereals. The viruses are transmitted by the soil-borne plasmodiophorid Polymyxa graminis. Inside P. graminis resting spores, the viruses persist in the soil for long time, which makes the disease difficult to combat. To open up novel possibilities for virus control, we explored the influence of physical and chemical soil properties on infection of wheat with SBWMV and SBCMV. Moreover, we investigated, whether infection rates are influenced by the nutritional state of the plants. Infection rates of susceptible wheat lines were correlated to soil structure parameters and nutrient contents in soil and plants. Our results show that SBWMV and SBCMV infection rates decrease the more water-impermeable the soil is and that virus transmission depends on pH. Moreover, we found that contents of several nutrients in the soil (e.g. phosphorous, magnesium, zinc) and in planta (e.g. nitrogen, carbon, boron, sulfur, calcium) affect SBWMV and SBCMV infection rates. The knowledge generated may help paving the way towards development of a microenvironment-adapted agriculture.
Collapse
Affiliation(s)
- Kevin Gauthier
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Brunswick, Germany
| | - Dejana Pankovic
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Mirko Hobert
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agricultural Investigations, Bernburg, Germany
| | - Christoph U. Germeier
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Quedlinburg, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Dragan Perovic
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Annette Niehl
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Brunswick, Germany
| |
Collapse
|
7
|
Bvindi C, Tang L, Lee S, Patrick RM, Yee ZR, Mengiste T, Li Y. Histone methyltransferases SDG33 and SDG34 regulate organ-specific nitrogen responses in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1005077. [PMID: 36311072 PMCID: PMC9606235 DOI: 10.3389/fpls.2022.1005077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Histone posttranslational modifications shape the chromatin landscape of the plant genome and affect gene expression in response to developmental and environmental cues. To date, the role of histone modifications in regulating plant responses to environmental nutrient availability, especially in agriculturally important species, remains largely unknown. We describe the functions of two histone lysine methyltransferases, SET Domain Group 33 (SDG33) and SDG34, in mediating nitrogen (N) responses of shoots and roots in tomato. By comparing the transcriptomes of CRISPR edited tomato lines sdg33 and sdg34 with wild-type plants under N-supplied and N-starved conditions, we uncovered that SDG33 and SDG34 regulate overlapping yet distinct downstream gene targets. In response to N level changes, both SDG33 and SDG34 mediate gene regulation in an organ-specific manner: in roots, SDG33 and SDG34 regulate a gene network including Nitrate Transporter 1.1 (NRT1.1) and Small Auxin Up-regulated RNA (SAUR) genes. In agreement with this, mutations in sdg33 or sdg34 abolish the root growth response triggered by an N-supply; In shoots, SDG33 and SDG34 affect the expression of photosynthesis genes and photosynthetic parameters in response to N. Our analysis thus revealed that SDG33 and SDG34 regulate N-responsive gene expression and physiological changes in an organ-specific manner, thus presenting previously unknown candidate genes as targets for selection and engineering to improve N uptake and usage in crop plants.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Liang Tang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ryan M. Patrick
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Zheng Rong Yee
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ying Li
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Chardon F, De Marco F, Marmagne A, Le Hir R, Vilaine F, Bellini C, Dinant S. Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153707. [PMID: 35550522 DOI: 10.1016/j.jplph.2022.153707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.
Collapse
Affiliation(s)
- Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Federica De Marco
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Vilaine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Catherine Bellini
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France; Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
9
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
10
|
Lee Y, Do VG, Kim S, Kweon H. Identification of Genes Associated with Nitrogen Stress Responses in Apple Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122649. [PMID: 34961121 PMCID: PMC8706881 DOI: 10.3390/plants10122649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is an essential macronutrient that regulates diverse physiological processes for plant survival and development. In apple orchards, inappropriate N conditions can cause imbalanced growth and subsequent physiological disorders in trees. In order to investigate the molecular basis underlying the physiological signals for N stress responses, we examined the metabolic signals responsive to contrasting N stress conditions (deficient/excessive) in apple leaves using transcriptome approaches. The clustering of differentially expressed genes (DEGs) showed the expression dynamics of genes associated with each N stress group. Functional analyses of gene ontology and pathway enrichments revealed the potential candidates of metabolic signals responsible for N-deficient/excessive stress responses. The functional interactions of DEGs in each cluster were further explored by protein-protein interaction network analysis. Our results provided a comprehensive insight into molecular signals responsive to N stress conditions, and will be useful in future research to enhance the nutrition tolerance of tree crops.
Collapse
|
11
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
12
|
Rigault M, Citerne S, Masclaux-Daubresse C, Dellagi A. Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii. Sci Rep 2021; 11:3624. [PMID: 33574453 PMCID: PMC7878789 DOI: 10.1038/s41598-021-83067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a ubiquitous vesicular process for protein and organelle recycling in eukaryotes. In plant, autophagy is reported to play pivotal roles in nutrient recycling, adaptation to biotic and abiotic stresses. The role of autophagy in plant immunity remains poorly understood. Several reports showed enhanced susceptibility of different Arabidopsis autophagy mutants (atg) to necrotrophic fungal pathogens. Interaction of necrotrophic bacterial pathogens with autophagy is overlooked. We then investigated such interaction by inoculating the necrotrophic enterobacterium Dickeya dadantii in leaves of the atg2 and atg5 mutants and an ATG8a overexpressing line. Overexpressing ATG8a enhances plant tolerance to D. dadantii. While atg5 mutant displayed similar susceptibility to the WT, the atg2 mutant exhibited accelerated leaf senescence and enhanced susceptibility upon infection. Both phenotypes were reversed when the sid2 mutation, abolishing SA signaling, was introduced in the atg2 mutant. High levels of SA signaling in atg2 mutant resulted in repression of the jasmonic acid (JA) defense pathway known to limit D. dadantii progression in A. thaliana. We provide evidence that in atg2 mutant, the disturbed hormonal balance leading to higher SA signaling is the main factor causing increased susceptibility to the D. dadantii necrotroph by repressing the JA pathway and accelerating developmental senescence.
Collapse
Affiliation(s)
- Martine Rigault
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France.
| |
Collapse
|