1
|
Wessendorf RL, Stata M, Cousins AB. Testing the kinetic tradeoff between bicarbonate versus phosphoenolpyruvate affinity and glucose-6 phosphate response of phosphoenolpyruvate carboxylase from two C 4 grasses. PHOTOSYNTHESIS RESEARCH 2025; 163:6. [PMID: 39812731 DOI: 10.1007/s11120-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Abstract
Phosphoenolpyruvate (PEP) carboxylase (PEPC) has an anaplerotic role in central plant metabolism but also initiates the carbon concentrating mechanism during C4 photosynthesis. The C4 PEPC has different binding affinities (Km) for PEP (K0.5PEP) and HCO3- (K0.5HCO3), and allosteric regulation by glucose-6-phosphate (G6-P) compared to non-photosynthetic isoforms. These differences are linked to specific changes in amino acids within PEPC. For example, region II (residues 302-433, Zea mays numbering) has been identified as important for G6-P regulation and within this region residue 353 may be conserved in C4 PEPC enzymes. Additionally, residue 780 influences the C4 PEPC kinetic properties and may interact with region II as well as residue 353 to influence G6-P regulation. We test the hypothesis that variation within region II, including residue 353, and their interactions with residue 780 influence the kinetic and allosteric regulation by G6-P of two C4 PEPC isozymes from two C4 grasses. The data does not support a kinetic tradeoff between K0.5HCO3 and K0.5PEP in these PEPC isozymes. Additionally, these enzymes had different response to G6-P that was only partially attributed to region II, residue 353 and residue 780. This data provides new insights into factors influencing the kinetic variation of C4 PEPC isozymes.
Collapse
Affiliation(s)
- Ryan L Wessendorf
- School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA
| | - Matt Stata
- Departments of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, Lansing, MI, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Lauterbach M, Bräutigam A, Clayton H, Saladié M, Rolland V, Macfarlane TD, Weber APM, Ludwig M. Leaf transcriptomes from C3, C3-C4 intermediate, and C4Neurachne species give insights into C4 photosynthesis evolution. PLANT PHYSIOLOGY 2024; 197:kiae424. [PMID: 39149860 PMCID: PMC11663609 DOI: 10.1093/plphys/kiae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
The C4 photosynthetic pathway is hypothesized to have evolved from the ancestral C3 pathway through progressive changes in leaf anatomy and biochemistry with extant C3-C4 photosynthetic intermediate species representing phenotypes between species demonstrating full C3 and full C4 states. The Australian endemic genus Neurachne is the only known grass group that contains distinct, closely related species that carry out C3, C3-C4 intermediate, or C4 photosynthesis. To explore and understand the molecular mechanisms underlying C4 photosynthesis evolution in this genus, leaf transcriptomes were generated from two C3, three photosynthetic intermediate (proto-Kranz, C2-like, and C2), and two C4Neurachne species. The data were used to reconstruct phylogenetic relationships in Neurachne, which confirmed two independent C4 origins in the genus. Relative transcript abundances substantiated the photosynthetic phenotypes of individual species and highlighted transcriptional investment differences between species, including between the two C4 species. The data also revealed proteins potentially involved in C4 cycle intermediate transport and identified molecular mechanisms responsible for the evolution of C4-associated proteins in the genus.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Bielefeld 33501, Germany
| | - Harmony Clayton
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science Division, Western Australian Herbarium, Perth, WA 6152, Australia
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Heinrich-Heine-University, Duesseldorf 40225, Germany
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
DiMario RJ, Kophs AN, Apalla AJA, Schnable JN, Cousins AB. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. ANNALS OF BOTANY 2023; 132:413-428. [PMID: 37675505 PMCID: PMC10667006 DOI: 10.1093/aob/mcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J A Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James N Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Yogadasan N, Doxey AC, Chuong SDX. A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information. Genome Biol Evol 2023; 15:evad129. [PMID: 37462292 PMCID: PMC10368328 DOI: 10.1093/gbe/evad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22-24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Simon D X Chuong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
5
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
6
|
Baladrón A, Bejarano MD, Sarneel JM, Boavida I. Trapped between drowning and desiccation: Riverine plants under hydropeaking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154451. [PMID: 35278540 DOI: 10.1016/j.scitotenv.2022.154451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hydropeaking is part of hydropower production. The discontinuous release of turbined water during hydropeaking generates sudden rise and falls of the water levels, as well as extended droughts. These artificial flow fluctuations impose challenging growing conditions for riverine vegetation. In order to identify vulnerable/resistant plant species to hydropeaking and to evaluate the impact of contrasting hydropeaking scenarios (simplified (i.e., sudden deep floods, frequent soil saturation and drought) and real-life, power plant-induced scenarios), we measured germination, survival, and morphological and physiological attributes of a selection of 14 plant species commonly found along riparian areas. Species were subject to different hydropeaking scenarios during three months (vegetative period) in the field and in a greenhouse. Half of the species performed worse under hydropeaking in comparison to the control (e.g., less germination and biomass, lower growth rates, reduced stem and root length, physiological stress) but none of the tested hydropeaking scenarios was clearly more disruptive than others. Betula pubescens, Alnus incana and Filipendula ulmifolia showed the largest vulnerability to hydropeaking, while other species (e.g., Carex acuta) were resistant to it. Both in the field and in the greenhouse, plants in perturbed scenarios accumulated more 13C than in the control scenario indicating limited capacity to perform 13C isotope discrimination and evidencing plant physiological stress. The highest 13C abundances were found under drought or flooding conditions in the greenhouse, and under the highest hydropeaking intensities in the field (e.g., Betula pubescens). Our results suggest that any hydropeaking scheme can be equally detrimental in terms of plant performance. Hydropeaking schemes that combine periods of severe drought with long and frequent flooding episodes may create a hostile environment for riverine species. Further research on "hydropeaking-tolerant" plant traits is key to draw the boundaries beyond which riverine species can germinate, grow and complete their life cycle under hydropeaking.
Collapse
Affiliation(s)
- Alejandro Baladrón
- CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - María Dolores Bejarano
- Natural Resources Department, Universidad Politécnica de Madrid (UPM), Calle José Antonio Novais, 10, 28040 Madrid, Spain
| | - Judith M Sarneel
- Department of Ecology and Environmental Science, Umeå universitet, 901 87 Umeå, Sweden
| | - Isabel Boavida
- CERIS, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Moody NR, Phansopal C, Reid JD. An in vitro Coupled Assay for PEPC with Control of Bicarbonate Concentration. Bio Protoc 2021; 11:e4264. [PMID: 35087923 DOI: 10.21769/bioprotoc.4264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/02/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) catalyzes a critical step in carbon metabolism in plants and bacteria, the irreversible reaction between bicarbonate and phosphoenolpyruvate to produce the C4 compound oxaloacetate. This enzyme is particularly important in the context of C4 photosynthesis, where it is the initial carbon-fixing enzyme. Many studies have used kinetic approaches to characterize the properties of PEPCs from different species, different post-translational states, and after mutagenesis. Most of these studies have worked at a fixed saturating concentration of bicarbonate. Controlling the concentration of bicarbonate is difficult at low concentrations because of equilibration with atmospheric CO2. We describe here a simple, repeatable, and gas-tight assay system for PEPC that allows bicarbonate concentrations to be controlled above ca. 50 µM.
Collapse
Affiliation(s)
- Nicholas R Moody
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
| | - Chatawal Phansopal
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
| | - James D Reid
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
8
|
Phansopa C, Dunning LT, Reid JD, Christin PA. Lateral Gene Transfer Acts As an Evolutionary Shortcut to Efficient C4 Biochemistry. Mol Biol Evol 2021; 37:3094-3104. [PMID: 32521019 PMCID: PMC7751175 DOI: 10.1093/molbev/msaa143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.
Collapse
Affiliation(s)
- Chatchawal Phansopa
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - James D Reid
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
9
|
DiMario RJ, Kophs AN, Pathare VS, Schnable JC, Cousins AB. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C 4 photosynthetic efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1677-1688. [PMID: 33345397 DOI: 10.1111/tpj.15141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The high rates of photosynthesis and the carbon-concentrating mechanism (CCM) in C4 plants are initiated by the enzyme phosphoenolpyruvate (PEP) carboxylase (PEPC). The flow of inorganic carbon into the CCM of C4 plants is driven by PEPC's affinity for bicarbonate (KHCO3 ), which can be rate limiting when atmospheric CO2 availability is restricted due to low stomatal conductance. We hypothesize that natural variation in KHCO3 across C4 plants is driven by specific amino acid substitutions to impact rates of C4 photosynthesis under environments such as drought that restrict stomatal conductance. To test this hypothesis, we measured KHCO3 from 20 C4 grasses to compare kinetic properties with specific amino acid substitutions. There was nearly a twofold range in KHCO3 across these C4 grasses (24.3 ± 1.5 to 46.3 ± 2.4 μm), which significantly impacts modeled rates of C4 photosynthesis. Additionally, molecular engineering of a low-HCO3- affinity PEPC identified key domains that confer variation in KHCO3 . This study advances our understanding of PEPC kinetics and builds the foundation for engineering increased-HCO3- affinity and C4 photosynthetic efficiency in important C4 crops.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Varsha S Pathare
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|