1
|
Man Z, Zhang J, Liu J, Liu L, Yang J, Cao Z. Process-Based Modeling of Phenology and Radial Growth in Pinus tabuliformis in Response to Climate Factors over a Cold and Semi-Arid Region. PLANTS (BASEL, SWITZERLAND) 2024; 13:980. [PMID: 38611511 PMCID: PMC11013837 DOI: 10.3390/plants13070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
(1) Background: Climate change significantly impacts the phenology and dynamics of radial tree growth in alpine dryland forests. However, there remains a scarcity of reliable information on the physiological processes of tree growth and cambial phenology in response to long-term climate change in cold and semi-arid regions. (2) Methods: We employed the process-based Vaganov-Shashkin (VS) model to simulate the phenology and growth patterns of Chinese pine (Pinus tabuliformis) in the eastern Qilian Mountains, northeastern Tibetan Plateau. The model was informed by observed temperature and precipitation data to elucidate the relationships between climate factors and tree growth. (3) Results: The simulated tree-ring index closely aligned with the observed tree-ring chronology, validating the VS model's effectiveness in capturing the climatic influences on radial growth and cambial phenology of P. tabuliformis. The model outputs revealed that the average growing season spanned from mid-April to mid-October and experienced an extension post-1978 due to ongoing warming trends. However, it is important to note that an increase in the duration of the growing season did not necessarily result in a higher level of radial growth. (4) Conclusions: While the duration of the growing season was primarily determined by temperature, the growth rate was predominantly influenced by water conditions during the growing season, making it the most significant factor contributing to ring formation. Our study provides valuable insights into the potential mechanisms underlying tree growth responses to climate change in cold and semi-arid regions.
Collapse
Affiliation(s)
- Zihong Man
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
| | - Junzhou Zhang
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junjun Liu
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Liu
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiqin Yang
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zongying Cao
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Belousova DA, Shishov VV, Arzac A, Popkova MI, Babushkina EA, Huang JG, Yang B, Vaganov EA. VS-Cambium-Developer: A New Predictive Model of Cambium Functioning under the Influence of Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3594. [PMID: 37896057 PMCID: PMC10609909 DOI: 10.3390/plants12203594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Climate changes influence seasonal tree-ring formation. The result is a specific cell structure dependent on internal processes and external environmental factors. One way to investigate and analyze these relationships is to apply diverse simulation models of tree-ring growth. Here, we have proposed a new version of the VS-Cambium-Developer model (VS-CD model), which simulates the cambial activity process in conifers. The VS-CD model does not require the manual year-to-year calibration of parameters over a long-term cell production reconstruction or forecast. Instead, it estimates cell production and simulates the dynamics of radial cell development within the growing seasons. Thus, a new software based on R programming technology, able to efficiently adapt to the VS model online platform, has been developed. The model was tested on indirect observations of the cambium functioning in Larix sibirica trees from southern Siberia, namely on the measured annual cell production from 1963 to 2011. The VS-CD model proves to simulate cell production accurately. The results highlighted the efficiency of the presented model and contributed to filling the gap in the simulations of cambial activity, which is critical to predicting the potential impacts of changing environmental conditions on tree growth.
Collapse
Affiliation(s)
- Daria A. Belousova
- Research Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Vladimir V. Shishov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Alberto Arzac
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| | | | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia;
| | - Jian-Guo Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Bao Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| |
Collapse
|
3
|
Aryal S, Grießinger J, Dyola N, Gaire NP, Bhattarai T, Bräuning A. INTRAGRO: A machine learning approach to predict future growth of trees under climate change. Ecol Evol 2023; 13:e10626. [PMID: 37869443 PMCID: PMC10587741 DOI: 10.1002/ece3.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The escalating impact of climate change on global terrestrial ecosystems demands a robust prediction of the trees' growth patterns and physiological adaptation for sustainable forestry and successful conservation efforts. Understanding these dynamics at an intra-annual resolution can offer deeper insights into tree responses under various future climate scenarios. However, the existing approaches to infer cambial or leaf phenological change are mainly focused on certain climatic zones (such as higher latitudes) or species with foliage discolouration during the fall season. In this study, we demonstrated a novel approach (INTRAGRO) to combine intra-annual circumference records generated by dendrometers coupled to the output of climate models to predict future tree growth at intra-annual resolution using a series of supervised and unsupervised machine learning algorithms. INTRAGRO performed well using our dataset, that is dendrometer data of P. roxburghii Sarg. from the subtropical mid-elevation belt of Nepal, with robust test statistics. Our growth prediction shows enhanced tree growth at our study site for the middle and end of the 21st century. This result is remarkable since the predicted growing season by INTRAGRO is expected to shorten due to changes in seasonal precipitation. INTRAGRO's key advantage is the opportunity to analyse changes in trees' intra-annual growth dynamics on a global scale, regardless of the investigated tree species, regional climate and geographical conditions. Such information is important to assess tree species' growth performance and physiological adaptation to growing season change under different climate scenarios.
Collapse
Affiliation(s)
- Sugam Aryal
- Institut für GeographieFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenBayernGermany
| | - Jussi Grießinger
- Institut für GeographieFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenBayernGermany
| | - Nita Dyola
- Institute of Tibetan Plateau ResearchChinese Academy of Sciences, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE)BeijingChina
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences FondamentalesUniversitédu Québec à ChicoutimiChicoutimiQuebecCanada
| | - Narayan Prasad Gaire
- Department of Environmental Science, Patan Multiple CampusTribhuvan UniversityLalitpurNepal
| | | | - Achim Bräuning
- Institut für GeographieFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenBayernGermany
| |
Collapse
|
4
|
Li X, Liang E, Camarero JJ, Rossi S, Zhang J, Zhu H, Fu YH, Sun J, Wang T, Piao S, Peñuelas J. Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. Natl Sci Rev 2023; 10:nwad182. [PMID: 37671321 PMCID: PMC10476895 DOI: 10.1093/nsr/nwad182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - J Julio Camarero
- InstitutoPirenaico de Ecología (IPE-CSIC), Zaragoza 50059, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
5
|
Silvestro R, Zeng Q, Buttò V, Sylvain JD, Drolet G, Mencuccini M, Thiffault N, Yuan S, Rossi S. A longer wood growing season does not lead to higher carbon sequestration. Sci Rep 2023; 13:4059. [PMID: 36906726 PMCID: PMC10008533 DOI: 10.1038/s41598-023-31336-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
A reliable assessment of forest carbon sequestration depends on our understanding of wood ecophysiology. Within a forest, trees exhibit different timings and rates of growth during wood formation. However, their relationships with wood anatomical traits remain partially unresolved. This study evaluated the intra-annual individual variability in growth traits in balsam fir [Abies balsamea (L.) Mill.]. We collected wood microcores weekly from April to October 2018 from 27 individuals in Quebec (Canada) and prepared anatomical sections to assess wood formation dynamics and their relationships with the anatomical traits of the wood cells. Xylem developed in a time window ranging from 44 to 118 days, producing between 8 and 79 cells. Trees with larger cell production experienced a longer growing season, with an earlier onset and later ending of wood formation. On average, each additional xylem cell lengthened the growing season by 1 day. Earlywood production explained 95% of the variability in xylem production. More productive individuals generated a higher proportion of earlywood and cells with larger sizes. Trees with a longer growing season produced more cells but not more biomass in the wood. Lengthening the growing season driven by climate change may not lead to enhanced carbon sequestration from wood production.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - Qiao Zeng
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Valentina Buttò
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Jean-Daniel Sylvain
- Direction de la recherche forestiere Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G1P3W8, Canada
| | - Guillaume Drolet
- Direction de la recherche forestiere Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G1P3W8, Canada
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Nelson Thiffault
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, 1055, du P.E.P.S., Sainte-Foy Stn., P.O. Box 10380, Quebec, QC, G1V 4C7, Canada.,Centre for Forest Research, Faculty of Forestry, Geography and Geomatics, Université Laval, 2405 rue de la Terrasse, Quebec, QC, G1V 0A6, Canada
| | - Shaoxiong Yuan
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Sergio Rossi
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
6
|
Silvestro R, Sylvain JD, Drolet G, Buttò V, Auger I, Mencuccini M, Rossi S. Upscaling xylem phenology: sample size matters. ANNALS OF BOTANY 2022; 130:811-824. [PMID: 36018569 PMCID: PMC9758298 DOI: 10.1093/aob/mcac110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Upscaling carbon allocation requires knowledge of the variability at the scales at which data are collected and applied. Trees exhibit different growth rates and timings of wood formation. However, the factors explaining these differences remain undetermined, making samplings and estimations of the growth dynamics a complicated task, habitually based on technical rather than statistical reasons. This study explored the variability in xylem phenology among 159 balsam firs [Abies balsamea (L.) Mill.]. METHODS Wood microcores were collected weekly from April to October 2018 in a natural stand in Quebec, Canada, to detect cambial activity and wood formation timings. We tested spatial autocorrelation, tree size and cell production rates as explanatory variables of xylem phenology. We assessed sample size and margin of error for wood phenology assessment at different confidence levels. KEY RESULTS Xylem formation lasted between 40 and 110 d, producing between 12 and 93 cells. No effect of spatial proximity or size of individuals was detected on the timings of xylem phenology. Trees with larger cell production rates showed a longer growing season, starting xylem differentiation earlier and ending later. A sample size of 23 trees produced estimates of xylem phenology at a confidence level of 95 % with a margin of error of 1 week. CONCLUSIONS This study highlighted the high variability in the timings of wood formation among trees within an area of 1 km2. The correlation between the number of new xylem cells and the growing season length suggests a close connection between the processes of wood formation and carbon sequestration. However, the causes of the observed differences in xylem phenology remain partially unresolved. We point out the need to carefully consider sample size when assessing xylem phenology to explore the reasons underlying this variability and to allow reliable upscaling of carbon allocation in forests.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
| | - Jean-Daniel Sylvain
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Guillaume Drolet
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Valentina Buttò
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Isabelle Auger
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra, 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
| |
Collapse
|
7
|
Pompa-García M, Camarero JJ, Valeriano C, Vivar-Vivar ED. Climate sensitivity of seasonal radial growth in young stands of Mexican conifers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1711-1723. [PMID: 35672588 PMCID: PMC9300551 DOI: 10.1007/s00484-022-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Alteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37-63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.
Collapse
Affiliation(s)
- Marin Pompa-García
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Eduardo D. Vivar-Vivar
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| |
Collapse
|
8
|
Eckes-Shephard AH, Ljungqvist FC, Drew DM, Rathgeber CBK, Friend AD. Wood Formation Modeling - A Research Review and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:837648. [PMID: 35401628 PMCID: PMC8984029 DOI: 10.3389/fpls.2022.837648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 05/29/2023]
Abstract
Wood formation has received considerable attention across various research fields as a key process to model. Historical and contemporary models of wood formation from various disciplines have encapsulated hypotheses such as the influence of external (e.g., climatic) or internal (e.g., hormonal) factors on the successive stages of wood cell differentiation. This review covers 17 wood formation models from three different disciplines, the earliest from 1968 and the latest from 2020. The described processes, as well as their external and internal drivers and their level of complexity, are discussed. This work is the first systematic cataloging, characterization, and process-focused review of wood formation models. Remaining open questions concerning wood formation processes are identified, and relate to: (1) the extent of hormonal influence on the final tree ring structure; (2) the mechanism underlying the transition from earlywood to latewood in extratropical regions; and (3) the extent to which carbon plays a role as "active" driver or "passive" substrate for growth. We conclude by arguing that wood formation models remain to be fully exploited, with the potential to contribute to studies concerning individual tree carbon sequestration-storage dynamics and regional to global carbon sequestration dynamics in terrestrial vegetation models.
Collapse
Affiliation(s)
| | - Fredrik Charpentier Ljungqvist
- Department of History, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
- Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - David M. Drew
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - Cyrille B. K. Rathgeber
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Andrew D. Friend
- Department of Geography, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Abstract
More than 60% of tree phytomass is concentrated in stem wood, which is the result of periodic activity of the cambium. Nevertheless, there are few attempts to quantitatively describe cambium dynamics. In this study, we develop a state-of-the-art band model of cambium development, based on the kinetic heterogeneity of the cambial zone and the connectivity of the cell structure. The model describes seasonal cambium development based on an exponential function under climate forcing which can be effectively used to estimate the seasonal cell production for individual trees. It was shown that the model is able to simulate different cell production for fast-, middle- and slow-growing trees under the same climate forcing. Based on actual measurements of cell production for two contrasted trees, the model effectively reconstructed long-term cell production variability (up to 75% of explained variance) of both tree-ring characteristics over the period 1937−2012. The new model significantly simplifies the assessment of seasonal cell production for individual trees of a studied forest stand and allows the entire range of individual absolute variability in the ring formation of any tree in the stand to be quantified, which can lead to a better understanding of the anatomy of xylem formation, a key component of the carbon cycle.
Collapse
|
10
|
Arnič D, Gričar J, Jevšenak J, Božič G, von Arx G, Prislan P. Different Wood Anatomical and Growth Responses in European Beech ( Fagus sylvatica L.) at Three Forest Sites in Slovenia. FRONTIERS IN PLANT SCIENCE 2021; 12:669229. [PMID: 34381473 PMCID: PMC8349990 DOI: 10.3389/fpls.2021.669229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960-2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.
Collapse
Affiliation(s)
- Domen Arnič
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jožica Gričar
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jernej Jevšenak
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Gregor Božič
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Georg von Arx
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
| |
Collapse
|
11
|
Jevšenak J, Tychkov I, Gričar J, Levanič T, Tumajer J, Prislan P, Arnič D, Popkova M, Shishov VV. Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:311-324. [PMID: 33067671 DOI: 10.1007/s00484-020-02033-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/21/2020] [Accepted: 10/11/2020] [Indexed: 05/17/2023]
Abstract
Norway spruce (Picea abies L.) is among the most sensitive coniferous species to ongoing climate change. However, previous studies on its growth response to increasing temperatures have yielded contrasting results (from stimulation to suppression), suggesting highly site-specific responses. Here, we present the first study that applies two independent approaches, i.e. the nonlinear, process-based Vaganov-Shashkin (VS) model and linear daily response functions. Data were collected at twelve sites in Slovenia differing in climate regimes and ranging elevation between 170 and 1300 m a.s.l. VS model results revealed that drier Norway spruce sites at lower elevations are mostly moisture limited, while moist high-elevation sites are generally more temperature limited. Daily response functions match well the pattern of growth-limiting factors from the VS model and further explain the effect of climate on radial growth: prevailing growth-limiting factors correspond to the climate variable with higher correlations. Radial growth correlates negatively with rising summer temperature and positively with higher spring precipitation. The opposite response was observed for the wettest site at the highest elevation, which positively reacts to increased summer temperature and will most likely benefit from a warming climate. For all other sites, the future radial growth of Norway spruce largely depends on the balance between spring precipitation and summer temperature.
Collapse
Affiliation(s)
- Jernej Jevšenak
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia.
| | - Ivan Tychkov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Akademgorodok St., 50/2, Krasnoyarsk, Russia, 660075
| | - Jožica Gričar
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Tom Levanič
- Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Jan Tumajer
- Department of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487, Greifswald, Germany
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843, Prague, Czech Republic
| | - Peter Prislan
- Department of Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Domen Arnič
- Department of Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Margarita Popkova
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Akademgorodok St., 50/2, Krasnoyarsk, Russia, 660075
| | - Vladimir V Shishov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Akademgorodok St., 50/2, Krasnoyarsk, Russia, 660075
| |
Collapse
|
12
|
Martin M, Krause C, Morin H. Linking radial growth patterns and moderate-severity disturbance dynamics in boreal old-growth forests driven by recurrent insect outbreaks: A tale of opportunities, successes, and failures. Ecol Evol 2021; 11:566-586. [PMID: 33437452 PMCID: PMC7790649 DOI: 10.1002/ece3.7080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 11/08/2022] Open
Abstract
In boreal landscapes, emphasis is currently placed on close-to-nature management strategies, which aim to maintain the biodiversity and ecosystem services related to old-growth forests. The success of these strategies, however, depends on an accurate understanding of the dynamics within these forests. While moderate-severity disturbances have recently been recognized as important drivers of boreal forests, little is known about their effects on stand structure and growth. This study therefore aimed to reconstruct the disturbance and postdisturbance dynamics in boreal old-growth forests that are driven by recurrent moderate-severity disturbances. We studied eight primary old-growth forests in Québec, Canada, that have recorded recurrent and moderately severe spruce budworm (Choristoneura fumiferana [Clem.]) outbreaks over the 20th century. We applied an innovative dendrochronological approach based on the combined study of growth patterns and releases to reconstruct stand disturbance and postdisturbance dynamics. We identified nine growth patterns; they represented trees differing in age, size, and canopy layer. These patterns highlighted the ability of suppressed trees to rapidly fill gaps created by moderate-severity disturbances through a single and significant increase in radial growth and height. Trees that are unable to attain the canopy following the disturbance tend to remain in the lower canopy layers, even if subsequent disturbances create new gaps. This combination of a low stand height typical of boreal forests, periodic disturbances, and rapid canopy closure often resulted in stands constituted mainly of dominant and codominant trees, similar to even-aged forests. Overall, this study underscored the resistance of boreal old-growth forests owing to their capacity to withstand repeated moderate-severity disturbances. Moreover, the combined study of growth patterns and growth release demonstrated the efficacy of such an approach for improving the understanding of the fine-scale dynamics of natural forests. The results of this research will thus help develop silvicultural practices that approximate the moderate-severity disturbance dynamics observed in primary and old-growth boreal forests.
Collapse
Affiliation(s)
- Maxence Martin
- Département des Sciences fondamentalesUniversité du Québec à ChicoutimiChicoutimiQCCanada
- Institut de recherche sur les forêts (IRF)Université du Québec en Abitibi‐TémiscamingueRouyn‐NorandaQCCanada
- Centre d’étude de la forêtUniversité du Québec à MontréalMontréalQCCanada
| | - Cornélia Krause
- Département des Sciences fondamentalesUniversité du Québec à ChicoutimiChicoutimiQCCanada
- Centre d’étude de la forêtUniversité du Québec à MontréalMontréalQCCanada
| | - Hubert Morin
- Département des Sciences fondamentalesUniversité du Québec à ChicoutimiChicoutimiQCCanada
- Centre d’étude de la forêtUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
13
|
Tumajer J, Kašpar J, Kuželová H, Shishov VV, Tychkov II, Popkova MI, Vaganov EA, Treml V. Forward Modeling Reveals Multidecadal Trends in Cambial Kinetics and Phenology at Treeline. FRONTIERS IN PLANT SCIENCE 2021; 12:613643. [PMID: 33584770 PMCID: PMC7875878 DOI: 10.3389/fpls.2021.613643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 05/02/2023]
Abstract
Significant alterations of cambial activity might be expected due to climate warming, leading to growing season extension and higher growth rates especially in cold-limited forests. However, assessment of climate-change-driven trends in intra-annual wood formation suffers from the lack of direct observations with a timespan exceeding a few years. We used the Vaganov-Shashkin process-based model to: (i) simulate daily resolved numbers of cambial and differentiating cells; and (ii) develop chronologies of the onset and termination of specific phases of cambial phenology during 1961-2017. We also determined the dominant climatic factor limiting cambial activity for each day. To asses intra-annual model validity, we used 8 years of direct xylogenesis monitoring from the treeline region of the Krkonoše Mts. (Czechia). The model exhibits high validity in case of spring phenological phases and a seasonal dynamics of tracheid production, but its precision declines for estimates of autumn phenological phases and growing season duration. The simulations reveal an increasing trend in the number of tracheids produced by cambium each year by 0.42 cells/year. Spring phenological phases (onset of cambial cell growth and tracheid enlargement) show significant shifts toward earlier occurrence in the year (for 0.28-0.34 days/year). In addition, there is a significant increase in simulated growth rates during entire growing season associated with the intra-annual redistribution of the dominant climatic controls over cambial activity. Results suggest that higher growth rates at treeline are driven by (i) temperature-stimulated intensification of spring cambial kinetics, and (ii) decoupling of summer growth rates from the limiting effect of low summer temperature due to higher frequency of climatically optimal days. Our results highlight that the cambial kinetics stimulation by increasing spring and summer temperatures and shifting spring phenology determine the recent growth trends of treeline ecosystems. Redistribution of individual climatic factors controlling cambial activity during the growing season questions the temporal stability of climatic signal of cold forest chronologies under ongoing climate change.
Collapse
Affiliation(s)
- Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- *Correspondence: Jan Tumajer,
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Hana Kuželová
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Vladimir V. Shishov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
- Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
| | - Ivan I. Tychkov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Margarita I. Popkova
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Eugene A. Vaganov
- Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
- Rectorate, Siberian Federal University, Krasnoyarsk, Russia
- Center for Forest Ecology and Productivity of the Russian Academy of Sciences, Moscow, Russia
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
14
|
Contribution of Xylem Anatomy to Tree-Ring Width of Two Larch Species in Permafrost and Non-Permafrost Zones of Siberia. FORESTS 2020. [DOI: 10.3390/f11121343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plants exhibit morphological and anatomical adaptations to cope the environmental constraints of their habitat. How can mechanisms for adapting to contrasting environmental conditions change the patterns of tree rings formation? In this study, we explored differences in climatic conditions of permafrost and non-permafrost zones and assessed their influence on radial growth and wood traits of Larix gmelinii Rupr (Rupr) and Larix sibirica L., respectively. We quantified the contribution of xylem cell anatomy to the tree-ring width variability. Comparison of the anatomical tree-ring parameters over the period 1963–2011 was tested based on non-parametric Mann-Whitney U test. The generalized linear modeling shows the common dependence between TRW and the cell structure characteristics in contrasting environments, which can be defined as non-specific to external conditions. Thus, the relationship between the tree-ring width and the cell production in early- and latewood are assessed as linear, whereas the dependence between the radial cell size in early- and latewood and the tree-ring width becomes significantly non-linear for both habitats. Moreover, contribution of earlywood (EW) and latewood (LW) cells to the variation of TRW (in average 56.8% and 24.4% respectively) was significantly higher than the effect of cell diameters (3.3% (EW) and 17.4% (LW)) for the environments. The results show that different larch species from sites with diverging climatic conditions converge towards similar xylem cell structures and relationships between xylem production and cell traits. The work makes a link between climate and tree-ring structure, and promotes a better understanding the anatomical adaptation of larch species to local environment conditions.
Collapse
|