1
|
Ma X, Wu C. Isolation and Activity Evaluation of Callus-Specific Promoters in Rice ( Oryza sativa L.). Genes (Basel) 2025; 16:610. [PMID: 40428432 PMCID: PMC12111461 DOI: 10.3390/genes16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/13/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: In crop genetic engineering, morphogenic genes have attracted increasing attention, given their ability to facilitate the transformation of a broad range of otherwise nontransformable cultivars. However, few callus-specific promoters have been identified to date that can be employed to avoid the adverse effects resulting from the ectopic expression of morphogenic genes on shoot regeneration and growth. Methods: A set of potential callus-specific genes were initially selected based on publicly available data. These genes were then screened using quantitative real-time polymerase chain reaction (qPCR), followed by promoter activity evaluation using a transgenic approach with the GUS gene serving as a reporter. Results: Of the 24 evaluated promoters, 12 were verified as being callus-specific using qPCR. Five genes (Os11g0295900, Os10g0207500, Os01g0300000, Os02g0252200, and Os04g0488100) were chosen, and their promoters were cloned. Based on GUS staining, the pOsTDL1B (Os10g0207500) promoter showed strong callus-specific expression, pOsEDC (Os01g0300000) was a medium-level callus-specific promoter, and pOsDLN53 (Os02g0252200) was strictly callus-specific, although its activity was low. Quantification of GUS activity indicated that all three pOsTDL1B:GUS transgenic lines exhibited strong callus specificity relative to the various tissues tested. Conclusions: A callus-specific promoter was identified that can be used to drive the expression of morphogenic genes in crop transformation.
Collapse
Affiliation(s)
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
2
|
Jiang Y, Liu S, An X. Functional Mechanisms and the Application of Developmental Regulators for Improving Genetic Transformation in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2841. [PMID: 39458788 PMCID: PMC11510767 DOI: 10.3390/plants13202841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Enhancing the genetic transformation efficiency of major crops remains a significant challenge, primarily due to their suboptimal regeneration efficiency. Developmental regulators, known as key regulatory genes, involved in plant meristem and somatic embryo formation, play a crucial role in improving plant meristem induction and regeneration. This review provides a detailed summary of the molecular mechanisms and regulatory networks of many developmental regulators, in the context of enhancing the genetic transformation efficiency in major crops. We also propose strategies for exploring and utilizing additional developmental regulators. Further investigation into the mechanisms of these regulators will deepen our understanding of the regenerative capacity and genetic transformation processes of plants, offering valuable support for future crop improvement efforts. The discovery of novel developmental regulators is expected to further advance crop transformation and the effective manipulation of various developmental regulators could provide a promising approach in order to enhance genetic transformation efficiency.
Collapse
Affiliation(s)
- Yilin Jiang
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (S.L.)
| | - Siyuan Liu
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (S.L.)
| | - Xueli An
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (S.L.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| |
Collapse
|
3
|
Wu M, Chen A, Li X, Li X, Hou X, Liu X. Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation. ADVANCED BIOTECHNOLOGY 2024; 2:34. [PMID: 39883316 PMCID: PMC11709142 DOI: 10.1007/s44307-024-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 01/31/2025]
Abstract
Plant genetic transformation is a pivotal and essential step in modifying important agronomic traits using biotechnological tools, which primarily depend on the efficacy of transgene delivery and the plant regeneration system. Over the years, advancements in the development of delivery methods and regeneration systems have contributed to plant engineering and molecular breeding. Recent studies have demonstrated that the efficiency of plant transformation can be improved by simultaneously delivering meristem-developmental regulators, utilizing virus-mediated gene editing, and executing non-sterile in planta manipulations. Efficient genetic delivery and non-tissue culture regeneration systems are gradually being developed. This review summarizes diverse delivery strategies and in planta regeneration techniques aimed at improving the efficiency of plant genetic transformation. We also emphasize the integration and utilization of these emerging transgenic approaches for expediting future crop engineering.
Collapse
Affiliation(s)
- Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Vandeputte W, Coussens G, Aesaert S, Haeghebaert J, Impens L, Karimi M, Debernardi JM, Pauwels L. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2116-2132. [PMID: 38923048 DOI: 10.1111/tpj.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.
Collapse
Affiliation(s)
- Wout Vandeputte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, California, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
5
|
Liu X, Gu D, Zhang Y, Jiang Y, Xiao Z, Xu R, Qin R, Li J, Wei P. Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice. Genome Biol 2024; 25:131. [PMID: 38773623 PMCID: PMC11110357 DOI: 10.1186/s13059-024-03282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Dongfang Gu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Yiru Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yingli Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhi Xiao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Rongfang Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Ruiying Qin
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Juan Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China.
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
6
|
Xu P, Zhong Y, Xu A, Liu B, Zhang Y, Zhao A, Yang X, Ming M, Cao F, Fu F. Application of Developmental Regulators for Enhancing Plant Regeneration and Genetic Transformation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1272. [PMID: 38732487 PMCID: PMC11085514 DOI: 10.3390/plants13091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (P.X.); (Y.Z.); (A.X.); (B.L.); (Y.Z.); (A.Z.); (X.Y.); (M.M.); (F.C.)
| |
Collapse
|
7
|
Li J, Pan W, Zhang S, Ma G, Li A, Zhang H, Liu L. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1604-1613. [PMID: 38038993 DOI: 10.1111/tpj.16575] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Sorghum is an important crop for food, forage, wine and biofuel production. To enhance its transformation efficiency without negative developmental by-effects, we investigated the impact of GRF4-GIF1 chimaera and GRF5 on sorghum transformation. Both GRF4-GIF1 and GRF5 effectively improved the transformation efficiency of sorghum and accelerated the transformation process of sorghum to less than 2 months which was not observed when using BBM-WUS. As agrobacterium effectors increase the ability of T-DNA transfer into plant cells, we checked whether ternary vector system can additively enhance sorghum transformation. The combination of GRF4-GIF1 with helper plasmid pVS1-VIR2 achieved the highest transformation efficiency, reaching 38.28%, which is 7.71-fold of the original method. Compared with BBM-WUS, overexpressing GRF4-GIF1 caused no noticeable growth defects in sorghum. We further developed a sorghum CRISPR/Cas9 gene-editing tool based on this GRF4-GIF1/ternary vector system, which achieved an average gene mutation efficiency of 41.36%, and null mutants were created in the T0 generation.
Collapse
Affiliation(s)
- Junpeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuai Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Guojing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| |
Collapse
|
8
|
Diogo-Jr R, de Resende Von Pinho EV, Pinto RT, Zhang L, Condori-Apfata JA, Pereira PA, Vilela DR. Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families. STRESS BIOLOGY 2023; 3:37. [PMID: 37981586 PMCID: PMC10482818 DOI: 10.1007/s44154-023-00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/05/2023] [Indexed: 11/21/2023]
Abstract
Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.
Collapse
Affiliation(s)
- Rubens Diogo-Jr
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA.
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil.
| | | | - Renan Terassi Pinto
- Faculty of Philosophy and Sciences at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, (14040-901), Brazil
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
| | - Jorge Alberto Condori-Apfata
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
- Faculty of Engineering and Agricultural Sciences, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas (UNTRM), Chachapoyas, AM, (01001), Peru
| | - Paula Andrade Pereira
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| | - Danielle Rezende Vilela
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| |
Collapse
|
9
|
Ye X, Vaghchhipawala Z, Williams EJ, Fu C, Liu J, Lu F, Hall EL, Guo SX, Frank L, Gilbertson LA. Cre-mediated autoexcision of selectable marker genes in soybean, cotton, canola and maize transgenic plants. PLANT CELL REPORTS 2023; 42:45-55. [PMID: 36316413 DOI: 10.1007/s00299-022-02935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Efficient selectable marker gene autoexcision in transgenic plants of soybean, cotton, canola, and maize is achieved by effective Cre recombinase expression. Selectable marker genes are often required for efficient generation of transgenic plants in plant transformation but are not desired once the transgenic events are obtained. We have developed Cre/loxP autoexcision systems to remove selectable marker genes in soybean, cotton, canola and maize. We tested a set of vectors with diverse promoters and identified promising promoters to drive cre expression for each of the four crops. We evaluated both the efficiency of generating primary transgenic events with low transgene copy numbers, and the frequency of marker-free progeny in the next generation. The best performing vectors gave no obvious decrease in the transformation frequency in each crop and generated homozygous marker-free progeny in the next generation. We found that effective expression of Cre recombinase for marker gene autoexcision can be species dependent. Among the vectors tested, the best autoexcision frequency (41%) in soybean transformation came from using the soybean RSP1 promoter for cre expression. The cre gene expressed by soybean RSP1 promoter with an Arabidopsis AtpE intron delivered the best autoexcision frequency (69%) in cotton transformation. The cre gene expressed by the embryo-specific eUSP88 promoter from Vicia faba conferred the best marker excision frequency (32%) in canola transformation. Finally, the cre gene expressed by the rice CDC45-1 promoter resulted in 44% autoexcision in maize transformation. The Cre/loxP recombinase system enables the generation of selectable marker-free transgenic plants for commercial product development in four agriculturally important crops and provides further improvement opportunities for more specific and better marker excision efficiency.
Collapse
Affiliation(s)
- Xudong Ye
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA.
| | | | - Edward J Williams
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
- Wisconsin Crop Innovation Center, 8520 University Green, Middleton, WI, 53562, USA
| | - Changlin Fu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Jinyuan Liu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Fengming Lu
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Erin L Hall
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - Shirley X Guo
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | - LaRee Frank
- Bayer Crop Science, 700 Chesterfield Pkwy, St. Louis, MO, 63017, USA
| | | |
Collapse
|
10
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
11
|
Beyene G, Chauhan RD, Villmer J, Husic N, Wang N, Gebre E, Girma D, Chanyalew S, Assefa K, Tabor G, Gehan M, McGrone M, Yang M, Lenderts B, Schwartz C, Gao H, Gordon‐Kamm W, Taylor NJ, MacKenzie DJ. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1716-1729. [PMID: 35560779 PMCID: PMC9398311 DOI: 10.1111/pbi.13842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 05/17/2023]
Abstract
Tef is a staple food and a valuable cash crop for millions of people in Ethiopia. Lodging is a major limitation to tef production, and for decades, the development of lodging resistant varieties proved difficult with conventional breeding approaches. We used CRISPR/Cas9 to introduce knockout mutations in the tef orthologue of the rice SEMIDWARF-1 (SD-1) gene to confer semidwarfism and ultimately lodging resistance. High frequency recovery of transgenic and SD-1 edited tef lines was achieved in two tef cultivars by Agrobacterium-mediated delivery into young leaf explants of gene editing reagents along with transformation and regeneration enhancing morphogenic genes, BABY BOOM (BBM) and WUSCHEL2 (WUS2). All of the 23 lines analyzed by next-generation sequencing had at least two or more alleles of SD-1 mutated. Of these, 83% had tetra-allelic frameshift mutations in the SD-1 gene in primary tef regenerants, which were inherited in subsequent generations. Phenotypic data generated on T1 and T2 generations revealed that the sd-1 lines have reduced culm and internode lengths with no reduction in either panicle or peduncle lengths. These characteristics are comparable with rice sd-1 plants. Measurements of lodging, in greenhouse-grown plants, showed that sd-1 lines have significantly higher resistance to lodging at the heading stage compared with the controls. This is the first demonstration of the feasibility of high frequency genetic transformation and CRISPR/Cas9-mediated genome editing in this highly valuable but neglected crop. The findings reported here highlight the potential of genome editing for the improvement of lodging resistance and other important traits in tef.
Collapse
Affiliation(s)
- Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Nada Husic
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Dejene Girma
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Kebebew Assefa
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Malia Gehan
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kang M, Lee K, Finley T, Chappell H, Veena V, Wang K. An Improved Agrobacterium-Mediated Transformation and Genome-Editing Method for Maize Inbred B104 Using a Ternary Vector System and Immature Embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:860971. [PMID: 35599865 PMCID: PMC9114882 DOI: 10.3389/fpls.2022.860971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 05/17/2023]
Abstract
For maize genome-editing and bioengineering, genetic transformation of inbred genotypes is most desired due to the uniformity of genetic background in their progenies. However, most maize inbred lines are recalcitrant to tissue culture and transformation. A public, transformable maize inbred B104 has been widely used for genome editing in recent years. This is primarily due to its high degree of genetic similarity shared with B73, an inbred of the reference genome and parent of many breeding populations. Conventional B104 maize transformation protocol requires 16-22 weeks to produce rooted transgenic plants with an average of 4% transformation frequency (number of T0 plants per 100 infected embryos). In this Method paper, we describe an advanced B104 transformation protocol that requires only 7-10 weeks to generate transgenic plants with an average of 6.4% transformation frequency. Over 66% of transgenic plants carried CRISPR/Cas9-induced indel mutations on the target gene, demonstrating that this protocol can be used for genome editing applications. Following the detailed and stepwise procedure described here, this quick and simplified method using the Agrobacterium ternary vector system consisting of a T-DNA binary vector and a compatible helper plasmid can be readily transferable to interested researchers.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, United States
| | - Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Todd Finley
- Plant Transformation Facility, Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Hal Chappell
- Plant Transformation Facility, Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Veena Veena
- Plant Transformation Facility, Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 2022; 5:344. [PMID: 35410430 PMCID: PMC9001672 DOI: 10.1038/s42003-022-03308-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and “altruistic” transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes. Che et al. use Wuschel2-enabled genome transformation to induce somatic embryo formation in sorghum, a grain used in human food. Their approach not only overcomes the genotype-dependent barrier for genetic transformation without the introduction of morphogenic genes, but also increases the frequency of CRISPR/Castargeted genome editing.
Collapse
|
14
|
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 2022; 5:344. [PMID: 35410430 DOI: 10.1101/2021.06.21.449302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 05/26/2023] Open
Abstract
For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and "altruistic" transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience, Johnston, IA, 50131, USA.
| | - Emily Wu
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Ajith Anand
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Keith Lowe
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Huirong Gao
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Meizhu Yang
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | | |
Collapse
|
15
|
Bigelyte G, Young JK, Karvelis T, Budre K, Zedaveinyte R, Djukanovic V, Van Ginkel E, Paulraj S, Gasior S, Jones S, Feigenbutz L, Clair GS, Barone P, Bohn J, Acharya A, Zastrow-Hayes G, Henkel-Heinecke S, Silanskas A, Seidel R, Siksnys V. Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells. Nat Commun 2021; 12:6191. [PMID: 34702830 PMCID: PMC8548392 DOI: 10.1038/s41467-021-26469-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Class 2 CRISPR systems are exceptionally diverse, nevertheless, all share a single effector protein that contains a conserved RuvC-like nuclease domain. Interestingly, the size of these CRISPR-associated (Cas) nucleases ranges from >1000 amino acids (aa) for Cas9/Cas12a to as small as 400-600 aa for Cas12f. For in vivo genome editing applications, compact RNA-guided nucleases are desirable and would streamline cellular delivery approaches. Although miniature Cas12f effectors have been shown to cleave double-stranded DNA, targeted DNA modification in eukaryotic cells has yet to be demonstrated. Here, we biochemically characterize two miniature type V-F Cas nucleases, SpCas12f1 (497 aa) and AsCas12f1 (422 aa), and show that SpCas12f1 functions in both plant and human cells to produce targeted modifications with outcomes in plants being enhanced with short heat pulses. Our findings pave the way for the development of miniature Cas12f1-based genome editing tools.
Collapse
Affiliation(s)
- Greta Bigelyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Joshua K Young
- Molecular Engineering, Corteva Agriscience™, Johnston, IA, USA.
| | - Tautvydas Karvelis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Karolina Budre
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rimante Zedaveinyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | | | | | - Stephen Gasior
- Molecular Engineering, Corteva Agriscience™, Johnston, IA, USA
| | - Spencer Jones
- Molecular Engineering, Corteva Agriscience™, Johnston, IA, USA
| | | | - Grace St Clair
- Molecular Engineering, Corteva Agriscience™, Johnston, IA, USA
| | | | - Jennifer Bohn
- Molecular Engineering, Corteva Agriscience™, Johnston, IA, USA
| | - Ananta Acharya
- Molecular Engineering, Corteva Agriscience™, Johnston, IA, USA
| | | | | | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ralf Seidel
- Institute of Experimental Physics, Leipzig University, Leipzig, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
16
|
Zhang Y, Restall J, Crisp P, Godwin I, Liu G. Current status and prospects of plant genome editing in Australia. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2021; 57:574-583. [PMID: 34054265 PMCID: PMC8143062 DOI: 10.1007/s11627-021-10188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 05/22/2023]
Abstract
Plant genome editing, particularly CRISPR-Cas biotechnologies, has rapidly evolved and drawn enormous attention all around the world in the last decade. The cutting-edge technologies have had substantial impact on precise genome editing for manipulating gene expression, stacking gene mutations, and improving crop agronomic traits. Following the global trends, investigations on CRISPR-Cas have been thriving in Australia, especially in agriculture sciences. Importantly, CRISPR-edited plants, classified as SDN-1 organisms (SDN: site-directed nuclease), have been given a green light in Australia, with regulatory bodies indicating they will not be classified as a genetically modified organism (GMO) if no foreign DNA is present in an edited plant. As a result, genome-edited products would not attract the onerous regulation required for the introduction of a GMO, which could mean more rapid deployment of new varieties and products that could be traded freely in Australia, and potentially to export markets. In the present review, we discuss the current status and prospects of plant genome editing in Australia by highlighting several species of interest. Using these species as case studies, we discuss the priorities and potential of plant genome editing, as well as the remaining challenges.
Collapse
Affiliation(s)
- Yan Zhang
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Jemma Restall
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Peter Crisp
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ian Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
17
|
Xu N, Kang M, Zobrist JD, Wang K, Fei SZ. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:781565. [PMID: 35211127 PMCID: PMC8861204 DOI: 10.3389/fpls.2021.781565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/29/2021] [Indexed: 05/11/2023]
Abstract
Switchgrass (Panicum virgatum) is an excellent feedstock for biofuel production. While genetic transformation is routinely done in lowland switchgrass, upland cultivars remain recalcitrant to genetic transformation. Here we report the establishment of an efficient and reproducible transformation protocol for two upland cultivars, 'Summer' and 'Blackwell', by ectopic overexpression of morphogenic genes, Baby boom (Bbm) and Wuschel2 (Wus2). Two auxotrophic Agrobacterium strains, LBA4404Thy- and EHA105Thy-, each harboring the same construct containing ZmBbm, ZmWus2, and a green fluorescence protein (GFP) gene, ZsGreen1, were used to infect immature leaf segments derived from in vitro grown seedlings. The Agrobacterium strains also contain a transformation helper plasmid that carry additional copies of Agrobacterium virulence genes. GFP-expressing calli were identified and selected for regeneration. The highest transformation efficiency of 6% was obtained for the tetraploid cultivar Summer when LBA4404Thy- was used for infection, which is twice of that for the octoploid cultivar Blackwell. LBA4404Thy- consistently outperformed EHA105Thy- on transformation frequency across the two cultivars. Fifteen randomly selected putative transgenic plants of Summer and Blackwell, representing independent callus events, were confirmed as transgenic by the presence of the transgene, ZmAls, and the absence of AtuFtsZ, a chromosomal gene specific to the Agrobacterium strain LBA4404 using polymerase chain reaction. Transgene integration and expression was further confirmed by the detection of GFP in roots, and the resistance to herbicide injury to leaves of selected putative transgenic plants. The ZmBbm and ZmWus2 genes were successfully removed from 40 to 33.3% of the transgenic plants of Summer and Blackwell, respectively, via the Cre-Lox recombination system upon heat treatment of GFP-expressing embryogenic calli. Our successful transformation of recalcitrant upland switchgrass provides a method for gene function analysis and germplasm enhancement via biotechnology.
Collapse
Affiliation(s)
- Nuoya Xu
- Department of Horticulture, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, United States
| | - Minjeong Kang
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, United States
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Jacob D. Zobrist
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Major, Iowa State University, Ames, IA, United States
| | - Kan Wang
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Shui-zhang Fei
- Department of Horticulture, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- *Correspondence: Shui-zhang Fei,
| |
Collapse
|
18
|
Barnum CR, Endelman BJ, Shih PM. Utilizing Plant Synthetic Biology to Improve Human Health and Wellness. FRONTIERS IN PLANT SCIENCE 2021; 12:691462. [PMID: 34504505 PMCID: PMC8421571 DOI: 10.3389/fpls.2021.691462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/03/2021] [Indexed: 05/13/2023]
Abstract
Plants offer a vast source of bioactive chemicals with the potential to improve human health through the prevention and treatment of disease. However, many potential therapeutics are produced in small amounts or in species that are difficult to cultivate. The rapidly evolving field of plant synthetic biology provides tools to capitalize on the inventive chemistry of plants by transferring metabolic pathways for therapeutics into far more tenable plants, increasing our ability to produce complex pharmaceuticals in well-studied plant systems. Plant synthetic biology also provides methods to enhance the ability to fortify crops with nutrients and nutraceuticals. In this review, we discuss (1) the potential of plant synthetic biology to improve human health by generating plants that produce pharmaceuticals, nutrients, and nutraceuticals and (2) the technological challenges hindering our ability to generate plants producing health-promoting small molecules.
Collapse
Affiliation(s)
- Collin R. Barnum
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Benjamin J. Endelman
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Patrick M. Shih,
| |
Collapse
|