1
|
Yang Z, Wei Y, Shi H, Ma Z, Li L, Li W, Liu J. The effector MgCRT1 of Meloidogyne graminicola targets the pathogenesis-related (PR) protein OsPR1#101 to facilitate nematodes parasitism in rice. PEST MANAGEMENT SCIENCE 2025. [PMID: 40247744 DOI: 10.1002/ps.8831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND The root-knot nematodes Meloidogyne graminicola (M. graminicola) are an important pathogenic nematode that harms rice. During infection, plant parasitic nematodes use needles to penetrate the plant cell wall, and secrete effectors into cells, thus destroying the root system's ability to absorb water and nutrients. Rice root-knot nematode disease is difficult to control once established, with traditional chemical methods prone to pollution and slow efficacy. Exploring the pathogenic mechanism of effector proteins of plant parasitic nematodes will provide a solid theoretical basis for the utilization of plant innate immunity and genetic engineering or molecular breeding of nematode resistance. RESULTS In this study, we characterized a pathogenesis-related protein OsPR1#101, which was targeted by the effector MgCRT1. We found that OsPR1#101 interacted directly with MgCRT1 in vitro and in vivo. The expression of OsPR1#101 was significantly induced in rice at the early stage of M. graminicola infection, but it was decreased in the late stage. Meanwhile, the expression of OsPR1#101 was significantly suppressed in the MgCRT1-overexpression line. Knocking out OsPR1#101 resulted in enhanced susceptibility to M. graminicola. However, overexpression of OsPR1#101 did not affect rice resistance against M. graminicola. CONCLUSION In conclusion, when M. graminicola nematodes secrete MgCRT1 into rice, MgCRT1 interacts with OsPR1#101 to interfere with rice defense to promote nematode parasitism. This finding is significant as it deepens our understanding of the molecular mechanism of nematode-plant interaction, which can potentially lead to the development of new strategies for nematode control in rice. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziqi Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ying Wei
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hongxiang Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhongze Ma
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lizhu Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Liu J, Zhang J, Wei Y, Su W, Li W, Wang B, Peng D, Gheysen G, Peng H, Dai L. The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin-like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola. PLANT, CELL & ENVIRONMENT 2024; 47:1732-1746. [PMID: 38311858 DOI: 10.1111/pce.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The root-knot nematode Meloidogyne graminicola secretes effectors into rice tissues to modulate host immunity. Here, we characterised MgCRT1, a calreticulin protein of M. graminicola, and identified its target in the plant. In situ hybridisation showed MgCRT1 mRNA accumulating in the subventral oesophageal gland in J2 nematodes. Immunolocalization indicated MgCRT1 localises in the giant cells during parasitism. Host-induced gene silencing of MgCRT1 reduced the infection ability of M. graminicola, while over-expressing MgCRT1 enhanced rice susceptibility to M. graminicola. A yeast two-hybrid approach identified the calmodulin-like protein OsCML31 as an interactor of MgCRT1. OsCML31 interacts with the high mobility group protein OsHMGB1 which is a conserved DNA binding protein. Knockout of OsCML31 or overexpression of OsHMGB1 in rice results in enhanced susceptibility to M. graminicola. In contrast, overexpression of OsCML31 or knockout of OsHMGB1 in rice decreases susceptibility to M. graminicola. The GST-pulldown and luciferase complementation imaging assay showed that MgCRT1 decreases the interaction of OsCML31 and OsHMGB1 in a competitive manner. In conclusion, when M. graminicola infects rice and secretes MgCRT1 into rice, MgCRT1 interacts with OsCML31 and decreases the association of OsCML31 with OsHMGB1, resulting in the release of OsHMGB1 to enhance rice susceptibility.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Jiaqian Zhang
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Wei
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Su
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Bing Wang
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangying Dai
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
3
|
Esperante D, Flisser A, Mendlovic F. The many faces of parasite calreticulin. Front Immunol 2023; 14:1101390. [PMID: 36993959 PMCID: PMC10040973 DOI: 10.3389/fimmu.2023.1101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023] Open
Abstract
Calreticulin from parasites and its vertebrate hosts share ~50% identity and many of its functions are equally conserved. However, the existing amino acid differences can affect its biological performance. Calreticulin plays an important role in Ca2+ homeostasis and as a chaperone involved in the correct folding of proteins within the endoplasmic reticulum. Outside the endoplasmic reticulum, calreticulin is involved in several immunological functions such as complement inhibition, enhancement of efferocytosis, and immune upregulation or inhibition. Several parasite calreticulins have been shown to limit immune responses and promote infectivity, while others are strong immunogens and have been used for the development of potential vaccines that limit parasite growth. Furthermore, calreticulin is essential in the dialogue between parasites and hosts, inducing Th1, Th2 or regulatory responses in a species-specific manner. In addition, calreticulin participates as initiator of endoplasmic reticulum stress in tumor cells and promotion of immunogenic cell death and removal by macrophages. Direct anti-tumoral activity has also been reported. The highly immunogenic and pleiotropic nature of parasite calreticulins, either as positive or negative regulators of the immune response, render these proteins as valuable tools to modulate immunopathologies and autoimmune disorders, as well as a potential treatment of neoplasms. Moreover, the disparities in the amino acid composition of parasite calreticulins might provide subtle variations in the mechanisms of action that could provide advantages as therapeutic tools. Here, we review the immunological roles of parasite calreticulins and discuss possible beneficial applications.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
- *Correspondence: Fela Mendlovic,
| |
Collapse
|