1
|
Wang ZX, Li PP, Jia YJ, Wen LX, Tang ZS, Wang YP, Cui F, Hu FD. Integrated metabolomic and transcriptomic analysis of triterpenoid accumulation in the roots of Codonopsis pilosula var. modesta (Nannf.) L.T.Shen at different altitudes. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:358-368. [PMID: 38764207 DOI: 10.1002/pca.3362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Codonopsis Radix is a beneficial traditional Chinese medicine, and triterpenoid are the major bioactive constituents. Codonopsis pilosula var. modesta (Nannf.) L.T.Shen (CPM) is a precious variety of Codonopsis Radix, which is distributed at high mountain areas. The environment plays an important role in the synthesis and metabolism of active ingredients in medicinal plants, but there is no report elaborating on the effect of altitude on terpenoid metabolites accumulation in CPM. OBJECTIVES This study aims to analyse the effects of altitude on triterpenoid biosynthetic pathways and secondary metabolite accumulation in CPM. MATERIAL AND METHODS The untargeted metabolomics based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 10 triterpenoids based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method were analysed at the low-altitude (1480 m) and high-altitude (2300 m) CPM fresh roots. The transcriptome based on high-throughput sequencing technology were combined to analyse the different altitude CPM triterpenoid biosynthetic pathways. RESULTS A total of 17,351 differentially expressed genes (DEGs) and 55 differentially accumulated metabolites (DAMs) were detected from the different altitude CPM, and there are significant differences in the content of the 10 triterpenoids. The results of transcriptome study showed that CPM could significantly up-regulate the gene expression levels of seven key enzymes in the triterpenoid biosynthetic pathway. CONCLUSIONS The CPM at high altitude is more likely to accumulate triterpenes than those at low altitude, which was related to the up-regulation of the gene expression levels of seven key enzymes. These results expand our understanding of how altitude affects plant metabolite biosynthesis.
Collapse
Affiliation(s)
- Zi-Xia Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Peng-Peng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Yan-Jun Jia
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Long-Xia Wen
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Zhuo-Shi Tang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Yan-Ping Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Fang Cui
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Fang-Di Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Battaglia D, Mang SM, Caccavo V, Fanti P, Forlano P. The Belowground-Aboveground Interactions of Zucchini: The Effects of Trichoderma afroharzianum Strain T22 on the Population and Behavior of the Aphid Aphis gossypii Glover and Its Endoparasitoid Aphidius colemani Viereck. INSECTS 2024; 15:690. [PMID: 39336658 PMCID: PMC11431884 DOI: 10.3390/insects15090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Fungi belonging to the genus Trichoderma have received high consideration in agriculture due to their beneficial effects on crops from their plant promotion effects and protection from disease. A role of Trichoderma fungi in triggering plant defense mechanisms against insect pests, either directly or by natural enemy attraction, has been proposed, even if the results in different studies are controversial. In this present study, using zucchini plants as a model species, we investigated the effects of Trichoderma afroharzianum strain T22 plant inoculation on the cotton aphid Aphis gossypii and its endoparasitoid Aphidius colemani. Our results showed that the inoculation with T. afroharzianum T22 promotes A. gossypii population growth and makes zucchini more attractive to the aphid. The higher abundance of aphids on Trichoderma-inoculated zucchini was compensated for by a higher presence of the mummies of Aphidius colemani. In this present study, we recorded a higher zucchini biomass, thereby confirming that Trichoderma can act as a plant growth inducer.
Collapse
Affiliation(s)
- Donatella Battaglia
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Stefania Mirela Mang
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Vittoria Caccavo
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Paolo Fanti
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (D.B.); (S.M.M.); (V.C.); (P.F.)
| | - Pierluigi Forlano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Taxonomic Insights and Its Type Cyclization Correlation of Volatile Sesquiterpenes in Vitex Species and Potential Source Insecticidal Compounds: A Review. Molecules 2021; 26:molecules26216405. [PMID: 34770814 PMCID: PMC8587464 DOI: 10.3390/molecules26216405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Sesquiterpenes (SS) are secondary metabolites formed by the bonding of 3 isoprene (C5) units. They play an important role in the defense and signaling of plants to adapt to the environment, face stress, and communicate with the outside world, and their evolutionary history is closely related to their physiological functions. This review considers their presence and extensively summarizes the 156 sesquiterpenes identified in Vitextaxa, emphasizing those with higher concentrations and frequency among species and correlating with the insecticidal activities and defensive responses reported in the literature. In addition, we classify the SS based on their chemical structures and addresses cyclization in biosynthetic origin. Most relevant sesquiterpenes of the Vitex genus are derived from the germacredienyl cation mainly via bicyclogermacrene and germacrene C, giving rise to aromadrendanes, a skeleton with the highest number of representative compounds in this genus, and 6,9-guaiadiene, respectively, indicating the production of 1.10-cyclizing sesquiterpene synthases. These enzymes can play an important role in the chemosystematics of the genus from their corresponding routes and cyclizations, constituting a new approach to chemotaxonomy. In conclusion, this review is a compilation of detailed information on the profile of sesquiterpene in the Vitex genus and, thus, points to new unexplored horizons for future research.
Collapse
|
4
|
Serba DD, Meng X, Schnable J, Bashir E, Michaud JP, Vara Prasad PV, Perumal R. Comparative Transcriptome Analysis Reveals Genetic Mechanisms of Sugarcane Aphid Resistance in Grain Sorghum. Int J Mol Sci 2021; 22:ijms22137129. [PMID: 34281180 PMCID: PMC8268927 DOI: 10.3390/ijms22137129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.
Collapse
Affiliation(s)
- Desalegn D. Serba
- United States Department of Agriculture—Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA;
| | - Xiaoxi Meng
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA; (X.M.); (J.S.)
| | - James Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA; (X.M.); (J.S.)
| | - Elfadil Bashir
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (E.B.); (P.V.V.P.)
| | - J. P. Michaud
- Department of Entomology, Kansas State University, Hays, KS 67601, USA;
- Agricultural Research Center, Hays, KS 67601, USA
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (E.B.); (P.V.V.P.)
| | - Ramasamy Perumal
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (E.B.); (P.V.V.P.)
- Agricultural Research Center, Hays, KS 67601, USA
- Correspondence:
| |
Collapse
|
5
|
Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics 2021; 22:341. [PMID: 33980145 PMCID: PMC8114506 DOI: 10.1186/s12864-021-07683-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46022 Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Panagiotis Boumpas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Harry S. Paris
- Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya‘ar Research Center, 3009500 Ramat Yishay, Israel
| | | | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| |
Collapse
|