1
|
Govta N, Govta L, Sela H, Peleg G, Distelfeld A, Fahima T, Beckles DM, Krugman T. Plasticity of Root System Architecture and Whole Transcriptome Responses Underlying Nitrogen Deficiency Tolerance Conferred by a Wild Emmer Wheat QTL. PLANT, CELL & ENVIRONMENT 2025; 48:2835-2855. [PMID: 39887777 PMCID: PMC11893928 DOI: 10.1111/pce.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Our aim was to elucidate mechanisms underlying nitrogen (N)-deficiency tolerance in bread wheat (cultivar Ruta), conferred by a wild emmer wheat QTL (WEW; IL99). We hypothesised that the tolerance in IL99 is driven by enhanced N-uptake through modification of root system architecture (RSA) underscored by transcriptome modifications. Severe N-deficiency (0.1 N for 26 days) triggered significantly higher plasticity in IL99 compared to Ruta by modifying 16 RSA traits; nine of which were IL99-specific. The change in root growth in IL99 was collectively characterised by a transition in root orientation from shallow to steep, increased root number and length, and denser networks, enabling nutrient acquisition from a larger volume and deeper soil layers. Gene ontology and KEGG-enrichment analyses highlighted IL99-specific pathways and candidate genes elevated under N-deficiency. This included Jasmonic acid metabolism, a key hormone mediating RSA plasticity (AOS1, TIFY, MTB2, MYC2), and lignification-mediated root strengthening (CYP73A, 4CL). 'N-metabolism' was identified as a main shared pathway to IL99 and Ruta, with enhanced nitrate uptake predominant in IL99 (NRT2.4), while remobilisation was the main strategy in Ruta (NRT2.3). These findings provide novel insights into wheat plasticity response underlying tolerance to N-deficiency and demonstrate the potential of WEW for improving N-uptake under suboptimal conditions.
Collapse
Affiliation(s)
- Nikolai Govta
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Liubov Govta
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Hanan Sela
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | | | - Assaf Distelfeld
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Diane M. Beckles
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Tamar Krugman
- Department of Evolutionary and Environmental Biology, and Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
2
|
Caldara M, Gullì M, Graziano S, Riboni N, Maestri E, Mattarozzi M, Bianchi F, Careri M, Marmiroli N. Microbial consortia and biochar as sustainable biofertilisers: Analysis of their impact on wheat growth and production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170168. [PMID: 38244628 DOI: 10.1016/j.scitotenv.2024.170168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The European Union is among the top wheat producers in the world, but its productivity relies on adequate soil fertilisation. Biofertilisers, either alone or in combination with biochar, can be a preferable alternative to chemical fertilisers. However, the addition of biofertilisers, specifically plant growth promoting microbes (PGPM), could modify grain composition, and/or deteriorate the soil composition. In this study, the two wheat cultivars Triticum aestivum (Bramante) and T. durum (Svevo) were cultivated in open fields for two consecutive years in the presence of a commercial PGPM mix supplied alone or in combination with biochar. An in-depth analysis was conducted by collecting physiological and agronomic data throughout the growth period. The effects of PGPM and biochar were investigated in detail; specifically, soil chemistry and rhizosphere microbial composition were characterized, along with the treatment effects on seed storage proteins. The results demonstrated that the addition of commercial microbial consortia and biochar, alone or in combination, did not modify the rhizospheric microbial community; however, it increased grain yield, especially in the cultivar Svevo (increase of 6.8 %-13.6 %), even though the factors driving the most variations were associated with both climate and cultivar. The total gluten content of the flours was not affected, whereas the main effect of the treatments was a variation in gliadins and low-molecular-weight-glutenin subunits in both cultivars when treated with PGPM and biochar. This suggested improved grain quality, especially regarding the viscoelastic properties of the dough, when the filling period occurred in a dry climate. The results indicate that the application of biofertilisers and biochar may aid the effective management of sustainable wheat cultivation, to support environmental health without altering the biodiversity of the resident microbiome.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
3
|
Vukasovic S, Eckert AH, Moritz AL, Borsch C, Rudloff S, Snowdon RJ, Stahl A. Effect of a QTL on wheat chromosome 5B associated with enhanced root dry mass on transpiration and nitrogen uptake under contrasting drought scenarios in wheat. BMC PLANT BIOLOGY 2024; 24:83. [PMID: 38308236 PMCID: PMC10835935 DOI: 10.1186/s12870-024-04756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND A sufficient nitrogen supply is crucial for high-quality wheat yields. However, the use of nitrogen fertilization can also negatively influence ecosystems due to leaching or volatile atmospheric emissions. Drought events, increasingly prevalent in many crop production areas, significantly impact nitrogen uptake. Breeding more efficient wheat varieties is necessary to achieve acceptable yields with limited nitrogen and water. Crop root systems play a crucial role as the primary organ for absorbing water and nutrients. To investigate the impact of an enhanced root system on nitrogen and water use efficiency in wheat under various irrigation conditions, this study conducted two experiments using precision phenotyping platforms for controlled drought stress treatment. Experiment 1 involved four contrasting winter wheat genotypes. It included the Chinese variety Ning0604, carrying a quantitative trait locus (QTL) on chromosome 5B associated with a higher root dry biomass, and three elite German varieties, Elixer, Genius, and Leandrus. Experiment 2 compared near-isogenic lines (NIL) of the three elite varieties, each containing introgressions of the QTL on chromosome 5B linked to root dry mass. In both experiments, nitrogen partitioning was tracked via isotope discrimination after fertilization with 5 Atom % 15N-labeled KNO3-. RESULTS In experiment 1 the quantification by 15N isotope discrimination revealed significantly (p < 0.05) higher nitrogen derived from fertilizer in the root organ for Ning0604 than those of the three German varieties. In experiment 2, two out of three NILs showed a significantly (p < 0.05) higher uptake of N derived from fertilizer than their respective recipient line under well-watered conditions. Furthermore, significantly lower transpiration rates (p < 0.1) were observed in one NIL compared to its respective recipient. CONCLUSIONS The combination of the DroughtSpotter facility coupled with 15N tracer-based tracking of N uptake and remobilization extends the insight into the impact of genetically altered root biomass on wheat NUE and WUE under different water availability scenarios. The study shows the potential for how a modified genetic constitution of the locus on wheat chromosome 5B can reduce transpiration and enhance N uptake. The dependence of the observations on the recipient and water availability suggests a need for further research to investigate the interaction with genetic background traits.
Collapse
Affiliation(s)
- Stjepan Vukasovic
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany.
| | - Andreas H Eckert
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Anna L Moritz
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Christian Borsch
- Analytical Platform Stable Isotopes and Cell Biology, Institute of Nutritional Sciences, Justus Liebig University, Giessen, Germany
| | - Silvia Rudloff
- Analytical Platform Stable Isotopes and Cell Biology, Institute of Nutritional Sciences, Justus Liebig University, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
4
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
5
|
Garcia-Gomez P, Olmos-Ruiz R, Nicolas-Espinosa J, Carvajal M. Effects of low nitrogen supply on biochemical and physiological parameters related to nitrate and water, involving nitrate transporters and aquaporins in Citrus macrophylla. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:944-955. [PMID: 37357019 DOI: 10.1111/plb.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
A reduction in chemical N-based fertillizer was investigated in Citrus plants. As N and water uptake are connected, the relationship between the physiological response to reductions in N was studied in relation to N metabolism and water. We examined the response of new and mature leaves and roots of Citrus macrophylla, grown under controlled conditions, and given different concentrations of N: 16, 8 or 4 mM. Differences in growth and development were determined for biochemical (mineral content, photosynthetic pigments, proteins and nitrate and nitrite reductase activity), physiological (photosynthesis and transpiration), and molecular (relative expression of nitrate transporters and aquaporins) parameters. Only plants given 4 mM N showed a reduction in growth. Although there were changes in NR activity, protein synthesis, and chlorophyll content in both 8 and 4 mM N plants that were highly related to aquaporin and nitrate transporter expression. The results revealed new findings on the relationship between aquaporins and nitrate transporters in new leaves of Citrus, suggesting a mechanism for ensuring growth under low N when new tissues are being formed.
Collapse
Affiliation(s)
- P Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - R Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - J Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - M Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
6
|
Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BIOTECH 2022; 11:biotech11030043. [PMID: 36134917 PMCID: PMC9497085 DOI: 10.3390/biotech11030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to successive stress cycles can result in a variety of memory response patterns in several plant species. We have investigated a group of these patterns at both the transcriptional and physiological memory levels in durum wheat. The data revealed huge discrepancies between investigated durum wheat cultivars, which presumably are all drought tolerant. It was possible to generate a consensus memory response pattern for each cultivar, where Hourani 27 was the most tolerant followed by Balikh 2 and then Omrabi 5. When durum wheat homologs from rice and maize were compared, only 18% gave similar memory response patterns. The data would indicate the presence of potentially divergent memory mechanisms in different plant species and genotypes. Ultimately, a thorough examination is required for each genotype before giving solid memory-based conclusions that can be applied in plant breeding and agricultural management practices.
Collapse
|
7
|
Barłóg P, Grzebisz W, Łukowiak R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1855. [PMID: 35890489 PMCID: PMC9319167 DOI: 10.3390/plants11141855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizer Use Efficiency (FUE) is a measure of the potential of an applied fertilizer to increase its impact on the uptake and utilization of nitrogen (N) present in the soil/plant system. The productivity of N depends on the supply of those nutrients in a well-defined stage of yield formation that are decisive for its uptake and utilization. Traditionally, plant nutritional status is evaluated by using chemical methods. However, nowadays, to correct fertilizer doses, the absorption and reflection of solar radiation is used. Fertilization efficiency can be increased not only by adjusting the fertilizer dose to the plant's requirements, but also by removing all of the soil factors that constrain nutrient uptake and their transport from soil to root surface. Among them, soil compaction and pH are relatively easy to correct. The goal of new the formulas of N fertilizers is to increase the availability of N by synchronization of its release with the plant demand. The aim of non-nitrogenous fertilizers is to increase the availability of nutrients that control the effectiveness of N present in the soil/plant system. A wide range of actions is required to reduce the amount of N which can pollute ecosystems adjacent to fields.
Collapse
|
8
|
Effect of Trichoderma asperellum on Wheat Plants' Biochemical and Molecular Responses, and Yield under Different Water Stress Conditions. Int J Mol Sci 2022; 23:ijms23126782. [PMID: 35743226 PMCID: PMC9224292 DOI: 10.3390/ijms23126782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Eight Trichoderma strains were evaluated for their potential to protect wheat seedlings against severe (no irrigation within two weeks) water stress (WS). Considering the plant fresh weight and phenotype, T. asperellum T140, which displays 1-aminocyclopropane-1-carboxylic acid deaminase activity and which is able to produce several phytohormones, was selected. The molecular and biochemical results obtained from 4-week-old wheat seedlings linked T140 application with a downregulation in the WS-response genes, a decrease in antioxidant activities, and a drop in the proline content, as well as low levels of hydrogen peroxide and malondialdehyde in response to severe WS. All of these responses are indicative of T140-primed seedlings having a higher tolerance to drought than those that are left untreated. A greenhouse assay performed under high nitrogen fertilization served to explore the long-term effects of T140 on wheat plants subjected to moderate (halved irrigation) WS. Even though all of the plants showed acclimation to moderate WS regardless of T140 application, there was a positive effect exerted by T. asperellum on the level of tolerance of the wheat plants to this stress. Strain T140 modulated the expression of a plant ABA-dependent WS marker and produced increased plant superoxide dismutase activity, which would explain the positive effect of Trichoderma on increasing crop yields under moderate WS conditions. The results demonstrate the effectiveness of T. asperellum T140 as a biostimulant for wheat plants under WS conditions, making them more tolerant to drought.
Collapse
|
9
|
Ayed S, Bouhaouel I, Othmani A. Screening of Durum Wheat Cultivars for Selenium Response under Contrasting Environments, Based on Grain Yield and Quality Attributes. PLANTS 2022; 11:plants11111437. [PMID: 35684210 PMCID: PMC9183021 DOI: 10.3390/plants11111437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
In the literature, little information is available on the effect of Selenium (Se) on durum wheat yield and grain quality performances. A field investigation was conducted to explore the effect of exogenous Se foliar supply on two types of durum wheat germplasm; i.e., 16 advanced lines and nine modern varieties. The Se effect was assessed on grain yield as well as on technological quality traits (moisture, protein and gluten contents, Zeleny sedimentation index, and deformation energy) in two contrasting environments in Tunisia, namely Kef–Boulifa (semi-arid region) and Beja (sub-humid region). The results displayed significant effects of environments, Se foliar application, and cultivars on grain yield and quality attributes. For grain yield performance, the beneficial effect of Se was more pronounced under the Kef–Boulifa environment, and conversely for the grain quality. A genetic variation was observed within and among the two environments under both Se treatments (with and without Se). Notably, the Se-treated advanced lines displayed the highest grain yield under Kef–Boulifa and Beja conditions. Although these cultivars showed better grain quality in both sites, the modern varieties valorized the Se foliar application better. Cultivars that recorded the highest values for the studies attributes were not necessarily those that valorized the Se supply better. Interestingly, some advanced lines have noted superiority compared to the modern varieties. In this study, cultivars that combine both good yield and good grain quality were determined for semi-arid (L11, L1, Dhahbi, and Maali) and sub-humid (L2, L14, L6, L3, Salim, and INRAT 100) zones. The screening results provide genetic material that could be exploited in breeding programs to improve Se use efficiency.
Collapse
Affiliation(s)
- Sourour Ayed
- Field Crops Laboratory, LR20-INRAT-02, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 2049, Tunisia;
- Correspondence:
| | - Imen Bouhaouel
- Genetics and Cereal Breeding Laboratory, LR14AGR01, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia;
| | - Afef Othmani
- Field Crops Laboratory, LR20-INRAT-02, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 2049, Tunisia;
| |
Collapse
|
10
|
Hussain T, Gollany HT, Hussain N, Ahmed M, Tahir M, Duangpan S. Synchronizing Nitrogen Fertilization and Planting Date to Improve Resource Use Efficiency, Productivity, and Profitability of Upland Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:895811. [PMID: 35665171 PMCID: PMC9158749 DOI: 10.3389/fpls.2022.895811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 05/26/2023]
Abstract
Synchronizing nitrogen (N) fertilization with planting date (PD) could enhance resource use efficiency and profitability of upland rice (Oryza sativa L.) production in Thailand. The objective of the study was to assess upland rice responses to four N fertilization rates (NFRs) and three planting dates. Field experiments were conducted during two growing seasons under four NFRs, no N applied (N0), 30 (N30), 60 (N60), and 90 kg N ha-1 (N90), and NFR were applied at the initiation of tillering and panicle emergence stages. The planting dates selected were early (PD1), intermedium (PD2), and late planting (PD3) between September and December of each season. The NFRs and planting dates had a significant influence on N uptake, N use efficiency (NUE), crop water productivity, yield and yield attributes, and profitability of upland rice production. A linear relationship among NFRs, agronomic traits of upland rice, N uptake, and crop water productivity was observed, and a significant seasonal effect was indicated. Fertilization at N90 under PD2 enhanced yields, yield attributes, and grain yields, as well as crop water productivity by 56 and 105% during the second and first seasons, respectively. Grain N, total N, and straw N were increased by 159, 159, and 160%, and by 90, 114, and 153%, during the first and second seasons, respectively. Enhanced N efficiencies, including agronomic efficiency, recovery efficiency, partial factor productivity, and N harvest index, at varying NFRs were observed under PD2 during both seasons. Highly significant (p < 0.001) and positive associations were observed among agronomic attributes, N uptake, NUE, and crop water productivity of upland rice in correlation assessment. Profitability from grain yields was observed with N fertilization and N90 resulted in maximum profit under all the PDs. However, the highest marginal benefit-cost ratio was observed at N60 under PD2 during both seasons. The results suggest that the NFR of 90 kg N ha-1 and planting at the end of September or start of October would enhance resource use efficiency and productivity, and maximize profitability. Furthermore, long-term field investigations with a range of NFRs and adopting forecasting measures to adjust the planting date for upland rice are recommended.
Collapse
Affiliation(s)
- Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Hero T. Gollany
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Columbia Plateau Conservation Research Center, Pendleton, OR, United States
| | - Nurda Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Mukhtar Ahmed
- Department of Agronomy, Faculty of Crop and Food Sciences, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Tahir
- Department of Soil, Water, and Climate, University of Minnesota, Falcon Heights, MN, United States
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
11
|
Impact of Nitrogen Application Rates on Upland Rice Performance, Planted under Varying Sowing Times. SUSTAINABILITY 2022. [DOI: 10.3390/su14041997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Application of suitable nitrogen (N) fertilizer application rate (NR) with respect to sowing time (ST) could help to maximize the performance and productivity of upland rice in Southern Thailand. The 2-year experiments were conducted in the sheds to evaluate the agronomic responses of the upland rice genotype, Dawk Pa–yawm, under various combinations of NR and ST between 2018–2019 and 2019–2020 aimed at obtaining sufficient research evidence for the improved design of long-term field trials in Southern Thailand. As with the initial research, four NR were applied as N0 with no applied N, 1.6 g N pot−1, 3.2 g N pot−1 and 4.8 g N pot−1, and experiments were grown under three ST including early (ST1), medium (ST2) and late sowing (ST3). Results from the experiments indicate that the application of 4.8 g N pot−1 resulted in maximum grain yield under all ST in both years. However, a maximum increase in grain yield was observed under ST2 by 54–101% in 2018–2019 and by 276–339% in 2019–2020. Maximum grain N uptake of 0.57 and 0.82 g pot−1 was also observed at NR 4.8 g N pot−1 under ST2 in both years, respectively. Application of NR 4.8 g N pot−1 resulted in the highest N agronomic efficiency (NAE), nitrogen use efficiency (NUE) and water use efficiency (WUE). However, the performance of yield and yield attributes, N uptake, N use efficiencies and WUE were declined in late sowing (ST3). Significant positive association among yield, yield attributes, N uptake and WUE indicated that an increase in NR up to 4.8 g N pot−1 improved the performance of Dawk Pa–yawm. The results suggest that the application of 4.8 g N pot−1 (90 kg N ha−1) for upland rice being grown during September (ST2) would enhance N use efficiencies, WUE and ultimately improve the yield of upland rice. However, field investigations for current study should be considered prior to general recommendations. Moreover, based on the findings of this study, the importance of variable climatic conditions in the field, and the variability in genotypic response to utilize available N and soil moisture, authors suggest considering more levels of NR and intervals for ST with a greater number of upland rice genotypes to observe variations in field experiments for the precise optimization of NR according to ST.
Collapse
|
12
|
Mălinaş A, Vidican R, Rotar I, Mălinaş C, Moldovan CM, Proorocu M. Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020217. [PMID: 35050105 PMCID: PMC8777959 DOI: 10.3390/plants11020217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 05/11/2023]
Abstract
Although essential for achieving high crop yields required for the growing population worldwide, nitrogen, (N) in large amounts, along with its inefficient use, results in environmental pollution and increased greenhouse gas (GHG) emissions. Therefore, improved nitrogen use efficiency (NUE) has a significant role to play in the development of more sustainable crop production systems. Considering that wheat is one of the major crops cultivated in the world and contributes in high amounts to the large N footprint, designing sustainable wheat crop patterns, briefly defined by us in this review as the 3 Qs (high quantity, good quality and the quintessence of natural environment health) is urgently required. There are numerous indices used to benchmark N management for a specific crop, including wheat, but the misunderstanding of their specific functions could result in an under/overestimation of crop NUE. Thus, a better understanding of N dynamics in relation to wheat N cycling can enhance a higher efficiency of N use. In this sense, the aim of our review is to provide a critical analysis on the current knowledge with respect to wheat NUE. Further, considering the key traits involved in N uptake, assimilation, distribution and utilization efficiency, as well as genetics (G), environment (E) and management (M) interactions, we suggest a series of future perspectives that can enhance a better efficiency of N in wheat.
Collapse
Affiliation(s)
- Anamaria Mălinaş
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
| | - Roxana Vidican
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
| | - Ioan Rotar
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
| | - Cristian Mălinaş
- Department of Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Correspondence: (C.M.); (C.M.M.)
| | - Cristina Maria Moldovan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
- Correspondence: (C.M.); (C.M.M.)
| | - Marian Proorocu
- Department of Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| |
Collapse
|