1
|
An J, Guo R, Liu M, Hu H, Zhang H. Multi-modal Ca 2+ nanogenerator via reversing T cell exhaustion for enhanced chemo-immunotherapy. J Control Release 2024; 372:715-727. [PMID: 38955253 DOI: 10.1016/j.jconrel.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Chemo-immunotherapy holds the advantage of specific antitumor effects by activating cytotoxic lymphocyte cells (CTLs) immune response. However, multiple barriers have limited the outcomes partly due to tumor-cell-mediated exhaustion of CTLs in the immunosuppressive tumor microenvironment (iTME). Here, we rationally designed a simple-yet-versatile Ca2+ nanogenerator to modulate iTME for enhancing 2-deoxyglucose (2-DG) mediated chemo-immunotherapy. Briefly, after 2-DG chemotherapy, CaO2 nanoparticles coated with EL4 cell membrane (denoted as CaNP@ECM) could preferentially accumulate in tumor tissue via adhesion between LFA-1 on EL4 cell membrane and ICAM-1 on inflamed endothelial cell in tumor tissues and display a series of benefits for CTLs: i) Increasing glucose availability of CTLs while reducing lactic acid secretion through Ca2+ overloading mediated inhibition of tumor cell glycolysis, as well as relieving hypoxia; ii) Reversing CTLs exhaustion via TGF-β1 scavenging and PD-L1 blockade through PD-1 and TGF-β1R on EL4 cell membrane; iii) Boosting tumor immunotherapy via immunologic death (ICD) of tumor cells induced by Ca2+ overloading. We demonstrate that the multi-modal Ca2+ nanogenerator rescues T cells from exhaustion and inhibits tumor growth both in vitro and in vivo. More importantly, the study also facilitate the development of glucose metabolism inhibition-based tumor immunotherapy via Ca2+ overloading.
Collapse
Affiliation(s)
- Jingyi An
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Guo
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyuan Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Haiying Hu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Orłowska R, Zimny J, Zebrowski J, Androsiuk P, Bednarek PT. An insight into tissue culture-induced variation origin shared between anther culture-derived triticale regenerants. BMC PLANT BIOLOGY 2024; 24:43. [PMID: 38200422 PMCID: PMC10782687 DOI: 10.1186/s12870-023-04679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed. RESULTS According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55. CONCLUSIONS The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Jacek Zebrowski
- Institute of Biotechnology, College of Natural Science, University of Rzeszow, Al. Rejtana 16c, Rzeszow, 35-959, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-719, Poland
| | - Piotr T Bednarek
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland.
| |
Collapse
|
3
|
Triticale doubled haploid plant regeneration factors linked by structural equation modeling. J Appl Genet 2022; 63:677-690. [PMID: 36018540 PMCID: PMC9637073 DOI: 10.1007/s13353-022-00719-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Triticale regeneration via anther culture faces many difficulties, e.g., a low percentage of regenerated plants and the presence of albinos. Plant regeneration may be affected by abiotic stresses and by ingredients added to the induction medium. The latter influences biochemical pathways and plant regeneration efficiency. Among such ingredients, copper and silver ions acting as cofactors for enzymatic reactions are of interest. However, their role in plant tissue cultures and relationships with biochemical pathways has not been studied yet. The study evaluated relationships between DNA methylation, changes in DNA sequence variation, and green plant regeneration efficiency influenced by copper and silver ions during triticale plant regeneration. For this purpose, a biological model based on donor plants and their regenerants, a methylation-sensitive amplified fragment length polymorphism, and structural equation modeling were employed. The green plant regeneration efficiency varied from 0.71 to 6.06 green plants per 100 plated anthers. The values for the components of tissue culture-induced variation related to cytosine methylation in a CHH sequence context (where H is A, C, or T) were 8.65% for sequence variation, 0.76% for DNA demethylation, and 0.58% for de novo methylation. The proposed model states that copper ions affect the regeneration efficiency through cytosine methylation and may induce mutations through, e.g., oxidative processes, which may interfere with the green plant regeneration efficiency. The linear regression confirms that the plant regeneration efficiency rises with increasing copper ion concentration in the absence of Ag ions in the induction medium. The least absolute shrinkage and selection operator regression shows that de novo methylation, demethylation, and copper ions may be involved in the green plant regeneration efficiency. According to structural equation modeling, copper ions play a central role in the model determining the regeneration efficiency.
Collapse
|
4
|
Pachota KA, Orłowska R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis. J Appl Genet 2022; 63:663-675. [PMID: 35984629 PMCID: PMC9637072 DOI: 10.1007/s13353-022-00717-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Somatic embryogenesis is a plant regeneration method that can be exploited in tissue culture systems for a variety of tasks, such as genetic modification or the selection of somaclones with advantageous characteristics. Therefore, it is crucial to create efficient regeneration procedures and comprehend how medium components affect regeneration effectiveness or the degree of variation created in plant tissue cultures. The level of tissue culture-induced variation in triticale regenerants was examined in the current study in relation to the concentration of copper and silver ions in the induction media as well as the length of time immature zygotic embryo explants were incubated on these media. The high degree of variation (45%) revealed by the methylation-sensitive amplified fragment length polymorphism approach for estimating variation included 38% DNA sequence alterations, 6% DNA demethylation, and 1% de novo DNA methylation. Different levels of variance were found in relation to various DNA sequence settings. The CHG context had the most alterations, whereas CG experienced the fewest; sequence variation predominated in each sequence context. Lower copper ion concentrations showed the most variance. However, it could not be connected to the duration of in vitro culture or the effect of silver ions. Accordingly, we think that altering the concentration of copper ions in the induction medium may throw off the equilibrium of the metabolic processes in which copper is involved, resulting in tissue culture-induced variation.
Collapse
Affiliation(s)
- Katarzyna Anna Pachota
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Renata Orłowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland.
| |
Collapse
|
5
|
Bednarek PT, Orłowska R, Mańkowski DR, Zimny J, Kowalczyk K, Nowak M, Zebrowski J. Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture. FRONTIERS IN PLANT SCIENCE 2022; 13:926305. [PMID: 35982694 PMCID: PMC9379855 DOI: 10.3389/fpls.2022.926305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 05/02/2023]
Abstract
Plant tissue culture techniques are handy tools for obtaining unique plant materials that are difficult to propagate or important for agriculture. Homozygous materials derived through in vitro cultures are invaluable and significantly accelerate the evaluation of new varieties, e.g., cereals. The induction of somatic embryogenesis/androgenesis and the regeneration and its efficiency can be influenced by the external conditions of tissue culture, such as the ingredients present in the induction or regeneration media. We have developed an approach based on biological system, molecular markers, Fourier Transform Infrared spectroscopy, and structural equation modeling technique to establish links between changes in sequence and DNA methylation at specific symmetric (CG, CHG) and asymmetric (CHH) sequences, glutathione, and green plant regeneration efficiency in the presence of variable supplementation of induction medium with copper ions. The methylation-sensitive Amplified Fragment Length Polymorphism was used to assess tissue culture-induced variation, Fourier Transform Infrared spectroscopy to describe the glutathione spectrum, and a structural equation model to develop the relationship between sequence variation, de novo DNA methylation within asymmetric sequence contexts, and copper ions in the induction medium, as well as, glutathione, and green plant efficiency. An essential aspect of the study is demonstrating the contribution of glutathione to green plant regeneration efficiency and indicating the critical role of copper ions in influencing tissue culture-induced variation, glutathione, and obtaining green regenerants. The model presented here also has practical implications, showing that manipulating the concentration of copper ions in the induction medium may influence cell function and increases green plant regeneration efficiency.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Renata Orłowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Dariusz R. Mańkowski
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
6
|
Doungous O, Al-Khayri JM, Kouassi MK. Sodium Toxicity: Should NaOH Be Substituted by KOH in Plant Tissue Culture? FRONTIERS IN PLANT SCIENCE 2022; 13:829768. [PMID: 35185995 PMCID: PMC8855118 DOI: 10.3389/fpls.2022.829768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Oumar Doungous
- The Central and West African Virus Epidemiology (WAVE), Biotechnology Laboratory, Ekona Regional Research Centre, Institute of Agricultural Research for Development, Yaoundé, Cameroon
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Modeste Kan Kouassi
- The Central and West African Virus Epidemiology (WAVE), Plant Tissue Culture Laboratory, Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| |
Collapse
|
7
|
Orłowska R, Pachota KA, Androsiuk P, Bednarek PT. Triticale Green Plant Regeneration Is Due to DNA Methylation and Sequence Changes Affecting Distinct Sequence Contexts in the Presence of Copper Ions in Induction Medium. Cells 2021; 11:84. [PMID: 35011646 PMCID: PMC8750698 DOI: 10.3390/cells11010084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Metal ions in the induction medium are essential ingredients allowing green plant regeneration. For instance, Cu(II) and Ag(I) ions may affect the mitochondrial electron transport chain, influencing the Yang cycle and synthesis of S-adenosyl-L-methionine, the prominent donor of the methylation group for all cellular compounds, including cytosines. If the ion concentrations are not balanced, they can interfere with the proper flow of electrons in the respiratory chain and ATP production. Under oxidative stress, methylated cytosines might be subjected to mutations impacting green plant regeneration efficiency. Varying Cu(II) and Ag(I) concentrations in the induction medium and time of anther culture, nine trials of anther culture-derived regenerants of triticale were derived. The methylation-sensitive AFLP approach quantitative characteristics of tissue culture-induced variation, including sequence variation, DNA demethylation, and DNA de novo methylation for all symmetric-CG, CHG, and asymmetric-CHH sequence contexts, were evaluated for all trials. In addition, the implementation of mediation analysis allowed evaluating relationships between factors influencing green plant regeneration efficiency. It was demonstrated that Cu(II) ions mediated relationships between: (1) de novo methylation in the CHH context and sequence variation in the CHH, (2) sequence variation in CHH and green plant regeneration efficiency, (3) de novo methylation in CHH sequences and green plant regeneration, (4) between sequence variation in the CHG context, and green plant regeneration efficiency. Cu(II) ions were not a mediator between de novo methylation in the CG context and green plant regeneration. The latter relationship was mediated by sequence variation in the CG context. On the other hand, we failed to identify any mediating action of Ag(I) ions or the moderating role of time. Furthermore, demethylation in any sequence context seems not to participate in any relationships leading to green plant regeneration, sequence variation, and the involvement of Cu(II) or Ag(I) as mediators.
Collapse
Affiliation(s)
- Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870 Błonie, Poland
| | - Katarzyna Anna Pachota
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870 Błonie, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870 Błonie, Poland
| |
Collapse
|
8
|
Comparative Study of the Genetic and Biochemical Variability of Polyscias filicifolia (Araliaceae) Regenerants Obtained by Indirect and Direct Somatic Embryogenesis as a Source of Triterpenes. Int J Mol Sci 2021; 22:ijms22115752. [PMID: 34072251 PMCID: PMC8198449 DOI: 10.3390/ijms22115752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Polyscias filicifolia (Araliaceae) is broadly used in traditional medicine in Southeast Asia due to its antimicrobial, immunomodulating and cytotoxic activities. The main groups of compounds responsible for pharmacological effects are believed to be oleanolic triterpene saponins. However, Polyscias plants demonstrate relatively slow growth in natural conditions, which led to applying a developing sustainable source of plant material via primary (PSE), secondary (DSE) and direct somatic embryogenesis from DSE (TSE). The AFLP and metAFLP genotyping resulted in 1277 markers, amplified by a total of 24 pairs of selective primers. Only 3.13% of the markers were polymorphic. The analysis of variance showed that the PSE and TSE regenerants differed only in terms of root number, while the DSE plantlets differed for all studied morphological characteristics. Further, the chemical analysis revealed that oleanolic acid (439.72 µg/g DW), ursolic acid (111.85 µg/g DW) and hederagenin (19.07 µg/g DW) were determined in TSE regenerants. Our results indicate that direct somatic embryogenesis ensures the production of homogeneous plant material, which can serve as a potential source of triterpene compounds. Plants obtained via somatic embryogenesis could also be reintroduced into the natural environment to protect and preserve its biodiversity.
Collapse
|
9
|
Orłowska R. Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. ACTA ACUST UNITED AC 2021; 28:9. [PMID: 33726856 PMCID: PMC7962293 DOI: 10.1186/s40709-021-00138-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding & Acclimatization Institute-National Research Institute, 05-870 Błonie, Radzików, Poland.
| |
Collapse
|