1
|
Song Y, Wang Y, Liu Y, Li H, Ding J, Wu X, Li Y, Jiao F, Yang L. Whole genome re-sequencing in 437 tobacco germplasms identifies plant height candidate genes. Sci Rep 2025; 15:4734. [PMID: 39922850 PMCID: PMC11807208 DOI: 10.1038/s41598-025-88064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/23/2025] [Indexed: 02/10/2025] Open
Abstract
Tobacco is one of the most important model plants. Plant height is one of the most important agronomic traits in tobacco. To better understand the population genetic structure and the genetic basis of plant height in tobacco, 437 tobacco germplasms were whole genome re-sequencing in this study. A total of 2,263,775 high-quality single nucleotide polymorphisms were identified. The analysis of the population genetic structure showed that tobacco germplasm could be divided into 8 clusters. In addition, gene flow was found between flue-cured tobacco and ustic tobacco, as well as between oriental tobacco and air-cured tobacco. Three genes associated with plant height were identified as candidate genes by genome-wide association study. This study provides valuable genetic resources for population structure analysis and elucidation of the genetic basis of various traits. It helps to improve the efficiency of molecular breeding.
Collapse
Affiliation(s)
- Yanru Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, China
| | - Yuanheng Wang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, China
| | - Ying Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, China
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, China
| | - Jie Ding
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, China
| | - Xingfu Wu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
2
|
Li X, Song D, Li M, Li D, You M, Peng Y, Yan J, Bai S. An initial exploration of core collection construction and DNA fingerprinting in Elymus sibiricus L. using SNP markers. FRONTIERS IN PLANT SCIENCE 2025; 16:1534085. [PMID: 39990717 PMCID: PMC11844813 DOI: 10.3389/fpls.2025.1534085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
Elymus sibiricus L., an excellent forage and ecological restoration grass, plays a key role in grassland ecological construction and the sustainable development of animal husbandry. In China, the wild germplasm resources of E. sibiricus are abundant, and they are shaped by similar and contrasting climatic conditions to form distinct populations, which enrich the genetic diversity of E. sibiricus. To more comprehensively aggregate E. sibiricus germplasm resources at a lower cost and to more accurately utilize its genetic variation, this study conducted a preliminary exploration of core germplasm collections and fingerprinting of E. sibiricus using single nucleotide polymorphism (SNP) markers. By combining multiple evaluation measures with weighted processing, we successfully identified 36 materials from 90 wild E. sibiricus samples to serve as a core collection. Genetic diversity assessments, allele evaluations, and principal component analyses of the 36 core germplasm samples all indicate that these 36 samples accurately and comprehensively represent the genetic diversity of all 90 E. sibiricus germplasm accessions. Additionally, we identified 290 SNP loci from among the high-quality SNP loci generated by whole-genome sequencing of the 90 E. sibiricus samples as candidate markers. Of these, 52 SNP loci were selected as core markers for DNA fingerprinting of E. sibiricus. Using kompetitive allele-specific PCR (KASP) technology, we also performed population origin identification for 60 wild E. sibiricus germplasm accessions based on these core markers. The core SNP markers screened in this study were able to accurately distinguish between E. sibiricus germplasms from the Qinghai-Tibet Plateau and those from elsewhere. This study not only provides a reference for the continued collection and identification of E. sibiricus germplasm resources but also offers a scientific basis for their conservation and utilization.
Collapse
Affiliation(s)
- Xinrui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daping Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mingfeng Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Minghong You
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiajun Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
3
|
Shen B, Shen A, Tan Y, Liu L, Li S, Tan Z. Development of KASP markers, SNP fingerprinting and population genetic analysis of Cymbidium ensifolium (L.) Sw. germplasm resources in China. FRONTIERS IN PLANT SCIENCE 2025; 15:1460603. [PMID: 39845486 PMCID: PMC11750851 DOI: 10.3389/fpls.2024.1460603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Cymbidium ensifolium (L.) Sw. is a valuable ornamental plant in the genus Cymbidium, family Orchidaceae, with high economic and ecological significance. However, the lack of population genetic information and molecular markers has hindered the development of the sales market and genetic breeding of C. ensifolium despite the abundance of commercial cultivars available. In this study, we aimed to develop a set of single nucleotide polymorphism (SNP) markers to distinguish the main cultivated C. ensifolium cultivars in China and provide technical support for domestic cultivar protection, registration, and market rights protection. A total of 1,280,516 high-quality loci were identified from 10,021,591 SNPs obtained by sequencing 50 C. ensifolium commercial cultivars using double digest restriction site-assisted DNA sequencing technology. A total of 7,599 SNPs were selected for kompetitive allele-specific PCR (KASP) primer design, and 4,360 were successfully designed as KASP markers. Population structure analysis revealed that the 50 commercial cultivars were best divided into four populations, with some correlation between the group distribution and the morphological and geographical characteristics of the germplasm. Using the genotyping results from 28 KASP markers screened from the cultivars, a minimum set of 11 markers was identified that could distinguish 83 C. ensifolium commercial cultivars completely, with the remaining 17 markers serving as extended markers. The average PIC value of the 11 markers was 0.345, which was considered medium polymorphism. DNA fingerprints were constructed for the 83 cultivars on the basis of the 11 KASP markers, providing a new approach for mapping DNA fingerprints in C. ensifolium cultivars with high efficiency, accuracy, and low cost compared with traditional methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuming Tan
- Institute of Biodiversity, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
4
|
Wang X, Zhang G, Gao D, Ge Y, Cheng Y, Wang X. Whole-Genome Sequencing Reveals the Progress of Genetic Breeding in Eriocheir sinensis. Animals (Basel) 2025; 15:77. [PMID: 39795020 PMCID: PMC11718898 DOI: 10.3390/ani15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Eriocheir sinensis is an important and popular crustacean species in China, producing huge economic benefits. Large individuals of E. sinensis are preferred due to market demand. The long-term goal of our research group is to produce a new variety of E. sinensis with better growth performance and stronger abilities to resist environmental changes through mass selection. The present study aimed to evaluate the progress of the genetic breeding of E. sinensis by analyzing the genetic diversity and genetic distance between the basic breeding population (pooled population of Suqian and Yixing, G0) and generation 1 (G1) using whole-genome sequencing (WGS). The growth traits, including body weight, shell length, shell width, and third appendage length, in the G1 generation increased by 8.3%, 7.9%, 9.6%, and 9.3%, respectively, compared with those of the G0 generation, indicating that the G1 generation showed better growth performance. A total of 372,448,393 high-quality single nucleotide polymorphisms (SNPs) were detected in 40 E. sinensis individuals, with an average of 9,331,209.83 SNPs. The fixation index values were 0.007 between the Yixing and Suqian populations and 0.015 between the G0 generation and G1 generation, indicating a close genetic background between these groups, especially when considered in combination with the phylogenetic tree and principal component analysis. All of these data suggest that genetic information was stably inherited by the G1 generation, with no introduction of foreign genetic information during the genetic breeding process. In addition, the genetic diversity analysis revealed that the G0 and G1 generations showed a high level of genetic diversity and a relatively stable genetic structure. The present study evaluated the recent progress of the genetic improvement of E. sinensis by our research group, providing valuable evidence for further genetic improvement in this species. Future studies will be performed to select growth-related SNPs and genes through genome-wide association studies.
Collapse
Affiliation(s)
- Xuanpeng Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (X.W.); (G.Z.); (D.G.)
| | - Gaowei Zhang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (X.W.); (G.Z.); (D.G.)
| | - Dandan Gao
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (X.W.); (G.Z.); (D.G.)
| | - Yongchun Ge
- Suqian King Crab Industry Research Institute, Suqian 223800, China;
| | - Yongxu Cheng
- Suqian King Crab Industry Research Institute, Suqian 223800, China;
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinhai Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China; (X.W.); (G.Z.); (D.G.)
| |
Collapse
|
5
|
Yang F, Lang T, Wu J, Zhang C, Qu H, Pu Z, Yang F, Yu M, Feng J. SNP loci identification and KASP marker development system for genetic diversity, population structure, and fingerprinting in sweetpotato (Ipomoea batatas L.). BMC Genomics 2024; 25:1245. [PMID: 39719557 DOI: 10.1186/s12864-024-11139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Sweetpotato (Ipomoea batatas L.), an important food and industrial crop in the world, has a highly heterozygous hexaploid genome, making the development of single nucleotide polymorphism (SNP) markers challenging. Identifying SNP loci and developing practical SNP markers are crucial for genomic and genetic research on sweetpotato. A restriction site-associated DNA sequencing analysis of 60 sweetpotato accessions in this study yielded about 7.97 million SNPs. Notably, 954 candidate SNPs were obtained from 21,681 high-quality SNPs. Based on their stability and polymorphism, 274 kompetitive allele specific PCR (KASP) markers were then developed and uniformly distributed on chromosomes. The 274 KASP markers were used to genotype 93 sweetpotato accessions to evaluate their utility for assessing germplasm and analyzing genetic diversity and population structures. These markers had respective mean values of 0.24, 0.34, 0.31, and 0.25 for minor allele frequency, heterozygosity, gene diversity, and polymorphic information content (PIC). Their genetic pedigree led to the division of all accessions into three primary clusters, which were found to be both interrelated and independent. Finally, 74 KASP markers with PIC values greater than 0.35 were selected as core markers. These markers were used to construct the DNA fingerprints of 93 sweetpotato accessions and were able to differentiate between all accessions. To the best of our knowledge, this is the first attempt at the development and application of KASP markers in sweetpotato. However, due to sweetpotato's polyploidy, heterozygosity and the complex genome, the KASP marker conversion rate in this study was relatively low. To improve the KASP marker conversion rate, and accuracies in SNP discovery and marker validation, further studies including more accessions from underrepresented regions are needed in sweetpotato.
Collapse
Affiliation(s)
- Feiyang Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
- School of life science and engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Tao Lang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Jingyu Wu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Cong Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Zhigang Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Ma Yu
- School of life science and engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China.
| |
Collapse
|
6
|
Xu W, Gong C, Mai P, Li Z, Sun B, Li T. Genetic diversity and population structure analysis of 418 tomato cultivars based on single nucleotide polymorphism markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1445734. [PMID: 39691484 PMCID: PMC11649422 DOI: 10.3389/fpls.2024.1445734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Introduction Tomato (Solanum lycopersicum) is a highly valuable fruit crop. However, due to the lack of scientific and accurate variety identification methods and unified national standards, production management is scattered and non-standard, resulting in mixed varieties. This poses considerable difficulties for the cataloging and preservation of germplasm resources as well as the identification, promotion, and application of new tomato varieties. Methods To better understand the genetic diversity and population structure of representative tomato varieties, we collected 418 tomato varieties from the past 20 years and analyzed them using genome-wide single nucleotide polymorphism (SNP) markers. We initially assessed the population structure, genetic relationships, and genetic profiles of the 418 tomato germplasm resources utilizing simplified genome sequencing techniques. A total of 3,374,929 filtered SNPs were obtained and distributed across 12 chromosomes. Based on these SNP loci, the 418 tomatoes samples were divided into six subgroups. Results The population structure and genetic relationships among existing tomato germplasm resources were determined using principal component analysis, population structure analysis, and phylogenetic tree analysis. Rigorous selection criteria identified 15 additional high-quality DNA fingerprints from 50 validated SNP loci, effectively enabling the identification of the 418 tomato varieties, which were successfully converted into KASP (Kompetitive Allele Specific PCR) markers. Discussion This study represents the first comprehensive investigation assessing the diversity and population structure of a large collection of tomato varieties. Overall, it marks a considerable advancement in understanding the genetic makeup of tomato populations. The results broadened our understanding of the diversity, phylogeny, and population structure of tomato germplasm resources. Furthermore, this study provides a scientific basis and reference data for future analysis of genetic diversity, species identification, property rights disputes, and molecular breeding in tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Wu W, Shao M, Qi J, Jin G, Zhang R, Yao Y, Jiang C. Integrating genetic analysis of germplasm wealth for enhanced selection and improvement in olive (Olea europaea L.): insights from leaves. PLANT CELL REPORTS 2024; 43:247. [PMID: 39347829 DOI: 10.1007/s00299-024-03323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE High-throughput next-generation sequencing of 161 olive germplas. 33 samples were selected as core olive germplasm and Fingerprints were constructed. After GWAS analysis of olive leaf shape, 14 candidate genes were localized. Olive (Olea europaea L.) has been introduced to China since the 1960s. After a prolonged period of variation and domestication, there is a lack of comprehensive research on its genetics. The olive oil directly extracted from Olea europaea L. is recognized as 'liquid gold', nevertheless, people constantly overlook the valuable wealth of olive leaves. High-throughput next-generation sequencing was performed on 161 olive germplasm to analyze the kinship, genetic structure and diversity of olives, and the core germplasm of olives were selected and fingerprints were constructed. Meanwhile, Genome-wide association analysis (GWAS) was performed to locate the gene for regulating olive leaf shape. Herein, the results parsed that most of the Chinese olive germplasm was more closely related to the Italian germplasm. A wealth of hybridized germplasm possessed high genetic diversity and had the potential to be used as superior parental material for olive germplasm. A total of 33 samples were selected and characterized as core germplasm of olive and Fingerprints were also constructed. A total of 14 candidate genes were localized after GWAS analysis of four olive leaf shape phenotypes, including leaf shape, leaf curvature shape, leaf tip and leaf base shape. Collectively, this study revealed the genetic basis of olives in China and also succeeded in constructing the core germplasm that stands for the genetic diversity of olives, which can contribute to the scientific and effective collection and preservation of olive germplasm resources, and provide a scientific basis for the in-depth excavation and utilization of genes regulating olive leaf shape.
Collapse
Affiliation(s)
- Wenjun Wu
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jianli Qi
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Gaoming Jin
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Rong Zhang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Yufang Yao
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Chengying Jiang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China.
| |
Collapse
|
8
|
Cui Y, Yan J, Jiang L, Wang J, Huang M, Zhao X, Shi S. Needle and Branch Trait Variation Analysis and Associated SNP Loci Mining in Larix olgensis. Int J Mol Sci 2024; 25:10212. [PMID: 39337698 PMCID: PMC11432355 DOI: 10.3390/ijms251810212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Needles play key roles in photosynthesis and branch growth in Larix olgensis. However, genetic variation and SNP marker mining associated with needle and branch-related traits have not been reported yet. In this study, we examined 131 samples of unrelated genotypes from L. olgensis provenance trails. We investigated phenotypic data for seven needle and one branch-related traits before whole genome resequencing (WGRS) was employed to perform a genome-wide association study (GWAS). Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci that were significantly correlated with the studied traits. We identified a total of 243,090,868 SNP loci, and among them, we discovered a total of 161 SNP loci that were significantly associated with these traits using a general linear model (GLM). Based on the GWAS results, Kompetitive Allele-Specific PCR (KASP), designed based on the DNA of population samples, were used to validate the loci associated with L. olgensis phenotypes. In total, 20 KASP markers were selected from the 161 SNPs loci, and BSBM01000635.1_4693780, BSBM01000114.1_5114757, and BSBM01000114.1_5128586 were successfully amplified, were polymorphic, and were associated with the phenotypic variation. These developed KASP markers could be used for the genetic improvement of needle and branch-related traits in L. olgensis.
Collapse
Affiliation(s)
- Ying Cui
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (Y.C.)
| | - Jiawei Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Luping Jiang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (Y.C.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Manman Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (Y.C.)
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| |
Collapse
|
9
|
Ji Y, Liu G, Yan S, Jiang X, Wu M, Liu W, Li Y, Yang A, Dai P, Du S, Li Y, Wang J, Zhang X. GWAS combined with QTL mapping reveals the genetic loci of leaf morphological characters in Nicotiana tabacum. BMC PLANT BIOLOGY 2024; 24:583. [PMID: 38898384 PMCID: PMC11188574 DOI: 10.1186/s12870-024-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Leaf morphology plays a crucial role in photosynthetic efficiency and yield potential in crops. Cigar tobacco plants, which are derived from common tobacco (Nicotiana tabacum L.), possess special leaf characteristics including thin and delicate leaves with few visible veins, making it a good system for studying the genetic basis of leaf morphological characters. RESULTS In this study, GWAS and QTL mapping were simultaneously performed using a natural population containing 185 accessions collected worldwide and an F2 population consisting of 240 individuals, respectively. A total of 26 QTLs related to leaf morphological traits were mapped in the F2 population at three different developmental stages, and some QTL intervals were repeatedly detected for different traits and at different developmental stages. Among the 206 significant SNPs identified in the natural population using GWAS, several associated with the leaf thickness phenotype were co-mapped via QTL mapping. By analyzing linkage disequilibrium and transcriptome data from different tissues combined with gene functional annotations, 7 candidate genes from the co-mapped region were identified as the potential causative genes associated with leaf thickness. CONCLUSIONS These results presented a valuable cigar tobacco resource showing the genetic diversity regarding its leaf morphological traits at different developmental stages. It also provides valuable information for novel genes and molecular markers that will be useful for further functional verification and for molecular breeding of leaf morphological traits in crops in the future.
Collapse
Affiliation(s)
- Yan Ji
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Guoxiang Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Sifan Yan
- Ruijin Branch, Jiangxi Ganzhou Tobacco Company of China Tobacco Corporation, Ganzhou, CN-341000, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Mengting Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Wei Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, CN-610065, China
| | - Yuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Peigang Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Shuaibin Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China.
| | - Jun Wang
- Deyang Company of Sichuan Provincial Tobacco Corporation, Deyang, CN-618400, China.
| | - Xingwei Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China.
| |
Collapse
|
10
|
Xing X, Hu T, Wang Y, Li Y, Wang W, Hu H, Wei Q, Yan Y, Gan D, Bao C, Wang J. Construction of SNP fingerprints and genetic diversity analysis of radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1329890. [PMID: 38371408 PMCID: PMC10869463 DOI: 10.3389/fpls.2024.1329890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
Radish (Raphanus sativus L.) is a vegetable crop with economic value and ecological significance in the genus Radish, family Brassicaceae. In recent years, developed countries have attached great importance to the collection and conservation of radish germplasm resources and their research and utilization, but the lack of population genetic information and molecular markers has hindered the development of the genetic breeding of radish. In this study, we integrated the radish genomic data published in databases for the development of single-nucleotide polymorphism (SNP) markers, and obtained a dataset of 308 high-quality SNPs under strict selection criteria. With the support of Kompetitive Allele-Specific PCR (KASP) technology, we screened a set of 32 candidate core SNP marker sets to analyse the genetic diversity of the collected 356 radish varieties. The results showed that the mean values of polymorphism information content (PIC), minor allele frequency (MAF), gene diversity and heterozygosity of the 32 candidate core SNP markers were 0.32, 0.30, 0.40 and 0.25, respectively. Population structural analysis, principal component analysis and genetic evolutionary tree analysis indicated that the 356 radish materials were best classified into two taxa, and that the two taxa of the material were closely genetically exchanged. Finally, on the basis of 32 candidate core SNP markers we calculated 15 core markers using a computer algorithm to construct a fingerprint map of 356 radish varieties. Furthermore, we constructed a core germplasm population consisting of 71 radish materials using 32 candidate core markers. In this study, we developed SNP markers for radish cultivar identification and genetic diversity analysis, and constructed DNA fingerprints, providing a basis for the identification of radish germplasm resources and molecular marker-assisted breeding as well as genetic research.
Collapse
Affiliation(s)
- Xiaolin Xing
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tianhua Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yikui Wang
- Institute of Vegetables, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yan Li
- Institute of Vegetables, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wuhong Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haijiao Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingzhen Wei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaqin Yan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Defang Gan
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Chonglai Bao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinglei Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Dou T, Wang C, Ma Y, Chen Z, Zhang J, Guo G. CoreSNP: an efficient pipeline for core marker profile selection from genome-wide SNP datasets in crops. BMC PLANT BIOLOGY 2023; 23:580. [PMID: 37986037 PMCID: PMC10662547 DOI: 10.1186/s12870-023-04609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DNA marker profiles play a crucial role in the identification and registration of germplasm, as well as in the distinctness, uniformity, and stability (DUS) testing of new plant variety protection. However, selecting minimal marker sets from large-scale SNP dataset can be challenging to distinguish a maximum number of samples. RESULTS Here, we developed the CoreSNP pipeline using a "divide and conquer" strategy and a "greedy" algorithm. The pipeline offers adjustable parameters to guarantee the distinction of each sample pair with at least two markers. Additionally, it allows datasets with missing loci as input. The pipeline was tested in barley, soybean, wheat, rice and maize. A few dozen of core SNPs were efficiently selected in different crops with SNP array, GBS, and WGS dataset, which can differentiate thousands of individual samples. The core SNPs were distributed across all chromosomes, exhibiting lower pairwise linkage disequilibrium (LD) and higher polymorphism information content (PIC) and minor allele frequencies (MAF). It was shown that both the genetic diversity of the population and the characteristics of the original dataset can significantly influence the number of core markers. In addition, the core SNPs capture a certain level of the original population structure. CONCLUSIONS CoreSNP is an efficiency way of core marker sets selection based on Genome-wide SNP datasets of crops. Combined with low-density SNP chip or genotyping technologies, it can be a cost-effective way to simplify and expedite the evaluation of genetic resources and differentiate different crop varieties. This tool is expected to have great application prospects in the rapid comparison of germplasm and intellectual property protection of new varieties.
Collapse
Affiliation(s)
- Tingyu Dou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Chunchao Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Yanling Ma
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Zhaoyan Chen
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Jing Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Ganggang Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
| |
Collapse
|
12
|
Li J, Chang X, Huang Q, Liu P, Zhao X, Li F, Wang Y, Chang C. Construction of SNP fingerprint and population genetic analysis of honeysuckle germplasm resources in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1080691. [PMID: 36938035 PMCID: PMC10017979 DOI: 10.3389/fpls.2023.1080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The flower buds of Lonicera japonica Thunb. are widely used in Chinese medicine for their anti-inflammatory properties, and they have played an important role in the fight against SARS COVID-19 and other major epidemics. However, due to the lack of scientific and accurate variety identification methods and national unified standards, scattered and non-standardized management in flower bud production has led to mixed varieties that have caused significant difficulties in the cataloging and preservation of germplasm resources and the identification, promotion, and application of new L. japonica varieties. METHODS In this study, we evaluated the population structure, genetic relationships, and genetic fingerprints of 39 germplasm resources of Lonicera in China using simplified genome sequencing technology. RESULTS A total of 13,143,268 single nucleotide polymorphisms (SNPs) were identified. Thirty-nine samples of Lonicera were divided into four subgroups, and the population structure and genetic relationships among existing Lonicera germplasm resources were determined using principal component analysis, population structure analysis, and phylogenetic tree analysis. Through several stringent selection criteria, 15 additional streamlined, high-quality DNA fingerprints were filtered out of the validated 50 SNP loci and verified as being able to effectively identify the 39 Lonicera varieties. DISCUSSION To our knowledge, this is the first comprehensive study measuring the diversity and population structure of a large collection of Lonicera varieties in China. These results have greatly broadened our understanding of the diversity, phylogeny, and population structure of Lonicera. The results may enhance the future analysis of genetic diversity, species identification, property rights disputes, and molecular breeding by providing a scientific basis and reference data for these efforts.
Collapse
Affiliation(s)
- Jianjun Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaopei Chang
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Qian Huang
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Pengfei Liu
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiting Zhao
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Science, Henan Normal University, Xinxiang, China
| | - Fengmei Li
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China
| | - Yungang Wang
- Foresty Seeding Service Station of XinXiang, Xinxiang, Henan, China
| | - Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
13
|
Gemeinholzer B, Rupp O, Becker A, Strickert M, Müller CM. Genotyping by sequencing and a newly developed mRNA-GBS approach to link population genetic and transcriptome analyses reveal pattern differences between sites and treatments in red clover (Trifolium pratense L.). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1003057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The important worldwide forage crop red clover (Trifolium pratense L.) is widely cultivated as cattle feed and for soil improvement. Wild populations and landraces have great natural diversity that could be used to improve cultivated red clover. However, to date, there is still insufficient knowledge about the natural genetic and phenotypic diversity of the species. Here, we developed a low-cost complexity reduced mRNA analysis (mRNA-GBS) and compared the results with population genetic (GBS) and previously published mRNA-Seq data, to assess whether analysis of intraspecific variation within and between populations and transcriptome responses is possible simultaneously. The mRNA-GBS approach was successful. SNP analyses from the mRNA-GBS approach revealed comparable patterns to the GBS results, but due to site-specific multifactorial influences of environmental responses as well as conceptual and methodological limitations of mRNA-GBS, it was not possible to link transcriptome analyses with reduced complexity and sequencing depth to previously published greenhouse and field expression studies. Nevertheless, the use of short sequences upstream of the poly(A) tail of mRNA to reduce complexity are promising approaches that combine population genetics and expression profiling to analyze many individuals with trait differences simultaneously and cost-effectively, even in non-model species. Nevertheless, our study design across different regions in Germany was also challenging. The use of reduced complexity differential expression analyses most likely overlays site-specific patterns due to highly complex plant responses under natural conditions.
Collapse
|
14
|
Liu T, Guo S, Wu C, Zhang R, Zhong Q, Shi H, Zhou R, Qin Y, Jin Y. Phyllosphere microbial community of cigar tobacco and its corresponding metabolites. Front Microbiol 2022; 13:1025881. [PMID: 36439836 PMCID: PMC9691965 DOI: 10.3389/fmicb.2022.1025881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Cigar is made of a typical fermented tobacco where the microbiota inhabits within an alkaline environment. Our current understanding on cigar fermentation is far from thorough. This work employed both high-throughput sequencing and chromatography-mass spectrometric technologies to provide new scientific reference for this specific fermented system. Typical cigar samples from different regions (the Caribbeans, South America, East Asia, and Southeast Asia) were investigated. The results show that Firmicutes, Actinobacteria, Proteobacteria, Ascomycota, and Basidiomycota were the predominant phyla in the cigar samples. Rather than the fungal community, it was the bacterial community structures that played vital roles to differentiate the cigar from different regions: Staphylococcus was the dominant genus in the Americas; Bacillus was the dominant genus in Southeast Asia; while in East Asia, there was no dominant genus. Such differences in community structure then affected the microflora metabolism. The correlation between microbiota and metabolites revealed that Aspergillaceae, Cercospora, and Staphylococcus were significantly correlated with sclareolide; Bacillus were positively associated with isophorone. Alcaligenaceae was significantly and positively correlated with L-nicotine and hexadecanoic acid, methyl ester. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Shiping Guo
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ruina Zhang
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Qiu Zhong
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yanqing Qin
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Yang Y, Lyu M, Liu J, Wu J, Wang Q, Xie T, Li H, Chen R, Sun D, Yang Y, Yao X. Construction of an SNP fingerprinting database and population genetic analysis of 329 cauliflower cultivars. BMC PLANT BIOLOGY 2022; 22:522. [PMID: 36357859 PMCID: PMC9647966 DOI: 10.1186/s12870-022-03920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cauliflower is one of the most important vegetable crops grown worldwide. However, the lack of genetic diversity information and efficient molecular markers hinders efforts to improve cauliflower. This study aims to construct DNA fingerprints for 329 cauliflower cultivars based on SNP markers and the KASP system. After rigorous filtering, a total of 1662 candidate SNPs were obtained from nearly 17.9 million SNP loci. The mean values of PIC, MAF, heterozygosity and gene diversity of these SNPs were 0.389, 0.419, 0.075, and 0.506, respectively. We developed a program for in silico simulations on 153 core germplasm samples to generate ideal SNP marker sets from the candidates. Finally, 41 highly polymorphic KASP markers were selected and applied to identify 329 cauliflower cultivars, mainly collected from the public market. Furthermore, based on the KASP genotyping data, we performed phylogenetic analysis and population structure analysis of the 329 cultivars. As a result, these cultivars could be classified into three major clusters, and the classification patterns were significantly related to their curd solidity and geographical origin. Finally, fingerprints of the 329 cultivars and 2D barcodes with the genetic information of each sample were generated. The fingerprinting database developed in this study provides a practical tool for identifying the authenticity and purity of cauliflower seeds and valuable genetic information about the current cauliflower cultivars.
Collapse
Affiliation(s)
- Yuyao Yang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mingjie Lyu
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Qian Wang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Tianyu Xie
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Haichao Li
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rui Chen
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Deling Sun
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Yingxia Yang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xingwei Yao
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
16
|
Tang W, Lin J, Wang Y, An H, Chen H, Pan G, Zhang S, Guo B, Yu K, Li H, Fang X, Zhang Y. Selection and Validation of 48 KASP Markers for Variety Identification and Breeding Guidance in Conventional and Hybrid Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2022; 15:48. [PMID: 36152074 PMCID: PMC9509510 DOI: 10.1186/s12284-022-00594-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Breeding of conventional and hybrid rice (Oryza sativa L.) have solved hunger problems and increased farmers' income in the world. Molecular markers have been widely used in marker-assisted breeding and identification of larger numbers of different bred varieties in the past decades. The recently developed SNP markers are applied for more stable and detectable compared with other markers. But the cost of genotyping lots SNPs is high. So, it is essential to select less representative SNPs and inexpensive detecting methods to lower the cost and accelerate variety identification and breeding process. KASP (Kompetitive Allele-Specific PCR) is a flexible method to detect the SNPs, and large number of KASP markers have been widely used in variety identification and breeding. However, the ability of less KASP markers on massive variety identification and breeding remains unknown. RESULTS Here, 48 KASP markers were selected from 378 markers to classify and analyze 518 varieties including conventional and hybrid rice. Through analyzing the population structure, the 48 markers could almost represent the 378 markers. In terms of variety identification, the 48 KASP markers had a 100% discrimination rate in 53 conventional indica varieties and 193 hybrid varieties, while they could distinguish 89.1% conventional japonica rice from different breeding institutes. Two more markers added would increase the ratio from 68.38 to 77.94%. Additionally, the 48 markers could be used for classification of subpopulations in the bred variety. Also, 8 markers had almost completely different genotypes between japonica and indica, and 3 markers were found to be very important for japonica hybrid rice. In hybrid varieties, the heterozygosity of chromosomes 3, 6 and 11 was relatively higher than others. CONCLUSIONS Our results showed that 48 KASP markers could be used to identify rice varieties, and the panel we tested could provide a database for breeders to identify new breeding lines. Also, the specific markers we found were useful for marker-assisted breeding in rice, including conventional and hybrid.
Collapse
Affiliation(s)
- Weijie Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Jing Lin
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yanping Wang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Hongzhou An
- The Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China
| | - Haiyuan Chen
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Gen Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Suobing Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Baowei Guo
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, People's Republic of China
| | - Kun Yu
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Huayong Li
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, People's Republic of China.
| |
Collapse
|
17
|
Development of SLAF-Sequence and Multiplex SNaPshot Panels for Population Genetic Diversity Analysis and Construction of DNA Fingerprints for Sugarcane. Genes (Basel) 2022; 13:genes13081477. [PMID: 36011388 PMCID: PMC9408448 DOI: 10.3390/genes13081477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A genetic diversity analysis and identification of plant germplasms and varieties are important and necessary for plant breeding. Deoxyribonucleotide (DNA) fingerprints based on genomic molecular markers play an important role in accurate germplasm identification. In this study, Specific-Locus Amplified Fragment Sequencing (SLAF-seq) was conducted for a sugarcane population with 103 cultivated and wild accessions. In total, 105,325 genomic single nucleotide polymorphisms (SNPs) were called successfully to analyze population components and genetic diversity. The genetic diversity of the population was complex and clustered into two major subpopulations. A principal component analysis (PCA) showed that these accessions could not be completely classified based on geographical origin. After filtration, screening, and comparison, 192 uniformly-distributed SNP loci were selected for the 32 chromosomes of sugarcane. An SNP complex genotyping detection system was established using the SNaPshot typing method and used for the precise genotyping and identification of 180 sugarcane germplasm samples. According to the stability and polymorphism of the SNPs, 32 high-quality SNP markers were obtained and successfully used to construct the first SNP fingerprinting and quick response codes (QR codes) for sugarcane. The results provide new insights for genotyping, classifying, and identifying germplasm and resources for sugarcane breeding
Collapse
|
18
|
Li H, Ikram M, Xia Y, Li R, Yuan Q, Zhao W, Siddique KHM, Guo P. Genome-wide identification and development of InDel markers in tobacco ( Nicotiana tabacum L.) using RAD-seq. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1077-1089. [PMID: 35722506 PMCID: PMC9203652 DOI: 10.1007/s12298-022-01187-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
Insertions and deletions (InDels) can be used as molecular markers in genetic studies and marker-assisted selection breeding. However, genetic improvement in tobacco has been hindered by limited genetic diversity information and relatedness within available germplasm. A Chinese tobacco variety, Yueyan-98, was resequenced using restriction-site associated DNA (RAD-seq) approach to develop InDel markers. In total, 32,884 InDel loci were detected between Yueyan-98 and the K326 reference sequence [18,598 (56.55%) deletions and 14,288 (43.45%) insertions], ranging from 1 to 62 bp in length. Of the 6,733 InDels (> 4 bp) that were suitable for polyacrylamide gel electrophoresis, 150 were randomly selected. These 150 InDels were unevenly distributed on 23 chromosomes, and the highest numbers of InDels were observed on chromosomes Nt05, Nt13, and Nt23. The average density of adjacent InDels was 19.36 Mb. Thirty-seven InDels were located in genic regions. Polymerase chain reaction (PCR)-based markers were developed to validate polymorphism; 113 (79.80%) of the 150 InDel markers showed polymorphism and were further used for genetic diversity analysis of 50 tobacco accessions (13 from China, 1 from Mexico, and 36 from the USA). The average expected heterozygosity (He) and polymorphism information content (PIC) values were 0.28 ± 0.16 and 0.38 ± 0.10, respectively. The average Shannon diversity index (I) was 0.34 ± 0.18, with genetic diversity ranging from 0.13-0.57. The 50 accessions were classified into two groups with a genetic similarity coefficient of 0.68. Principal coordinate analysis (PCoA) and population structure analysis showed similar results and divided the population into two groups unrelated to their geographical origins. AMOVA showed 4% variance among the population and the remaining 96% within the population, suggesting low genetic differentiation between two subpopulations. Furthermore, 10 InDels (19 alleles) were significantly identified for tobacco plant height using GLM+Q model at P < 0.005. Among these, three markers (Nt-I-26, Nt-I-41, and Nt-I-44) were detected in at least two environments, with phenotypic variance explained (PVE) ranging from 14.03 to 32.68%. The polymorphic InDel markers developed can be used for hybrid identification, genetic diversity, genetic linkage map construction, gene mapping, and MAS breeding programs of tobacco. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01187-3.
Collapse
Affiliation(s)
- Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Muhammad Ikram
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yanshi Xia
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, 510640 China
| | - Weicai Zhao
- Nanxiong Research Institutes of Guangdong Tobacco Co. Ltd, Nanxiong, 512400 China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001 Australia
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
19
|
Wang D, Zhang X, Chen D, Ye J. First Report of Sida leaf curl virus and Associated Betasatellite from Tobacco. PLANT DISEASE 2022; 106:1078. [PMID: 34713725 DOI: 10.1094/pdis-05-21-1044-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dexin Chen
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou 571100, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Population Genetics and Development of a Core Collection from Elite Germplasms of Xanthoceras sorbifolium Based on Genome-Wide SNPs. FORESTS 2022. [DOI: 10.3390/f13020338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Xanthoceras sorbifolium is one of the most important species of woody oil. In this study, whole genome re-sequencing of 119 X. sorbifolium germplasms was conducted and, after filtering, 105,685,557 high-quality SNPs were identified, which were used to perform population genetics and core collection development analyses. The results from the phylogenetic, population structure, and principal component analyses showed a high level of agreement, with 119 germplasms being classified into three main groups. The germplasms were not completely classified based on their geographical origins and flower colors; furthermore, the genetic backgrounds of these germplasms were complex and diverse. The average polymorphsim information content (PIC) values for the three inferred groups clustered by structure analysis and the six classified color groups were 0.2445 and 0.2628, respectively, indicating a low to medium informative degree of genetic diversity. Moreover, a core collection containing 29.4% (35) out of the 119 X. sorbifolium germplasms was established. Our results revealed the genetic diversity and structure of X. sorbifolium germplasms, and the development of a core collection will be useful for the efficient improvement of breeding programs and genome-wide association studies.
Collapse
|
21
|
Lai R, Ikram M, Li R, Xia Y, Yuan Q, Zhao W, Zhang Z, Siddique KHM, Guo P. Identification of Novel Quantitative Trait Nucleotides and Candidate Genes for Bacterial Wilt Resistance in Tobacco ( Nicotiana tabacum L.) Using Genotyping-by-Sequencing and Multi-Locus Genome-Wide Association Studies. FRONTIERS IN PLANT SCIENCE 2021; 12:744175. [PMID: 34745174 PMCID: PMC8566715 DOI: 10.3389/fpls.2021.744175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 05/17/2023]
Abstract
Tobacco bacterial wilt (TBW) is a devastating soil-borne disease threatening the yield and quality of tobacco. However, its genetic foundations are not fully understood. In this study, we identified 126,602 high-quality single-nucleotide polymorphisms (SNPs) in 94 tobacco accessions using genotyping-by-sequencing (GBS) and a 94.56 KB linkage disequilibrium (LD) decay rate for candidate gene selection. The population structure analysis revealed two subpopulations with 37 and 57 tobacco accessions. Four multi-locus genome-wide association study (ML-GWAS) approaches identified 142 quantitative trait nucleotides (QTNs) in E1-E4 and the best linear unbiased prediction (BLUP), explaining 0.49-22.52% phenotypic variance. Of these, 38 novel stable QTNs were identified across at least two environments/methods, and their alleles showed significant TBW-DI differences. The number of superior alleles associated with TBW resistance for each accession ranged from 4 to 24; eight accessions had more than 18 superior alleles. Based on TBW-resistant alleles, the five best cross combinations were predicted, including MC133 × Ruyuan No. 1 and CO258 × ROX28. We identified 52 candidate genes around 38 QTNs related to TBW resistance based on homologous functional annotation and KEGG enrichment analysis, e.g., CYCD3;2, BSK1, Nitab4.5_0000641g0050, Nitab4.5_0000929g0030. To the best of our knowledge, this is the first comprehensive study to identify QTNs, superior alleles, and their candidate genes for breeding TBW-resistant tobacco varieties. The results provide further insight into the genetic architecture, marker-assisted selection, and functional genomics of TBW resistance, improving future breeding efforts to increase crop productivity.
Collapse
Affiliation(s)
- Ruiqiang Lai
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Muhammad Ikram
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qinghua Yuan
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weicai Zhao
- Nanxiong Research Institute of Guangdong Tobacco Co., Ltd., Nanxiong, China
| | - Zhenchen Zhang
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|