1
|
Li L, Cui S, Li X, Hou M, Liu Y, Liu L. Fine mapping and candidate gene analysis of major QTLs for number of seeds per pod in Arachis hypogaea L. BMC Genomics 2025; 26:376. [PMID: 40234740 PMCID: PMC11998195 DOI: 10.1186/s12864-025-11560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Peanut (Arachis hypogaea L., 2n = 2x = 20) is an important industrial and oil crop that is widely grown in more than 100 countries. In recent years, breeders have focused on increasing the seed number per pod to improve their yield in addition to other breeding for other key components of yield, including the pod number, seeds per pod, and 100-seed weight. RESULTS In this study, a secondary population of 1,114 BC1F2 lines was derived from a cross between the parents R45 and JNH3. Two stable major-effect quantitative trait loci of qRMPA09.1 and qRMPA09.2 were detected simultaneously and mapped within chromosomal intervals of approximately 400 Kb and 600 Kb on chromosome A09. Additionally, combined whole-genome and RNA sequencing analyses showed the differential expression of the Arahy.04JNDX gene that belongs to a MYB transcription factor (TF) between the two parents. The AhMYB51 gene was also inferred to influence the number of seeds per pod in peanuts. An examination of the backcross lines L2/L4 showed that AhMYB51 increases the rate of multiple pods per plant (RMSP) primarily by affecting brassinosteroids in the flowers, while its overexpression promotes the length of siliques in Arabidopsis thaliana. CONCLUSIONS Our findings provide valuable insights for the cloning of favorable alleles for RMSP in peanuts. The qRMSPA09.1 and qRMSPA09.2 are two novel QTL associated with the RMSP trait, with AhMYB51 predicted as its candidate gene. Moreover, the closely linked polymorphic SNP markers for loci of two significant QTLs may be useful in accelerating marker-assisted breeding in peanuts.
Collapse
Affiliation(s)
- Long Li
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Shunli Cui
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Xiukun Li
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Mingyu Hou
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Yingru Liu
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Lifeng Liu
- College of Agronomy, State Key Laboratory of North China for Crop Improvement and Regulation/Key laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, 071001, P.R. China.
| |
Collapse
|
2
|
Li L, Wang Y, Jin X, Meng Q, Zhao Z, Liu L. Integrated RNA-Seq and Metabolomics Analyses of Biological Processes and Metabolic Pathways Involved in Seed Development in Arachis hypogaea L. Genes (Basel) 2025; 16:300. [PMID: 40149451 PMCID: PMC11942507 DOI: 10.3390/genes16030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
In peanut cultivation, fertility and seed development are essential for fruit quality and yield, while pod number per plant, seed number per pod, kernel weight, and seed size are indicators of peanut yield. In this study, metabolomic and RNA-seq analyses were conducted on the flowers and aerial pegs (aerpegs) of two peanut cultivars JNH3 (Jinonghei) and SLH (Silihong), respectively. Compared with SLH, JNH3 had 3840 up-regulated flower-specific differentially expressed genes (DEGs) and 5890 up-regulated aerpeg-specific DEGs. Compared with the JNH3 aerpegs, there were 4079 up-regulated variety-specific DEGs and 18 up-regulated differentially accumulated metabolites (DAMs) of JNH3 flowers, while there were 3732 up-regulated variety-specific DEGs and 48 up-regulated DAMs in SLH flowers. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs of JNH3 were associated with pollen germination and phenylalanine metabolism in flower and aerpeg tissues, respectively. In contrast, the DEGs of SLH were associated with protein degradation, amino acid metabolism, and DNA repair. However, there were significant differences in the lipids and lipid-like molecules between JNH3 flowers and SLH flowers. This investigation provides candidate genes and an experimental basis for the further improvement of high-quality and high-yield peanut varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Lifeng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding 071001, China; (L.L.); (Y.W.); (X.J.); (Q.M.); (Z.Z.)
| |
Collapse
|
3
|
Okaron V, Mwololo J, Gimode DM, Okello DK, Avosa M, Clevenger J, Korani W, Ssemakula MO, Odong TL, Odeny DA. Using cross-country datasets for association mapping in Arachis hypogaea L. THE PLANT GENOME 2024; 17:e20515. [PMID: 39404458 PMCID: PMC11628922 DOI: 10.1002/tpg2.20515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 12/11/2024]
Abstract
Groundnut (Arachis hypogaea L.) is one of the most important climate-resilient oil crops in sub-Saharan Africa. There is a significant yield gap for groundnut in Africa because of poor soil fertility, low agricultural inputs, biotic and abiotic stresses. Cross-country evaluations of promising breeding lines can facilitate the varietal development process. The objective of our study was to characterize popular test environments in Uganda (Serere and Nakabango) and Malawi (Chitala and Chitedze) and identify genotypes with stable superior yields for potential future release. Phenotypic data were generated for 192 breeding lines for yield-related traits, while genotypic data were generated using skim-sequencing. We observed significant variation (p < 0.001; p < 0.01; p < 0.05) across genotypes for all yield-related traits: days to flowering (DTF), pod yield (PY), shelling percentage, 100-seed weight, and grain yield within and across locations. Nakabango, Chitedze, and Serere were clustered as one mega-environment with the top five most stable genotypes being ICGV-SM 01709, ICGV-SM 15575, ICGV-SM 90704, ICGV-SM 15576, and ICGV-SM 03710, all Virginia types. Population structure analysis clustered the genotypes in three distinct groups based on market classes. Eight and four marker-trait associations (MTAs) were recorded for DTF and PY, respectively. One of the MTAs for DTF was co-localized within an uncharacterized protein on chromosome 13, while another one (TRv2Chr.11_3476885) was consistent across the two countries. Future studies will need to further characterize the candidate genes as well as confirm the stability of superior genotypes across seasons before recommending them for release.
Collapse
Affiliation(s)
- Velma Okaron
- Department of Agricultural Production, School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - James Mwololo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bulawayo, Zimbabwe
| | - Davis M Gimode
- International Crops Research Institute for the Semi-Arid Tropics- Kenya, Nairobi, Kenya
| | - David K Okello
- National Semi-Arid Resources Research Institute, Soroti, Uganda
| | - Millicent Avosa
- International Crops Research Institute for the Semi-Arid Tropics- Kenya, Nairobi, Kenya
| | - Josh Clevenger
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Walid Korani
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Mildred Ochwo Ssemakula
- Department of Agricultural Production, School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Thomas L Odong
- Department of Agricultural Production, School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics- Kenya, Nairobi, Kenya
| |
Collapse
|
4
|
Wang Z, Lei Y, Liao B. Omics-driven advances in the understanding of regulatory landscape of peanut seed development. FRONTIERS IN PLANT SCIENCE 2024; 15:1393438. [PMID: 38766472 PMCID: PMC11099219 DOI: 10.3389/fpls.2024.1393438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Peanuts (Arachis hypogaea) are an essential oilseed crop known for their unique developmental process, characterized by aerial flowering followed by subterranean fruit development. This crop is polyploid, consisting of A and B subgenomes, which complicates its genetic analysis. The advent and progression of omics technologies-encompassing genomics, transcriptomics, proteomics, epigenomics, and metabolomics-have significantly advanced our understanding of peanut biology, particularly in the context of seed development and the regulation of seed-associated traits. Following the completion of the peanut reference genome, research has utilized omics data to elucidate the quantitative trait loci (QTL) associated with seed weight, oil content, protein content, fatty acid composition, sucrose content, and seed coat color as well as the regulatory mechanisms governing seed development. This review aims to summarize the advancements in peanut seed development regulation and trait analysis based on reference genome-guided omics studies. It provides an overview of the significant progress made in understanding the molecular basis of peanut seed development, offering insights into the complex genetic and epigenetic mechanisms that influence key agronomic traits. These studies highlight the significance of omics data in profoundly elucidating the regulatory mechanisms of peanut seed development. Furthermore, they lay a foundational basis for future research on trait-related functional genes, highlighting the pivotal role of comprehensive genomic analysis in advancing our understanding of plant biology.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
5
|
Guo M, Deng L, Gu J, Miao J, Yin J, Li Y, Fang Y, Huang B, Sun Z, Qi F, Dong W, Lu Z, Li S, Hu J, Zhang X, Ren L. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2024; 24:244. [PMID: 38575936 PMCID: PMC10996145 DOI: 10.1186/s12870-024-04937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.
Collapse
Affiliation(s)
- Minjie Guo
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Li Deng
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Jianzhong Gu
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Jianli Miao
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Junhua Yin
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Yang Li
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Yuanjin Fang
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Bingyan Huang
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ziqi Sun
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Feiyan Qi
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenzhao Dong
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenhua Lu
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Shaowei Li
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Junping Hu
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Xinyou Zhang
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Li Ren
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Gutierrez N, Pégard M, Solis I, Sokolovic D, Lloyd D, Howarth C, Torres AM. Genome-wide association study for yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1328690. [PMID: 38545396 PMCID: PMC10965552 DOI: 10.3389/fpls.2024.1328690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 11/11/2024]
Abstract
Yield is the most complex trait to improve crop production, and identifying the genetic determinants for high yield is a major issue in breeding new varieties. In faba bean (Vicia faba L.), quantitative trait loci (QTLs) have previously been detected in studies of biparental mapping populations, but the genes controlling the main trait components remain largely unknown. In this study, we investigated for the first time the genetic control of six faba bean yield-related traits: shattering (SH), pods per plant (PP), seeds per pod (SP), seeds per plant (SPL), 100-seed weight (HSW), and plot yield (PY), using a genome-wide association study (GWAS) on a worldwide collection of 352 homozygous faba bean accessions with the aim of identifying markers associated with them. Phenotyping was carried out in field trials at three locations (Spain, United Kingdom, and Serbia) over 2 years. The faba bean panel was genotyped with the Affymetrix faba bean SNP-chip yielding 22,867 SNP markers. The GWAS analysis identified 112 marker-trait associations (MTAs) in 97 candidate genes, distributed over the six faba bean chromosomes. Eight MTAs were detected in at least two environments, and five were associated with multiple traits. The next step will be to validate these candidates in different genetic backgrounds to provide resources for marker-assisted breeding of faba bean yield.
Collapse
Affiliation(s)
- Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| | - Marie Pégard
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | | | | | - David Lloyd
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Catherine Howarth
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ana M. Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| |
Collapse
|
7
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
8
|
Conde S, Rami JF, Okello DK, Sambou A, Muitia A, Oteng-Frimpong R, Makweti L, Sako D, Faye I, Chintu J, Coulibaly AM, Miningou A, Asibuo JY, Konate M, Banla EM, Seye M, Djiboune YR, Tossim HA, Sylla SN, Hoisington D, Clevenger J, Chu Y, Tallury S, Ozias-Akins P, Fonceka D. The groundnut improvement network for Africa (GINA) germplasm collection: a unique genetic resource for breeding and gene discovery. G3 (BETHESDA, MD.) 2023; 14:jkad244. [PMID: 37875136 PMCID: PMC10755195 DOI: 10.1093/g3journal/jkad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Cultivated peanut or groundnut (Arachis hypogaea L.) is a grain legume grown in many developing countries by smallholder farmers for food, feed, and/or income. The speciation of the cultivated species, that involved polyploidization followed by domestication, greatly reduced its variability at the DNA level. Mobilizing peanut diversity is a prerequisite for any breeding program for overcoming the main constraints that plague production and for increasing yield in farmer fields. In this study, the Groundnut Improvement Network for Africa assembled a collection of 1,049 peanut breeding lines, varieties, and landraces from 9 countries in Africa. The collection was genotyped with the Axiom_Arachis2 48K SNP array and 8,229 polymorphic single nucleotide polymorphism (SNP) markers were used to analyze the genetic structure of this collection and quantify the level of genetic diversity in each breeding program. A supervised model was developed using dapc to unambiguously assign 542, 35, and 172 genotypes to the Spanish, Valencia, and Virginia market types, respectively. Distance-based clustering of the collection showed a clear grouping structure according to subspecies and market types, with 73% of the genotypes classified as fastigiata and 27% as hypogaea subspecies. Using STRUCTURE, the global structuration was confirmed and showed that, at a minimum membership of 0.8, 76% of the varieties that were not assigned by dapc were actually admixed. This was particularly the case of most of the genotype of the Valencia subgroup that exhibited admixed genetic heritage. The results also showed that the geographic origin (i.e. East, Southern, and West Africa) did not strongly explain the genetic structure. The gene diversity managed by each breeding program, measured by the expected heterozygosity, ranged from 0.25 to 0.39, with the Niger breeding program having the lowest diversity mainly because only lines that belong to the fastigiata subspecies are used in this program. Finally, we developed a core collection composed of 300 accessions based on breeding traits and genetic diversity. This collection, which is composed of 205 genotypes of fastigiata subspecies (158 Spanish and 47 Valencia) and 95 genotypes of hypogaea subspecies (all Virginia), improves the genetic diversity of each individual breeding program and is, therefore, a unique resource for allele mining and breeding.
Collapse
Affiliation(s)
- Soukeye Conde
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, University Montpellier, Institut Agro, 34398 Montpellier, France
- F.S.T., Département de B.V., Université Cheikh Anta Diop, BP 5005 Dakar, Senegal
| | - Jean-François Rami
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, University Montpellier, Institut Agro, 34398 Montpellier, France
| | - David K Okello
- National Semi-Arid Resources Research Institute-Serere, PO Box 56, Kampala, Uganda
| | - Aissatou Sambou
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Amade Muitia
- Mozambique Agricultural Research Institute (Instituto de Investigação Agrária de Moçambique), Northeast Zonal Centre, Nampula Research Station, PO Box 1922, Nampula, Mozambique
| | - Richard Oteng-Frimpong
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Lutangu Makweti
- Zambia Agriculture Research Institute (ZARI), PO Box 510089, Chipata, Zambia
| | - Dramane Sako
- Institut d’Economie Rurale (IER), Centre Régional de Recherche Agronomique (CRRA), BP 281 Kayes, Mali
| | - Issa Faye
- ISRA, Institut Sénégalais de Recherches Agricoles, Centre National de Recherche Agronomique, BP 53 Bambey, Sénégal
| | - Justus Chintu
- Chitedze Agricultural Research Service, PO Box 158, Lilongwe, Malawi
| | - Adama M Coulibaly
- Institut National de Recherche Agronomique du Niger (INRAN), BP 240 Maradi, Niger
| | - Amos Miningou
- INERA, CREAF, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - James Y Asibuo
- Council for Scientific and Industrial Research-Crops Research Institute (CSIR-CRI), P.O. Box 3785, Kumasi, Ghana
| | - Moumouni Konate
- INERA, DRREA-Ouest, 01 BP 910 Bobo Dioulasso 01, Burkina Faso
| | - Essohouna M Banla
- Institut Togolais de Recherche Agronomique (ITRA), 13BP267 Lome, Togo
| | - Maguette Seye
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Yvette R Djiboune
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Hodo-Abalo Tossim
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Samba N Sylla
- F.S.T., Département de B.V., Université Cheikh Anta Diop, BP 5005 Dakar, Senegal
| | - David Hoisington
- Feed the Future Innovation Lab for Peanut, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Josh Clevenger
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Ye Chu
- Institute of Plant Breeding Genetics and Genomics and Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Shyam Tallury
- Plant Genetic Resources Conservation Unit, Griffin, GA 30223, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding Genetics and Genomics and Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Daniel Fonceka
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, University Montpellier, Institut Agro, 34398 Montpellier, France
| |
Collapse
|
9
|
Fang Y, Liu H, Qin L, Qi F, Sun Z, Wu J, Dong W, Huang B, Zhang X. Identification of QTL for kernel weight and size and analysis of the pentatricopeptide repeat (PPR) gene family in cultivated peanut (Arachis hypogaea L.). BMC Genomics 2023; 24:495. [PMID: 37641021 PMCID: PMC10463326 DOI: 10.1186/s12864-023-09568-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.
Collapse
Affiliation(s)
- Yuanjin Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jihua Wu
- Shangqiu Academy of Agriculture and Forestry, Shangqiu, 476002, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Yan L, Song W, Wang Z, Yu D, Sudini H, Kang Y, Lei Y, Huai D, Chen Y, Wang X, Wang Q, Liao B. Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts ( Arachis hypogaea L.) through Genome-Wide Association Study. Genes (Basel) 2023; 14:1447. [PMID: 37510351 PMCID: PMC10378806 DOI: 10.3390/genes14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an important source of edible oil and protein for human nutrition. However, the incidence of stem rot disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea showed no significant difference. Accessions from southern China displayed the lowest disease index value compared to those from other ecological regions. We used whole-genome resequencing to analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of 23 significant SNPs were annotated, which have functions related to recognition, signal transduction, and defense response. These significant SNPs and candidate genes provide valuable information for further validation and molecular breeding to improve stem rot resistance in peanut.
Collapse
Affiliation(s)
- Liying Yan
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wanduo Song
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongyang Yu
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hari Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Yanping Kang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianqian Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Boshou Liao
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
11
|
Kassie FC, Nguepjop JR, Ngalle HB, Assaha DVM, Gessese MK, Abtew WG, Tossim HA, Sambou A, Seye M, Rami JF, Fonceka D, Bell JM. An Overview of Mapping Quantitative Trait Loci in Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1176. [PMID: 37372356 DOI: 10.3390/genes14061176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Quantitative Trait Loci (QTL) mapping has been thoroughly used in peanut genetics and breeding in spite of the narrow genetic diversity and the segmental tetraploid nature of the cultivated species. QTL mapping is helpful for identifying the genomic regions that contribute to traits, for estimating the extent of variation and the genetic action (i.e., additive, dominant, or epistatic) underlying this variation, and for pinpointing genetic correlations between traits. The aim of this paper is to review the recently published studies on QTL mapping with a particular emphasis on mapping populations used as well as traits related to kernel quality. We found that several populations have been used for QTL mapping including interspecific populations developed from crosses between synthetic tetraploids and elite varieties. Those populations allowed the broadening of the genetic base of cultivated peanut and helped with the mapping of QTL and identifying beneficial wild alleles for economically important traits. Furthermore, only a few studies reported QTL related to kernel quality. The main quality traits for which QTL have been mapped include oil and protein content as well as fatty acid compositions. QTL for other agronomic traits have also been reported. Among the 1261 QTL reported in this review, and extracted from the most relevant studies on QTL mapping in peanut, 413 (~33%) were related to kernel quality showing the importance of quality in peanut genetics and breeding. Exploiting the QTL information could accelerate breeding to develop highly nutritious superior cultivars in the face of climate change.
Collapse
Affiliation(s)
- Fentanesh C Kassie
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaounde I, Yaounde P.O. Box 337, Cameroon
- Department of Plant Science, College of Agriculture, Wolaita Sodo University, Sodo P.O. Box 138, Ethiopia
| | - Joël R Nguepjop
- UMR AGAP, CIRAD, F-34398 Montpellier, France
- AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France
- Centre d'Etudes Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS/ISRA), Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS, Route de Khombole, Thiès BP 3320, Senegal
| | - Hermine B Ngalle
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaounde I, Yaounde P.O. Box 337, Cameroon
| | - Dekoum V M Assaha
- Department of Agriculture, Higher Technical Teachers Training College, University of Buea, Kumba P.O. Box 249, Cameroon
| | - Mesfin K Gessese
- Department of Plant Science, College of Agriculture, Wolaita Sodo University, Sodo P.O. Box 138, Ethiopia
| | - Wosene G Abtew
- Department of Horticulture and Plant Science, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Hodo-Abalo Tossim
- Centre d'Etudes Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS/ISRA), Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS, Route de Khombole, Thiès BP 3320, Senegal
| | - Aissatou Sambou
- Centre d'Etudes Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS/ISRA), Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS, Route de Khombole, Thiès BP 3320, Senegal
| | - Maguette Seye
- Centre d'Etudes Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS/ISRA), Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS, Route de Khombole, Thiès BP 3320, Senegal
| | - Jean-François Rami
- UMR AGAP, CIRAD, F-34398 Montpellier, France
- AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS, Route de Khombole, Thiès BP 3320, Senegal
| | - Daniel Fonceka
- UMR AGAP, CIRAD, F-34398 Montpellier, France
- AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France
- Centre d'Etudes Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS/ISRA), Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l'Ouest (IAVAO), CERAAS, Route de Khombole, Thiès BP 3320, Senegal
| | - Joseph M Bell
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaounde I, Yaounde P.O. Box 337, Cameroon
| |
Collapse
|
12
|
Sharma V, Gangurde SS, Nayak SN, Gowda AS, Sukanth B, Mahadevaiah SS, Manohar SS, Choudhary RS, Anitha T, Malavalli SS, Srikanth S, Bajaj P, Sharma S, Varshney RK, Latha P, Janila P, Bhat RS, Pandey MK. Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. FRONTIERS IN PLANT SCIENCE 2023; 14:1182867. [PMID: 37287715 PMCID: PMC10243373 DOI: 10.3389/fpls.2023.1182867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 06/09/2023]
Abstract
Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Anjan S. Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B.S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - T. Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - S.N. Srikanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| |
Collapse
|
13
|
Achola E, Wasswa P, Fonceka D, Clevenger JP, Bajaj P, Ozias-Akins P, Rami JF, Deom CM, Hoisington DA, Edema R, Odeny DA, Okello DK. Genome-wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:35. [PMID: 36897398 PMCID: PMC10006280 DOI: 10.1007/s00122-023-04259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
KEY MESSAGE We identified markers associated with GRD resistance after screening an Africa-wide core collection across three seasons in Uganda Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut.
Collapse
Affiliation(s)
- Esther Achola
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Daniel Fonceka
- Regional Study Center for the Improvement of Drought Adaptation, Senegalese Institute for Agricultural Research, BP 3320, Thiès, Senegal
- UMR AGAP, CIRAD, 34398, Montpellier, France
- UMR AGAP, CIRAD, BP 3320, Thies, Senegal
| | | | - Prasad Bajaj
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, 502324, India
| | - Peggy Ozias-Akins
- Center for Applied Genetic Technologies, University of Georgia, Tifton, GA, 31793, USA
| | - Jean-François Rami
- UMR AGAP, CIRAD, 34398, Montpellier, France
- UMR AGAP, CIRAD, BP 3320, Thies, Senegal
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, 34398, Montpellier, France
| | - Carl Michael Deom
- Department of Pathology, The University of Georgia, Athens, GA, 30602, USA
| | - David A Hoisington
- Feed the Future Innovation Lab for Peanut, University of Georgia, Athens, GA, 30602, USA
| | - Richard Edema
- Makerere University Regional Center for Crop Improvement Kampala, P.O. Box 7062, Kampala, Uganda
| | - Damaris Achieng Odeny
- International Crops Research Institute for the Semi-Arid Tropics, PO Box, Nairobi, 39063-00623, Kenya.
| | - David Kalule Okello
- National Semi-Arid Resources Research Institute-Serere, P.O. Box 56, Kampala, Uganda.
| |
Collapse
|
14
|
Zhou X, Luo H, Yu B, Huang L, Liu N, Chen W, Liao B, Lei Y, Huai D, Guo P, Li W, Guo J, Jiang H. Genetic dissection of fatty acid components in the Chinese peanut (Arachis hypogaea L.) mini-core collection under multi-environments. PLoS One 2022; 17:e0279650. [PMID: 36584016 PMCID: PMC9803190 DOI: 10.1371/journal.pone.0279650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Peanut (Arachis hypogaea L.) is an important source of edible oil and protein for human nutrition. The quality of peanut seed oil is mainly determined by the composition of fatty acids, especially the contents of oleic acid and linoleic acid. Improving the composition of fatty acids in the seed oil is one of the main objectives for peanut breeding globally. To uncover the genetic basis of fatty acids and broaden the genetic variation in future peanut breeding programs, this study used genome-wide association studies (GWAS) to identify loci associated with target traits and developed diagnostic marker. The contents of eight fatty acid components of the Chinese peanut mini-core collection were measured under four environments. Using the phenotypic information and over one hundred thousand single nucleotide polymorphisms (SNPs), GWAS were conducted to investigate the genetics basis of fatty acids under multi-environments. Overall, 75 SNPs were identified significant trait associations with fatty acid components. Nineteen associations were repeatedly identified in multiple environments, and 13 loci were co-associated with two or three traits. Three stable major associated loci were identified, including two loci for oleic acid and linoleic acid on chromosome A09 [mean phenotypic variation explained (PVE): 38.5%, 10.35%] and one for stearic acid on B06 (mean PVE: 23%). According to functional annotations, 21 putative candidate genes related to fatty acid biosynthesis were found underlying the three associations. The allelic effect of SNP A09-114690064 showed that the base variation was highly correlated with the phenotypic variation of oleic acid and linoleic acid contents, and a cost-effective Kompetitive allele-Specific PCR (KASP) diagnostic marker was developed. Furthermore, the SNP A09-114690064 was found to change the cis-element CAAT (-) in the promoter of ahFAD2A to YACT (+), leading dozens of times higher expression level. The enhancer-like activity of ahFAD2A promoter was identified that was valuable for enriching the regulation mechanism of ahFAD2A. This study improved our understanding on the genetic architecture of fatty acid components in peanut, and the new effective diagnostic marker would be useful for marker-assisted selection of high-oleic peanut breeding.
Collapse
Affiliation(s)
- Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Pengxia Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Weitao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jianbing Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
15
|
A first insight into the genetics of maturity trait in Runner × Virginia types peanut background. Sci Rep 2022; 12:15267. [PMID: 36088406 PMCID: PMC9464196 DOI: 10.1038/s41598-022-19653-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
'Runner' and 'Virginia', the two main market types of Arachis hypogaea subspecies hypogaea, differ in several agricultural and industrial characteristics. One such trait is time to maturation (TTM), contributing to the specific environmental adaptability of each subspecies. However, little is known regarding TTM's genetic and molecular control in peanut in general, and particularly in the Runner/Virginia background. Here, a recombinant inbred line population, originating from a cross between an early-maturing Virginia and a late-maturing Runner type, was used to detect quantitative trait loci (QTL) for maturity. An Arachis SNP-array was used for genotyping, and a genetic map with 1425 SNP loci spanning 24 linkage groups was constructed. Six significant QTLs were identified for the maturity index (MI) trait on chromosomes A04, A08, B02 and B04. Two sets of stable QTLs in the same loci were identified, namely qMIA04a,b and qMIA08_2a,b with 11.5%, 8.1% and 7.3%, 8.2% of phenotypic variation explained respectively in two environments. Interestingly, one consistent QTL, qMIA04a,b, overlapped with the previously reported QTL in a Virginia × Virginia population having the same early-maturing parent ('Harari') in common. The information and materials generated here can promote informed targeting of peanut idiotypes by indirect marker-assisted selection.
Collapse
|
16
|
Zhao H, Tian R, Xia H, Li C, Li G, Li A, Zhang X, Zhou X, Ma J, Huang H, Zhang K, Thudi M, Ma C, Wang X, Zhao C. High-Density Genetic Variation Map Reveals Key Candidate Loci and Genes Associated With Important Agronomic Traits in Peanut. Front Genet 2022; 13:845602. [PMID: 35401655 PMCID: PMC8990815 DOI: 10.3389/fgene.2022.845602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. Here, we report a comprehensive genome variation map based on the genotyping of a panel of 178 peanut cultivars using Axiom_Arachis2 SNP array, including 163 representative varieties of different provinces in China, and 15 cultivars from 9 other countries. According to principal component analysis (PCA) and phylogenetic analysis, the peanut varieties were divided into 7 groups, notable genetic divergences between the different areas were shaped by environment and domestication. Using genome-wide association study (GWAS) analysis, we identified several marker-trait associations (MTAs) and candidate genes potentially involved in regulating several agronomic traits of peanut, including one MTA related with hundred seed weight, one MTA related with total number of branches, and 14 MTAs related with pod shape. This study outlines the genetic basis of these peanut cultivars and provides 13,125 polymorphic SNP markers for further distinguishing and utility of these elite cultivars. In addition, the candidate loci and genes provide valuable information for further fine mapping of QTLs and improving the quality and yield of peanut using a genomic-assisted breeding method.
Collapse
Affiliation(s)
- Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Aiqin Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xianying Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Ximeng Zhou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huailing Huang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, China
| | - Mahendar Thudi
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- Rajendra Prasad Central Agricultural University, Samsthipur, India
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- *Correspondence: Xingjun Wang, ; Chuanzhi Zhao,
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- *Correspondence: Xingjun Wang, ; Chuanzhi Zhao,
| |
Collapse
|
17
|
Jadhav MP, Gangurde SS, Hake AA, Yadawad A, Mahadevaiah SS, Pattanashetti SK, Gowda MVC, Shirasawa K, Varshney RK, Pandey MK, Bhat RS. Genotyping-by-Sequencing Based Genetic Mapping Identified Major and Consistent Genomic Regions for Productivity and Quality Traits in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:668020. [PMID: 34630444 PMCID: PMC8495222 DOI: 10.3389/fpls.2021.668020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
With an objective of identifying the genomic regions for productivity and quality traits in peanut, a recombinant inbred line (RIL) population developed from an elite variety, TMV 2 and its ethyl methane sulfonate (EMS)-derived mutant was phenotyped over six seasons and genotyped with genotyping-by-sequencing (GBS), Arachis hypogaea transposable element (AhTE) and simple sequence repeats (SSR) markers. The genetic map with 700 markers spanning 2,438.1 cM was employed for quantitative trait loci (QTL) analysis which identified a total of 47 main-effect QTLs for the productivity and oil quality traits with the phenotypic variance explained (PVE) of 10-52% over the seasons. A common QTL region (46.7-50.1 cM) on Ah02 was identified for the multiple traits, such as a number of pods per plant (NPPP), pod weight per plant (PWPP), shelling percentage (SP), and test weight (TW). Similarly, a QTL (7.1-18.0 cM) on Ah16 was identified for both SP and protein content (PC). Epistatic QTL (epiQTL) analysis revealed intra- and inter-chromosomal interactions for the main-effect QTLs and other genomic regions governing these productivity traits. The markers identified by a single marker analysis (SMA) mapped to the QTL regions for most of the traits. Among the five potential candidate genes identified for PC, SP and oil quality, two genes (Arahy.7A57YA and Arahy.CH9B83) were affected by AhMITE1 transposition, and three genes (Arahy.J5SZ1I, Arahy.MZJT69, and Arahy.X7PJ8H) involved functional single nucleotide polymorphisms (SNPs). With major and consistent effects, the genomic regions, candidate genes, and the associated markers identified in this study would provide an opportunity for gene cloning and genomics-assisted breeding for increasing the productivity and enhancing the quality of peanut.
Collapse
Affiliation(s)
- Mangesh P. Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Anil A. Hake
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Arati Yadawad
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | | | - M. V. Channabyre Gowda
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad, India
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| |
Collapse
|