1
|
Feng Y, Zhao Y, Ma Y, Chen X, Shi H. Integrative physiological and transcriptome analysis unravels the mechanism of low nitrogen use efficiency in burley tobacco. PLANT DIRECT 2024; 8:e70004. [PMID: 39435449 PMCID: PMC11491304 DOI: 10.1002/pld3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
Burley tobacco, a chlorophyll-deficient mutant with impaired nitrogen use efficiency (NUE), generally requires three to five times more nitrogen fertilization than flue-cured tobacco to achieve a comparable yield, which generates serious environmental pollution and negatively affects human health. Therefore, exploring the mechanisms underlying NUE is an effective measure to reduce environmental pollution and an essential direction for burley tobacco plant improvement. Physiological and genetic factors affecting tobacco NUE were identified using two tobacco genotypes with contrasting NUE in hydroponic experiments. Nitrogen use inefficient genotype (TN90) had lower nitrogen uptake and transport efficiencies, reduced leaf and root biomass, lower nitrogen assimilation and photosynthesis capacity, and lower nitrogen remobilization ability than the nitrogen use efficient genotype (K326). Transcriptomic analysis revealed that genes associated with photosynthesis, carbon fixation, and nitrogen metabolism are implicated in NUE. Three nitrate transporter genes in the leaves (NPF2.11, NPF2.13, and NPF3.1) and three nitrate transporter genes (NPF6.3, NRT2.1, and NRT2.4) in roots were down-regulated by nitrogen starvation, all of which showed lower expression in TN90 than in K326. In addition, the protein-protein interaction (PPI) network diagram identified eight key genes (TPIP1, GAPB, HEMB, PGK3, PSBO, PSBP2, PSAG, and GLN2) that may affect NUE. Less advantageous changes in nitrogen uptake, nitrogen assimilation in combination with nitrogen remobilization, and maintenance of photosynthesis in response to nitrogen deficiency led to a lower NUE in TN90. The key genes (TPIP1, GAPB, PGK3, PSBO, PSBP2, PSAG, and GLN2) were associated with improving photosynthesis and nitrogen metabolism in tobacco plants grown under N-deficient conditions.
Collapse
Affiliation(s)
- Yuqing Feng
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yuanyuan Zhao
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yanjun Ma
- Technology CenterShanghai Tobacco Group Beijing Cigarette Factory Co., Ltd.BeijingChina
| | - Xiaolong Chen
- China Tobacco Henan Industrial Co., Ltd.ZhengzhouHenanChina
| | - Hongzhi Shi
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
2
|
Liu C, Gu W, Liu C, Shi X, Li B, Zhou Y. Comparative phenotypic and transcriptomic analysis reveals genotypic differences in nitrogen use efficiency in sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109028. [PMID: 39146913 DOI: 10.1016/j.plaphy.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Sorghum (Sorghumbicolor L.), a model for C4 grass and an emerging biofuel crop, is known for its robust tolerance to low input field. However, the focus on enhancing nitrogen use efficiency (NUE) in sorghum under low nitrogen (N) conditions has been limited. This study conducted hydroponic experiments and field trials with two sorghum inbred lines, contrasting in their N efficiency: the N-efficient (398B) and the N-inefficient (CS3541) inbred lines. The aim was to analyze the key factors influencing NUE by integrating phenotypic, physiological, and multi-omics approaches under N deficiency conditions. The field experiments revealed that 398B displayed superior NUE and yield performance compared to CS3541. In hydroponic experiments, the growth of 398B outperformed CS3541 following N deficiency, attributing to its higher photosynthetic and sustaining activity of N metabolism-related enzymes. Genomic and transcriptomic integration highlighted fewer genomic diversities and alterations in global gene expression in 398B, which were likely contributor to its high NUE. Additionally, co-expression network analysis suggested the involvement of key genes which impact N uptake efficiency (NUpE) and N utilization efficiency (NUtE) in both lines, such as an N transporter, Sobic.003G371000.v3.2leaf(NPF5.10) and a transcription factor, Sobic.002G202800.v3.2leaf(WRKY) in bolstering NUE under low-N stress. The findings collectively suggested that 398B achieved higher NUpE and NUtE, effectively coordinating photosynthesis and N metabolism to enhance NUE. The candidate genes regulating N uptake and utilization efficiencies could provide valuable insights for developing sorghum breeds with improved NUE, contributing to sustainable agricultural practices and bioenergy crop development.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
3
|
Liu C, Gu W, Li B, Feng Y, Liu C, Shi X, Zhou Y. Screening key sorghum germplasms for low-nitrogen tolerance at the seedling stage and identifying from the carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1340509. [PMID: 39328797 PMCID: PMC11424420 DOI: 10.3389/fpls.2024.1340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
Introduction Sorghum (Sorghum bicolor L.) can withstand drought and heat stress and efficiently utilize water and nutrients. However, the underlying mechanism of its tolerance to low-nitrogen (N) stress remains poorly understood. Materials and methods This study assessed low-N tolerance in 100 sorghum-inbred lines and identified those with exceptional resilience. Principal component analysis, Pearson's correlation, and Y value analysis were used to examine various seedling growth metrics, including plant and root dimensions, biomass, chlorophyll content, root N content, shoot N content, and root/shoot ratio. Results and discussion The genotypes were categorized into four distinct groups based on their respective Y values, revealing a spectrum from highly tolerant to sensitive. Low-N-tolerant sorghum lines maintained higher photosynthetic rates and exhibited increased enzymatic activities linked to carbon and N metabolism in the leaves and roots. Furthermore, low-N-tolerant genotypes had higher levels of key amino acids, including cystine, glycine, histidine, isoleucine, leucine, phenylalanine, threonine, and tyrosine, indicating a robust internal metabolic response to N deficiency. Conclusion This study provides a comprehensive and reliable approach for the evaluation of sorghum tolerance to low-N environments, sheds light on its morphological and physiological adaptations, and provides valuable insights for future breeding programs and agricultural practices.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bang Li
- College of Agronomy and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| | - Yihao Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Yuan N, Liang S, Zhou L, Yuan X, Li C, Chen X, Zhao H. Comparison of Mutations Induced by Different Doses of Fast-Neutron Irradiation in the M 1 Generation of Sorghum ( Sorghum bicolor). Genes (Basel) 2024; 15:976. [PMID: 39202337 PMCID: PMC11354182 DOI: 10.3390/genes15080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Sorghum is an important C4 crop with various food and nonfood uses. Although improvements through hybridization and selection have been exploited, the introduction of genetic variation and the development of new genotypes in sorghum are still limited. Fast-neutron (FN) mutagenesis is a very effective method for gene functional studies and to create genetic variability. However, the full spectrum of FN-induced mutations in sorghum is poorly understood. To address this, we generated an FN-induced mutant population from the inbred line 'BTx623' and sequenced 40 M1 seedlings to evaluate the mutagenic effects of FNs on sorghum. The results show that each line had an average of 43.7 single-base substitutions (SBSs), 3.7 InDels and 35.15 structural variations (SVs). SBSs accounted for approximately 90.0% of the total number of small mutations. Among the eight treatment groups, FN irradiation at a dose of 19 Gy generated the highest number of mutations. The ratio of transition/transversion ranged from 1.77 to 2.21, and the G/C to A/T transition was the most common substitution in all mutant lines. The distributions of the identified SBSs and InDels were similar and uneven across the genome. An average of 3.63 genes were mutated in each mutant line, indicating that FN irradiation resulted in a suitable density of mutated genes, which can be advantageous for improving elite material for one specific or a few traits. These results provide a basis for the selection of the suitable dose of mutagen and new genetic resources for sorghum breeding.
Collapse
Affiliation(s)
- Na Yuan
- Institute of Industrial Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (N.Y.); (X.Y.); (C.L.)
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (L.Z.)
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (L.Z.)
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (N.Y.); (X.Y.); (C.L.)
| | - Chunhong Li
- Institute of Industrial Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (N.Y.); (X.Y.); (C.L.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (N.Y.); (X.Y.); (C.L.)
| | - Han Zhao
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (L.Z.)
| |
Collapse
|
5
|
Chai YN, Qi Y, Goren E, Chiniquy D, Sheflin AM, Tringe SG, Prenni JE, Liu P, Schachtman DP. Root-associated bacterial communities and root metabolite composition are linked to nitrogen use efficiency in sorghum. mSystems 2024; 9:e0119023. [PMID: 38132569 PMCID: PMC10804983 DOI: 10.1128/msystems.01190-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
The development of cereal crops with high nitrogen use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improving crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse Sorghum bicolor lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacterial communities and root metabolite composition of sorghum. We found a positive correlation between sorghum NUE and bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxon, Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to low N stress. This indicates that the shift in the sorghum microbiome due to low N is associated with the root metabolites of the host plant. Taken together, our findings suggest that host genetic regulation of root metabolites plays a role in defining the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low N stress.IMPORTANCEThe development of crops that are more nitrogen use-efficient (NUE) is critical for the future of the enhanced sustainability of agriculture worldwide. This objective has been pursued mainly through plant breeding and plant molecular engineering, but these approaches have had only limited success. Therefore, a different strategy that leverages soil microbes needs to be fully explored because it is known that soil microbes improve plant growth through multiple mechanisms. To design approaches that use the soil microbiome to increase NUE, it will first be essential to understand the relationship among soil microbes, root metabolites, and crop productivity. Using this approach, we demonstrated that certain key metabolites and specific microbes are associated with high and low sorghum NUE in a field study. This important information provides a new path forward for developing crop genotypes that have increased NUE through the positive contribution of soil microbes.
Collapse
Affiliation(s)
- Yen Ning Chai
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yunhui Qi
- Department of Statistics, Iowa State University, Ames, Iowa, USA
| | - Emily Goren
- Department of Statistics, Iowa State University, Ames, Iowa, USA
| | - Dawn Chiniquy
- Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amy M. Sheflin
- Department of Horticulture and Landscape Architecture, Colorado State University, Colorado State University, Fort Collins, Colorado, USA
| | - Susannah G. Tringe
- Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jessica E. Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Colorado State University, Fort Collins, Colorado, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa, USA
| | - Daniel P. Schachtman
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Li S, Wen Y, Wang Y, Liu M, Su L, Peng Z, Zhou Z, Zhou N. Novel α-amino acid-like structure decorated biochar for heavy metal remediation in acid soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132740. [PMID: 37856962 DOI: 10.1016/j.jhazmat.2023.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Neither chemical nor physical adsorption play well in heavy metals remediation in acid soil due to the competing behavior of abundant protons, where stable chelators that can be reused are of significant demand. Herein, biochar with abundant nitro and carboxyl groups is prepared, which can be assembled into self-supporting electrode. Under the catalyzation of electricity, the surface decorated -NO2 on the biochar can be in situ transformed into -NH2. Combined with the carboxyl group that attached on the same carbon atom, a special α-amino acid-like structure modified biochar (α-AC@BC) can be successfully constructed. Due to the strong affinity between the α-amino acid-like ligand and heavy metals, this α-AC@BC exhibits high removal efficiencies of 83.41%, 80.94%, 92.54% and 77.05% for available copper, cadmium, lead and zinc respectively, even in a strong acid soil with low pH of 4. After four adsorption-desorption cycles, the α-AC@BC could still eliminate 83.88% of copper. The high adsorption energy among -NH2, -COOH and heavy metals (-2.99 eV for copper, -1.90 eV for lead, -1.30 eV for zinc and -0.91 eV for cadmium) could form steady coordination structure to guarantee a highly practical application potential of α-AC@BC in strong acid soil. This study provides a novel concept for the decontamination of multiple heavy metal polluted acid soil.
Collapse
Affiliation(s)
- Shikai Li
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yujiao Wen
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Wang
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Meng Liu
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhengjie Peng
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Li M, Cai Q, Liang Y, Zhao Y, Hao Y, Qin Y, Qiao X, Han Y, Li H. Mapping and Screening of Candidate Gene Regulating the Biomass Yield of Sorghum ( Sorghum bicolor L.). Int J Mol Sci 2024; 25:796. [PMID: 38255870 PMCID: PMC10815252 DOI: 10.3390/ijms25020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Biomass yield is one of the important traits of sorghum, which is greatly affected by leaf morphology. In this study, a lobed-leaf mutant (sblob) was screened and identified, and its F2 inbred segregating line was constructed. Subsequently, MutMap and whole-genome sequencing were employed to identify the candidate gene (sblob1), the locus of which is Sobic.003G010300. Pfam and homologous analysis indicated that sblob1 encodes a Cytochrome P450 protein and plays a crucial role in the plant serotonin/melatonin biosynthesis pathway. Structural and functional changes in the sblob1 protein were elucidated. Hormone measurements revealed that sblob1 regulates both leaf morphology and sorghum biomass through regulation of the melatonin metabolic pathway. These findings provide valuable insights for further research and the enhancement of breeding programs, emphasizing the potential to optimize biomass yield in sorghum cultivation.
Collapse
Affiliation(s)
- Mao Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Qizhe Cai
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yinpei Liang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yaofei Zhao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yaoshan Hao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Yingying Qin
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Xinrui Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Yuanhuai Han
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Hongying Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
8
|
Zhang X, Ding Y, Ma Q, Li F, Tao R, Li T, Zhu M, Ding J, Li C, Guo W, Zhu X. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:47-57. [PMID: 36599275 DOI: 10.1016/j.plaphy.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential nutrient element required for plant growth, and the development of wheat varieties with high nitrogen use efficiency (NUE) is an urgent need for sustainable crop production. However, the molecular mechanism of NUE between diverse wheat varieties in response to N application remains unclear. To reveal the possible molecular mechanisms underlying this complex phenomenon, we investigated the transcriptional and metabolic changes of flag leaves of two wheat near-isogenic lines (NILs) differing in NUE under two N fertilizer treatments. Comparative transcriptome analysis indicated that the expression levels of the genes responsible for carbon and nitrogen metabolism were significantly higher in high-NUE wheat. The metabolome comparison revealed that the activity of the tricarboxylic acid (TCA) cycle was enhanced in high-NUE wheat, while reduced in low-NUE wheat after the N fertilizer application. Additionally, amino acid metabolism increased in both wheat NILs but more increased in high-NUE wheat. In summary, more upregulated transcripts and metabolites were identified in high-NUE wheat, and this study provides valuable new insights for improving NUE in wheat.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, China.
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Impacts of the Green Revolution on Rhizosphere Microbiology Related to Nutrient Acquisition. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Green Revolution (GR) involved selective breeding of cereals and the use of high fertilizer inputs with the goal of increasing crop yields to alleviate hunger. As a result of both greater use of inorganic fertilizers and the introduction of semi-dwarf cultivars, grain yield increased globally and hunger was alleviated in certain areas of the world. However, these changes in varietal selection and fertilization regimes have impacted soil fertility and the root-associated microbiome. Higher rates of inorganic fertilizer application resulted in reduced rhizosphere microbial diversity, while semi-dwarf varieties displayed a greater abundance of rhizosphere microbes associated with nitrogen utilization. Ultimately, selection for beneficial aboveground traits during the GR led to healthier belowground traits and nutrient uptake capabilities.
Collapse
|
10
|
Ostmeyer TJ, Bahuguna RN, Kirkham MB, Bean S, Jagadish SVK. Enhancing Sorghum Yield Through Efficient Use of Nitrogen - Challenges and Opportunities. FRONTIERS IN PLANT SCIENCE 2022; 13:845443. [PMID: 35295626 PMCID: PMC8919068 DOI: 10.3389/fpls.2022.845443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Sorghum is an important crop, which is widely used as food, forage, fodder and biofuel. Despite its natural adaption to resource-poor and stressful environments, increasing yield potential of sorghum under more favorable conditions holds promise. Nitrogen is the most important nutrient for crops, having a dynamic impact on all growth, yield, and grain-quality-determining processes. Thus, increasing nitrogen use efficiency (NUE) in sorghum would provide opportunities to achieve higher yield and better-quality grain. NUE is a complex trait, which is regulated by several genes. Hence, exploring genetic diversity for NUE can help to develop molecular markers associated with NUE, which can be utilized to develop high NUE sorghum genotypes with greater yield potential. Research on improving NUE in sorghum suggests that, under water-deficit conditions, traits such as stay-green and altered canopy architecture, and under favorable conditions, traits such as an optimized stay-green and senescence ratio and efficient N translocation to grain, are potential breeding targets to develop high NUE sorghum genotypes. Hence, under a wide range of environments, sorghum breeding programs will need to reconsider strategies and develop breeding programs based on environment-specific trait(s) for better adaptation and improvement in productivity and grain quality. Unprecedented progress in sensor-based technology and artificial intelligence in high-throughput phenotyping has provided new horizons to explore complex traits in situ, such as NUE. A better understanding of the genetics and molecular pathways involving NUE, accompanied by targeted high-throughput sensor-based indices, is critical for identifying lines or developing management practices to enhance NUE in sorghum.
Collapse
Affiliation(s)
- Troy J. Ostmeyer
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Rajeev Nayan Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Scott Bean
- Grain Quality and Structure Research Unit, CGAHR, USDA-ARS, Manhattan, KS, United States
| | | |
Collapse
|
11
|
Maharajan T, Krishna TPA, Kiriyanthan RM, Ignacimuthu S, Ceasar SA. Improving abiotic stress tolerance in sorghum: focus on the nutrient transporters and marker-assisted breeding. PLANTA 2021; 254:90. [PMID: 34609619 DOI: 10.1007/s00425-021-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Identification of molecular markers and characterization of nutrient transporters could help to improve the tolerance under abiotic and low nutrient stresses in sorghum ensuring higher yield to conserve food security Sorghum is an important cereal crop delivering food and energy security in the semi-arid tropics of the world. Adverse climatic conditions induced by global warming and low input agriculture system in developing countries demand for the improvement of sorghum to tolerate various abiotic stresses. In this review, we discuss the application of marker-assisted breeding and nutrient transporter characterization studies targeted towards improving the tolerance of sorghum under drought, salinity, cold, low phosphate and nitrogen stresses. Family members of some nutrient transporters such as nitrate transporter (NRT), phosphate transporter (PHT) and sulphate transporter (SULTR) were identified and characterized for improving the low nutrient stress tolerance in sorghum. Several quantitative trait loci (QTL) were identified for drought, salinity and cold stresses with an intention to enhance the tolerance of sorghum under these stresses. A very few QTL and nutrient transporters have been identified and validated under low nitrogen and phosphorus stresses compared to those under drought, salinity and cold stresses. Marker-assisted breeding and nutrient transporter characterization have not yet been attempted in sorghum under other macro- and micro-nutrient stresses. We hope this review will raise awareness among plant breeders, scientists and biotechnologists about the importance of sorghum and need to conduct the studies on marker-assisted breeding and nutrient transporter under low nutrient stresses to improve the sorghum production.
Collapse
Affiliation(s)
- T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India
| | - Rose Mary Kiriyanthan
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, India
| | - S Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India.
| |
Collapse
|