1
|
Yan C, Shi P, Yao W, Yu K, Niinemets Ü. A Nonlinear Fitting Method Provides Strong Support for Geometric Series of Stomatal Area in 12 Magnoliaceae Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:893. [PMID: 40265783 PMCID: PMC11945771 DOI: 10.3390/plants14060893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Stomatal pore area and density determine the capacity for gas exchange between the leaf interior and the atmosphere. Stomatal area is given by the profile formed by two guard cells, and the cumulative stomatal area characterizes the area of leaf surface occupied by stomata. The areas of all stomata captured in a micrograph are sorted in ascending order to form a sequence, which is referred to as a sequence of stomatal area here. In total, 360 leaves of 12 Magnoliaceae species with 30 leaves for each species were sampled. For each leaf, two 662 μm × 444 μm fields of view (micrographs) of stomata were captured on the right leaf width axis. In each micrograph, the length and width of each stoma were measured, and the area of the stoma was determined using the product of stomatal length and width multiplied by a proportionality coefficient. Stomatal area sequences of Magnoliaceae in the constant field of view were found to follow a geometric series (GS). Prior studies estimated the common ratio of the GS as the mean of the quotients of any two adjacent terms, and estimated the first term as the mean of the first terms (i.e., the smallest stomatal area) represented by the quotient of each term and the estimated common ratio to a power of the order of the term minus 1, which is referred to as Method-1. However, it produced large prediction errors for some stomatal area sequences. In the present study, the nonlinear regression was used to fit the stomatal area sequences using the common ratio and the first term as two model parameters (Method-2). We compared the two methods using the mean absolute percent error (MAPE, ≤5% considered as a good fit) values of the 720 stomatal micrographs from the 12 Magnoliaceae species. The goodness of fit of Method-2 was better than that of Method-1 (52.4% MAPE values were ≤5% for Method-1 and 99.6% for Method-2). There were significant variations in the estimated common ratios, as well as the estimated first terms and the MAPE values across the 12 Magnoliaceae species, but overall, the interspecific differences in the MAPE values were small. We conclude that the GS hypothesis for the stomatal area sequences of the 12 Magnoliaceae species was further strengthened by the new method. This method further provides a valuable approach for the calculation of total stomatal area per unit leaf area.
Collapse
Affiliation(s)
- Chunxiu Yan
- National Key Laboratory of Smart Farm Technologies and Systems, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Peijian Shi
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Weihao Yao
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Kexin Yu
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
2
|
Shi P, Li BL, Wang J, Mu Y, Yao W, Lian M, Deng L, Niklas KJ. Geometric series exists in nature: Evidence from sorted area sequences of floral parts and leaves. Ann N Y Acad Sci 2025; 1543:79-85. [PMID: 39746156 DOI: 10.1111/nyas.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The concept of a geometric series (GS) plays an important role in mathematics. However, it has been neglected in describing biological size series. Herein, we show that a GS describes the nonreproductive (perianth) parts of the flowers of four Magnoliaceae species and two Rosaceae species and the leaves of 60 Alangium chinense and 60 Shibataea chinensis shoots. The sorted areas of floral parts and leaves formed a sequence that was fitted by a GS with the mean of the quotients of two adjacent members in the sequence as the common ratio of a GS. The mean absolute percent error (MAPE) was used to measure the goodness of fit of each GS. Over 99.7% of the MAPE values (371 out of the 372 tested flowers) were less than 10%, and over 97.8% of the MAPE values were less than 5%. Likewise, over 77.5% of the MAPE values (93 out of the 120 tested shoots) were less than 10%, and over 35% of the MAPE values were less than 5%. These analyses provide empirical evidence that the GS exists in nature, and confirm the usefulness of a classical algebraic formula for the study of plant developmental biology.
Collapse
Affiliation(s)
- Peijian Shi
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing, China
| | - Bailian Larry Li
- Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Jinfeng Wang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Youying Mu
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Weihao Yao
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Meng Lian
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing, China
| | - Linli Deng
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Yan C, Shi P, Yu K, Guo X, Lian M, Miao Q, Wang L, Yao W, Zheng Y, Zhu F, Niklas KJ. Using the Montgomery-Koyama-Smith equation to calculate the stomatal area per unit lamina area for 12 Magnoliaceae species. ANNALS OF BOTANY 2024; 134:1151-1164. [PMID: 39279221 DOI: 10.1093/aob/mcae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND AND AIMS The Montgomery-Koyama-Smith (MKS) equation predicts that total leaf area per shoot is proportional to the product of the sum of individual leaf widths and maximum individual leaf length, which has been validated for some herbaceous and woody plants. The equation is also predicted to be valid in describing the relationship between the total stomatal area per micrograph (AT) and the product of the sum of individual stomatal widths (denoted as LKS) and maximum individual stomatal length (denoted by WKS) in any particular micrograph. METHODS To test the validity of the MKS equation, 69 931 stomata (from 720 stomatal micrographs from 12 Magnoliaceae species) were examined. The area of each stoma was calculated using empirical measurements of stomatal length and width multiplied by a constant. Six equations describing the relationships among AT, LKS and WKS were compared. The root mean square (RMSE) and the Akaike information criterion (AIC) were used to measure the goodness of fit and the trade-off between the goodness of fit and the structural complexity of each model, respectively. KEY RESULTS Analyses supported the validity of the MKS equation and the power-law equation AT ∝ (LKSWKS)α, where α is a scaling exponent. The estimated values of α at the species level and for the pooled data were all statistically smaller than unity, which did not support the hypothesis that AT ∝ LKSWKS. The power-law equation had smaller RMSE and AIC values than the MKS equation for the data from the 12 individual species and the pooled data. CONCLUSIONS These results indicate that AT tends to scale allometrically with LKSWKS, and that increases in AT do not keep pace with increases in LKSWKS. In addition, using LKSWKS is better than using only one of the two variables to calculate AT.
Collapse
Affiliation(s)
- Chunxiu Yan
- National Key Laboratory of Smart Farm Technologies and Systems, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Peijian Shi
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Yu
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xuchen Guo
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Lian
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Qinyue Miao
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Wang
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Weihao Yao
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yiwen Zheng
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Fuyuan Zhu
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Wang J, Renninger HJ, Ma Q, Jin S. Measuring stomatal and guard cell metrics for plant physiology and growth using StoManager1. PLANT PHYSIOLOGY 2024; 195:378-394. [PMID: 38298139 DOI: 10.1093/plphys/kiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Automated guard cell detection and measurement are vital for understanding plant physiological performance and ecological functioning in global water and carbon cycles. Most current methods for measuring guard cells and stomata are laborious, time-consuming, prone to bias, and limited in scale. We developed StoManager1, a high-throughput tool utilizing geometrical, mathematical algorithms, and convolutional neural networks to automatically detect, count, and measure over 30 guard cell and stomatal metrics, including guard cell and stomatal area, length, width, stomatal aperture area/guard cell area, orientation, stomatal evenness, divergence, and aggregation index. Combined with leaf functional traits, some of these StoManager1-measured guard cell and stomatal metrics explained 90% and 82% of tree biomass and intrinsic water use efficiency (iWUE) variances in hardwoods, making them substantial factors in leaf physiology and tree growth. StoManager1 demonstrated exceptional precision and recall (mAP@0.5 over 0.96), effectively capturing diverse stomatal properties across over 100 species. StoManager1 facilitates the automation of measuring leaf stomatal and guard cells, enabling broader exploration of stomatal control in plant growth and adaptation to environmental stress and climate change. This has implications for global gross primary productivity (GPP) modeling and estimation, as integrating stomatal metrics can enhance predictions of plant growth and resource usage worldwide. Easily accessible open-source code and standalone Windows executable applications are available on a GitHub repository (https://github.com/JiaxinWang123/StoManager1) and Zenodo (https://doi.org/10.5281/zenodo.7686022).
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Heidi J Renninger
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Qin Ma
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
He K, Niklas KJ, Niinemets Ü, Wang J, Jiao Y, Shi P. Significant correlation between leaf vein length per unit area and stomatal density: evidence from Red Tip and Chinese photinias. FRONTIERS IN PLANT SCIENCE 2024; 15:1365449. [PMID: 38571707 PMCID: PMC10987709 DOI: 10.3389/fpls.2024.1365449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The vascular veins in photosynthetic leaves play an important role in transporting water and sugars throughout the plant body, and their venation pattern and vein density determine the hydraulic efficiency of the leaf. Likewise, stomatal density (SD) can influence photosynthetic gas exchange. However, the correlation between leaf vein density and SD is seldom reported. Herein, we examined 16 leaves from the hybrid Photinia × fraseri and 16 leaves from one of its parents, P. serratifolia, to explore the correlation between leaf vein density and SD. For each leaf, equidistant lamina quadrats were excised along two longitudinal transects (one along the midrib and another along the leaf margin). For each quadrat, micrographs of 1.2 mm × 0.9 mm stomatal imprints, and 2.51 mm × 1.88 mm micrographs of leaf veins were used to measure total vein area per leaf unit area (VAA) and total vein length per unit area (VLA), as indicators of leaf vein density, to determine the correlation between SD and leaf vein density. For each taxon, there was no significant correlation between SD and VAA, but there was a significant correlation between SD and VLA. The data indicate that SD is not positively correlated with VAA but positively correlated with VLA for both the hybrid and the parent species. This study indicates that future work should focus on the relationships between SD and total vein length per unit area rather than on total leaf vein area per unit area within and across species.
Collapse
Affiliation(s)
- Ke He
- Architectural Design and Research Institute, Shenzhen University, Shenzhen, China
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Karl J. Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Jinfeng Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Yabing Jiao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Peijian Shi
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Sun M, Niinemets Ü, Li Q, Jiao Y, Yao W, Shi P. An Inverse Scaling Relationship between Stomatal Density and Mean Nearest Neighbor Distance: Evidence from a Photinia Hybrid and One of Its Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:3701. [PMID: 37960057 PMCID: PMC10650524 DOI: 10.3390/plants12213701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Stomata are involved in transpiration and CO2 uptake by mediating gas exchange between internal plant tissues and the atmosphere. The capacity for gas exchange depends on stomatal density (SD), stomatal size, and pore dimensions. Most published work on stomatal quantification has assumed that stomatal distribution and stomatal density are spatially homogeneous across the leaf, but this assumption has been seldom tested. We selected 32 leaves from a Photinia hybrid, Photinia × fraseri 'Red Robin', and one of its parents, P. serratifolia. For each leaf, the leaf surface was divided into three or four equidistant layers along the apical-basal axis, and, in each layer, two positions, one closer to the midrib and the other closer to the leaf margin, were further selected. We calculated SD and mean nearest neighbor distance (MNND) for each lamina section and tested the scaling relationship between SD and MNND of the sampled stomatal centers using reduced major axis protocols. In addition, we calculated the stomatal aggregation index (SAI) for each lamina section to examine the spatial arrangement of stomata at the given size of field of view of 1.2 mm × 0.9 mm. We observed that SD decreased from the lamina apex towards the base for central lamina areas but varied little at leaf margins. An inverse scaling relationship between SD and MNND was observed for both species. This relationship could be used for SD estimation using the rapidly estimated trait, MNND. SAI did not vary significantly throughout leaf lamina, and the numerical values of SAI for all fields of view were greater than one, which indicates significant spatial repulsion between stomata. The study suggests that SD varies across leaf lamina to fine-tune plant water use and maximize carbon gain. However, spatial structures of stomata from different lamina sections exhibit similar patterns (i.e., spatial inhibition between stomata at small scales), probably due to hierarchical leaf vein patterns.
Collapse
Affiliation(s)
- Manli Sun
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Estonian Academy of Sciences, 10130 Tallinn, Estonia
| | - Qiying Li
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Yabing Jiao
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Weihao Yao
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Peijian Shi
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| |
Collapse
|
7
|
Kuan C, Yang SL, Ho CMK. Using quantitative methods to understand leaf epidermal development. QUANTITATIVE PLANT BIOLOGY 2022; 3:e28. [PMID: 37077990 PMCID: PMC10097589 DOI: 10.1017/qpb.2022.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 05/03/2023]
Abstract
As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.
Collapse
Affiliation(s)
- Chi Kuan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Chin-Min Kimmy Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
8
|
Saridis P, Georgiadou X, Shtein I, Pouris J, Panteris E, Rhizopoulou S, Constantinidis T, Giannoutsou E, Adamakis IDS. Stomata in Close Contact: The Case of Pancratium maritimum L. (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:3377. [PMID: 36501416 PMCID: PMC9740904 DOI: 10.3390/plants11233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A special feature found in Amaryllidaceae is that some guard cells of the neighboring stomata form a "connection strand" between their dorsal cell walls. In the present work, this strand was studied in terms of both its composition and its effect on the morphology and function of the stomata in Pancratium maritimum L. leaves. The structure of stomata and their connection strand were studied by light and transmission electron microscopy. FM 4-64 and aniline blue staining and application of tannic acid were performed to detect cell membranes, callose, and pectins, respectively. A plasmolysis experiment was also performed. The composition of the connection strand was analyzed by fluorescence microscopy after immunostaining with several cell-wall-related antibodies, while pectinase treatment was applied to confirm the presence of pectins in the connection strand. To examine the effect of this connection on stomatal function, several morphological characteristics (width, length, size, pore aperture, stomatal distance, and cell size of the intermediate pavement cell) were studied. It is suggested that the connecting strand consists of cell wall material laid through the middle of the intermediate pavement cell adjoining the two stomata. These cell wall strands are mainly comprised of pectins, and crystalline cellulose and extensins were also present. Connected stomata do not open like the single stomata do, indicating that the connection strand could also affect stomatal function. This trait is common to other Amaryllidaceae representatives.
Collapse
Affiliation(s)
- Pavlos Saridis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Xenia Georgiadou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ilana Shtein
- Eastern Region Resarch and Development Center, Milken Campus, Ariel 40700, Israel
| | - John Pouris
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Theophanis Constantinidis
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | |
Collapse
|
9
|
Liu C, Sack L, Li Y, He N. Contrasting adaptation and optimization of stomatal traits across communities at continental scale. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6405-6416. [PMID: 35716087 DOI: 10.1093/jxb/erac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Shifts in stomatal trait distributions across contrasting environments and their linkage with ecosystem productivity at large spatial scales have been unclear. Here, we measured the maximum stomatal conductance (g), stomatal area fraction (f), and stomatal space-use efficiency (e, the ratio of g to f) of 800 plant species ranging from tropical to cold-temperate forests, and determined their values for community-weighted mean, variance, skewness, and kurtosis. We found that the community-weighted means of g and f were higher in drier sites, and thus, that drought 'avoidance' by water availability-driven growth pulses was the dominant mode of adaptation for communities at sites with low water availability. Additionally, the variance of g and f was also higher at arid sites, indicating greater functional niche differentiation, whereas that for e was lower, indicating the convergence in efficiency. When all other stomatal trait distributions were held constant, increasing kurtosis or decreasing skewness of g would improve ecosystem productivity, whereas f showed the opposite patterns, suggesting that the distributions of inter-related traits can play contrasting roles in regulating ecosystem productivity. These findings demonstrate the climatic trends of stomatal trait distributions and their significance in the prediction of ecosystem productivity.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90025, USA
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Shi P, Jiao Y, Diggle PJ, Turner R, Wang R, Niinemets Ü. Spatial distribution characteristics of stomata at the areole level in Michelia cavaleriei var. platypetala (Magnoliaceae). ANNALS OF BOTANY 2021; 128:875-886. [PMID: 34397092 PMCID: PMC8577203 DOI: 10.1093/aob/mcab106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS In hierarchically reticulate venation patterns, smaller orders of veins form areoles in which stomata are located. This study aimed to quantify the spatial relationship among stomata at the areole level. METHODS For each of 12 leaves of M. cavaleriei var. platypetala, we assumed that stomatal characteristics were symmetrical on either side of the midrib, and divided the leaf surface on one side of the midrib into six layers equidistantly spaced along the apical-basal axis. We then further divided each layer into three positions equidistantly spaced from midrib to leaf margin, resulting in a total of 18 sampling locations. In addition, for 60 leaves, we sampled three positions from midrib to margin within only the widest layer of the leaf. Stomatal density and mean nearest neighbour distance (MNND) were calculated for each section. A replicated spatial point pattern approach quantified stomatal spatial relationships at different distances (0-300 μm). KEY RESULTS A tendency towards regular arrangement (inhibition as opposed to attraction or clustering) was observed between stomatal centres at distances <100 μm. Leaf layer (leaf length dimension) had no significant effect on local stomatal density, MNND or the spatial distribution characteristics of stomatal centres. In addition, we did not find greater inhibition at the centre of areoles, and in positions farther from the midrib. CONCLUSIONS Spatial inhibition might be caused by the one-cell-spacing rule, resulting in more regular arrangement of stomata, and it was found to exist at distances up to ~100 μm. This work implies that leaf hydraulic architecture, consisting of both vascular and mesophyll properties, is sufficient to prevent important spatial variability in water supply at the areole level.
Collapse
Affiliation(s)
- Peijian Shi
- College of Biology and the Environment, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yabing Jiao
- College of Biology and the Environment, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Peter J Diggle
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Rolf Turner
- Department of Statistics, The University of Auckland, New Zealand
| | - Rong Wang
- College of Biology and the Environment, Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|