1
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
2
|
Soto DF, Gómez I, Huovinen P. Antarctic snow algae: unraveling the processes underlying microbial community assembly during blooms formation. MICROBIOME 2023; 11:200. [PMID: 37667346 PMCID: PMC10478455 DOI: 10.1186/s40168-023-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS At the West Antarctic Peninsula, snow algae blooms are composed of complex microbial communities dominated by green microalgae and bacteria. During their progression, the assembly of these microbial communities occurs under harsh environmental conditions and variable nutrient content due to fast snow melting. To date, it is still unclear what are the ecological mechanisms governing the composition and abundance of microorganisms during the formation of snow algae blooms. In this study, we aim to examine the main ecological mechanisms governing the assembly of snow algae blooms from early stages to colorful stages blooms. METHODS The composition of the microbial communities within snow algae blooms was recorded in the West Antarctic Peninsula (Isabel Riquelme Islet) during a 35-day period using 16S rRNA and 18S rRNA metabarcoding. In addition, the contribution of different ecological processes to the assembly of the microbial community was quantified using phylogenetic bin-based null model analysis. RESULTS Our results showed that alpha diversity indices of the eukaryotic communities displayed a higher variation during the formation of the algae bloom compared with the bacterial community. Additionally, in a macronutrients rich environment, the content of nitrate, ammonium, phosphate, and organic carbon did not play a major role in structuring the community. The quantification of ecological processes showed that the bacterial community assembly was governed by selective processes such as homogenous selection. In contrast, stochastic processes such as dispersal limitation and drift, and to a lesser extent, homogenous selection, regulate the eukaryotic community. CONCLUSIONS Overall, our study highlights the differences in the microbial assembly between bacteria and eukaryotes in snow algae blooms and proposes a model to integrate both assembly processes. Video Abstract.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia, Chile.
- Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia, Chile
- Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia, Chile
- Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
3
|
Němečková K, Mareš J, Procházková L, Culka A, Košek F, Wierzchos J, Nedbalová L, Dudák J, Tymlová V, Žemlička J, Kust A, Zima J, Nováková E, Jehlička J. Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition. Front Microbiol 2023; 14:1175066. [PMID: 37485515 PMCID: PMC10359912 DOI: 10.3389/fmicb.2023.1175066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, we used microscopic, spectroscopic, and molecular analysis to characterize endolithic colonization in gypsum (selenites and white crystalline gypsum) from several sites in Sicily. Our results showed that the dominant microorganisms in these environments are cyanobacteria, including: Chroococcidiopsis sp., Gloeocapsopsis pleurocapsoides, Gloeocapsa compacta, and Nostoc sp., as well as orange pigmented green microalgae from the Stephanospherinia clade. Single cell and filament sequencing coupled with 16S rRNA amplicon metagenomic profiling provided new insights into the phylogenetic and taxonomic diversity of the endolithic cyanobacteria. These organisms form differently pigmented zones within the gypsum. Our metagenomic profiling also showed differences in the taxonomic composition of endoliths in different gypsum varieties. Raman spectroscopy revealed that carotenoids were the most common pigments present in the samples. Other pigments such as gloeocapsin and scytonemin were also detected in the near-surface areas, suggesting that they play a significant role in the biology of endoliths in this environment. These pigments can be used as biomarkers for basic taxonomic identification, especially in case of cyanobacteria. The findings of this study provide new insights into the diversity and distribution of phototrophic microorganisms and their pigments in gypsum in Southern Sicily. Furthemore, this study highlights the complex nature of endolithic ecosystems and the effects of gypsum varieties on these communities, providing additional information on the general bioreceptivity of these environments.
Collapse
Affiliation(s)
- Kateřina Němečková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Mareš
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Center Algatech, Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| | - Filip Košek
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| | - Jacek Wierzchos
- Department of Biochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Veronika Tymlová
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Andreja Kust
- Department of Earth and Planetary Science, University of Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Jan Zima
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Rybalka N, Blanke M, Tzvetkova A, Noll A, Roos C, Boy J, Boy D, Nimptsch D, Godoy R, Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island). Front Microbiol 2023; 14:1118747. [PMID: 37434717 PMCID: PMC10332270 DOI: 10.3389/fmicb.2023.1118747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Matthias Blanke
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg August University, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics and Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz University, Hanover, Germany
| | - Diana Boy
- Institute of Microbiology, Leibniz University, Hanover, Germany
| | - Daniel Nimptsch
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| |
Collapse
|
5
|
Ji M, Kong W, Jia H, Ding C, Anesio AM, Wang Y, Zhu YG. Similar heterotrophic communities but distinct interactions supported by red and green-snow algae in the Antarctic Peninsula. THE NEW PHYTOLOGIST 2022; 233:1358-1368. [PMID: 34606623 DOI: 10.1111/nph.17764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Snow algae are predicted to expand in polar regions due to climate warming, which can accelerate snowmelt by reducing albedo. Green snow frequently occurs near penguin colonies, and red snow distributes widely along ocean shores. However, the mechanisms underpinning the assemblage of algae and heterotrophs in colored snow remain poorly characterized. We investigated algal, bacterial, and fungal communities and their interactions in red and green snows in the Antarctic Peninsula using a high-throughput sequencing method. We found distinct algal community structure in red and green snows, and the relative abundance of dominant taxa varied, potentially due to nutrient status differences. Contrastingly, red and green snows exhibited similar heterotrophic communities (bacteria and fungi), whereas the relative abundance of fungal pathogens was substantially higher in red snow by 3.8-fold. Red snow exhibited a higher network complexity, indicated by a higher number of nodes and edges. Red snow exhibited a higher proportion of negative correlations among heterotrophs (62.2% vs 3.4%) and stronger network stability, suggesting the red-snow network is more resistant to external disturbance. Our study revealed that the red snow microbiome exhibits a more stable microbial network than the green snow microbiome.
Collapse
Affiliation(s)
- Mukan Ji
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongzeng Jia
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chen Ding
- The Association of Science Education Promotion of China, Beijing, 100083, China
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Roskilde, DK-4000, Denmark
| | - Yanfen Wang
- University of Chinese Academy of Sciences, Beijing, 100039, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Reginal Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
6
|
Soto DF, Franzetti A, Gómez I, Huovinen P. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150305. [PMID: 34818790 DOI: 10.1016/j.scitotenv.2021.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 05/10/2023]
Abstract
The increasing temperatures at the West Antarctic Peninsula (Maritime Antarctic) could lead to a higher occurrence of snow algal blooms which are ubiquitous events that change the snow coloration, reducing albedo and in turn exacerbating melting. However, there is a limited understanding of snow algae blooms biodiversity, composition, and their functional profiles, especially in one of the world's areas most affected by climate change. In this study we used 16S rRNA and 18S rRNA metabarcoding, and shotgun metagenomics to assess the diversity, composition, and functional potential of the snow algae blooms bacterial and eukaryotic communities at three different sites of Maritime Antarctic, between different colors of the algae blooms and between seasonal and semi-permanent snowfields. We tested the hypothesis that the functional potential of snow algae blooms is conserved despite a changing taxonomic composition. Furthermore, we determined taxonomic co-occurrence patterns of bacteria and eukaryotes and assessed the potential for the exchange of metabolites among bacterial taxa. Here, we tested the prediction that there are co-occurring taxa within snow algae whose biotic interactions are marked by the exchange of metabolites. Our results show that the composition of snow algae blooms vary significantly among sites. For instance, a higher abundance of fungi and protists were detected in Fildes Peninsula compared with Doumer Island and O'Higgins. Likewise, the composition varied between snow colors and snow types. However, the functional potential varied only among sampling sites with a higher abundance of genes involved in tolerance to environmental stress at O'Higgins. Co-occurrence patterns of dominant bacterial genera such as Pedobacter, Polaromonas, Flavobacterium and Hymenobacter were recorded, contrasting the absence of co-occurring patterns displayed by Chlamydomonadales algae with other eukaryotes. Finally, genome-scale metabolic models revealed that bacteria within snow algae blooms likely compete for resources instead of forming cooperative communities.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|