1
|
Mikhaylova E. Virus-Induced Genome Editing (VIGE): One Step Away from an Agricultural Revolution. Int J Mol Sci 2025; 26:4599. [PMID: 40429744 PMCID: PMC12111327 DOI: 10.3390/ijms26104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
There is currently a worldwide trend towards deregulating the use of genome-edited plants. Virus-induced genome editing (VIGE) is a novel technique that utilizes viral vectors to transiently deliver clustered regularly interspaced short palindromic repeat (CRISPR) components into plant cells. It potentially allows us to obtain transgene-free events in any plant species in a single generation without in vitro tissue culture. This technology has great potential for agriculture and is already being applied to more than 14 plant species using more than 20 viruses. The main limitations of VIGE include insufficient vector capacity, unstable expression of CRISPR-associated (Cas) protein, plant immune reaction, host specificity, and reduced viral activity in meristem. Various solutions to these problems have been proposed, such as fusion of mobile elements, RNAi suppressors, novel miniature Cas proteins, and seed-borne viruses, but the final goal has not yet been achieved. In this review, the mechanism underlying the ability of different classes of plant viruses to transiently edit genomes is explained. It not only focuses on the latest achievements in virus-induced editing of crops but also provides suggestions for improving the technology. This review may serve as a source of new ideas for those planning to develop new approaches in VIGE.
Collapse
Affiliation(s)
- Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
2
|
Brant E, Zuniga‐Soto E, Altpeter F. RNAi and genome editing of sugarcane: Progress and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70048. [PMID: 40051334 PMCID: PMC11886501 DOI: 10.1111/tpj.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Sugarcane, which provides 80% of global table sugar and 40% of biofuel, presents unique breeding challenges due to its highly polyploid, heterozygous, and frequently aneuploid genome. Significant progress has been made in developing genetic resources, including the recently completed reference genome of the sugarcane cultivar R570 and pan-genomic resources from sorghum, a closely related diploid species. Biotechnological approaches including RNA interference (RNAi), overexpression of transgenes, and gene editing technologies offer promising avenues for accelerating sugarcane improvement. These methods have successfully targeted genes involved in important traits such as sucrose accumulation, lignin biosynthesis, biomass oil accumulation, and stress response. One of the main transformation methods-biolistic gene transfer or Agrobacterium-mediated transformation-coupled with efficient tissue culture protocols, is typically used for implementing these biotechnology approaches. Emerging technologies show promise for overcoming current limitations. The use of morphogenic genes can help address genotype constraints and improve transformation efficiency. Tissue culture-free technologies, such as spray-induced gene silencing, virus-induced gene silencing, or virus-induced gene editing, offer potential for accelerating functional genomics studies. Additionally, novel approaches including base and prime editing, orthogonal synthetic transcription factors, and synthetic directed evolution present opportunities for enhancing sugarcane traits. These advances collectively aim to improve sugarcane's efficiency as a crop for both sugar and biofuel production. This review aims to discuss the progress made in sugarcane methodologies, with a focus on RNAi and gene editing approaches, how RNAi can be used to inform functional gene targets, and future improvements and applications.
Collapse
Affiliation(s)
- Eleanor Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Evelyn Zuniga‐Soto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| |
Collapse
|
3
|
Belaffif MB, Brown MC, Marcial B, Baysal C, Swaminathan K. New strategies to advance plant transformation. Curr Opin Biotechnol 2025; 91:103241. [PMID: 39732097 DOI: 10.1016/j.copbio.2024.103241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/30/2024]
Abstract
Plants are an important source of food, energy, and bioproducts. Advances in genetics, genomics-assisted breeding, and biotechnology have facilitated the combining of desirable traits into elite cultivars. To ensure sustainable crop production in the face of climate challenges and population growth, it is essential to develop and implement techniques that increase crop yield and resilience in environments facing water scarcity, nutrient deficiencies, and other abiotic and biotic stressors. Plant transformation and genome editing are critical tools in the development of new cultivars. Here, we discuss recent advances in plant transformation technologies aimed at enhancing efficiency, throughput, and the number of transformable genotypes. These advancements include the use of morphogenic regulators, virus-mediated genetic modifications, and in planta transformation with Rhizobium rhizogenes.
Collapse
Affiliation(s)
- Mohammad B Belaffif
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA; Agria Analytica, CIBIS NINE 11th Floor, Jl.TB Simatupang No.2, Jakarta Selatan, DKI Jakarta 12560, Indonesia
| | - Morgan C Brown
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Brenda Marcial
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA; University of Alabama at Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - Can Baysal
- Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
| | - Kankshita Swaminathan
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Baysal C, Kausch AP, Cody JP, Altpeter F, Voytas DF. Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17196. [PMID: 39661735 PMCID: PMC11771572 DOI: 10.1111/tpj.17196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.
Collapse
Affiliation(s)
- Can Baysal
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Albert P. Kausch
- Department of Cell and Molecular BiologyUniversity of Rhode IslandSouth KingstownRhode Island02881USA
| | - Jon P. Cody
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology ProgramGenetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationGainesvilleFlorida32611USA
| | - Daniel F. Voytas
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| |
Collapse
|
5
|
Trull BN, Sultana MS, Pfotenhauer AC, Stockdale JN, Pantalone V, Zhang B, Stewart CN. Robust soybean leaf agroinfiltration. PLANT CELL REPORTS 2024; 43:162. [PMID: 38837057 DOI: 10.1007/s00299-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.
Collapse
Affiliation(s)
- Bryce N Trull
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | | | | | - Jessica N Stockdale
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Vincent Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Bo Zhang
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
6
|
Morey K, Khakhar A. Exploring the frontier of rapid prototyping technologies for plant synthetic biology and what could lie beyond. THE NEW PHYTOLOGIST 2024; 242:903-908. [PMID: 38426415 DOI: 10.1111/nph.19650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Realizing the full potential of plant synthetic biology both to elucidate the relationship between genotype and phenotype and to apply these insights to engineer traits requires rapidly iterating through design-build-test cycles. However, the months-long process of transgenesis, the long generation times, and the size-based limitations on experimentation have stymied progress by limiting the speed and scale of these cycles. Herein, we review a representative sample of recent studies that demonstrate a variety of rapid prototyping technologies that overcome some of these bottlenecks and accelerate progress. However, each of them has caveats that limit their broad utility. Their complementary strengths and weaknesses point to the intriguing possibility that these strategies could be combined in the future to enable rapid and scalable deployment of synthetic biology in plants.
Collapse
Affiliation(s)
- Kevin Morey
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80525, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80525, USA
| |
Collapse
|
7
|
Nagalakshmi U, Meier N, Dinesh-Kumar SP. Virus-Induced Heritable Gene Editing in Plants. Methods Mol Biol 2024; 2724:273-288. [PMID: 37987913 DOI: 10.1007/978-1-0716-3485-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Gene editing using clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nuclease is an excellent tool for assessing gene function in plants. However, delivery of CRISPR/Cas-editing components into plant cells is still a major bottleneck and requires tissue culture-based approaches and regeneration of plants. To overcome this limitation, several plant viral vectors have recently been engineered to deliver single-guide RNA (sgRNA) targets into SpCas9-expressing plants. Here, we describe an optimized, step-by-step protocol based on the tobacco rattle virus (TRV)-based vector system to deliver sgRNAs fused to mobile tRNA sequences for efficient heritable editing in Nicotiana benthamiana and Arabidopsis thaliana model systems. The protocol described here could be adopted to study the function of any gene of interest.
Collapse
Affiliation(s)
- Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
| | - Nathan Meier
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Beernink BM, Whitham SA. Foxtail mosaic virus: A tool for gene function analysis in maize and other monocots. MOLECULAR PLANT PATHOLOGY 2023; 24:811-822. [PMID: 37036421 PMCID: PMC10257046 DOI: 10.1111/mpp.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 06/11/2023]
Abstract
Many plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof-of-concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus-induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize-microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize-microbe interactions and more broadly in the context of the monocot functional genomics toolbox.
Collapse
Affiliation(s)
- Bliss M. Beernink
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
- Department of BiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Steven A. Whitham
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
9
|
Kashiwagi A, Yomo T. Construction of a mini-RNA replicon in Escherichia coli. Synth Biol (Oxf) 2023; 8:ysad004. [PMID: 36926307 PMCID: PMC10013734 DOI: 10.1093/synbio/ysad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
How the ribonucleic acid (RNA) world transited to the deoxyribonucleic acid (DNA) world has remained controversial in evolutionary biology. At a certain time point in the transition from the RNA world to the DNA world, 'RNA replicons', in which RNAs produce proteins to replicate their coding RNA, and 'DNA replicons', in which DNAs produce RNA to synthesize proteins that replicate their coding DNA, can be assumed to coexist. The coexistent state of RNA replicons and DNA replicons is desired for experimental approaches to determine how the DNA world overtook the RNA world. We constructed a mini-RNA replicon in Escherichia coli. This mini-RNA replicon encoded the β subunit, one of the subunits of the Qβ replicase derived from the positive-sense single-stranded Qβ RNA phage and is replicated by the replicase in E. coli. To maintain the mini-RNA replicon persistently in E. coli cells, we employed a system of α complementation of LacZ that was dependent on the Qβ replicase, allowing the cells carrying the RNA replicon to grow in the lactose minimal medium selectively. The coexistent state of the mini-RNA replicon and DNA replicon (E. coli genome) was successively synthesized. The coexistent state can be used as a starting system to experimentally demonstrate the transition from the RNA-protein world to the DNA world, which will contribute to progress in the research field of the origin of life.
Collapse
Affiliation(s)
- Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Tetsuya Yomo
- School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Lappe RR, Elmore MG, Lozier ZR, Jander G, Miller WA, Whitham SA. Metagenomic identification of novel viruses of maize and teosinte in North America. BMC Genomics 2022; 23:767. [DOI: 10.1186/s12864-022-09001-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America.
Results
Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North American maize.
Conclusions
Metagenomic studies of crop and crop-related species such as this may be useful for the identification and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.
Collapse
|
11
|
Brophy JAN, Magallon KJ, Duan L, Zhong V, Ramachandran P, Kniazev K, Dinneny JR. Synthetic genetic circuits as a means of reprogramming plant roots. Science 2022; 377:747-751. [PMID: 35951698 DOI: 10.1126/science.abo4326] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits. These circuits control gene expression by performing Boolean logic operations and can be used to predictably alter root structure. This work demonstrates the potential of synthetic genetic circuits to control gene expression across tissues and reprogram plant growth.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Lina Duan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Aragonés V, Aliaga F, Pasin F, Daròs JA. Simplifying plant gene silencing and genome editing logistics by a one-Agrobacterium system for simultaneous delivery of multipartite virus vectors. Biotechnol J 2022; 17:e2100504. [PMID: 35332696 DOI: 10.1002/biot.202100504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Viral vectors provide a quick and effective way to express exogenous sequences in eukaryotic cells and to engineer eukaryotic genomes through the delivery of CRISPR/Cas components. Here, we present JoinTRV, an improved vector system based on tobacco rattle virus (TRV) that simplifies gene silencing and genome editing logistics. Our system consists of two mini T-DNA vectors from which TRV RNA1 (pLX-TRV1) and an engineered version of TRV RNA2 (pLX-TRV2) are expressed. The two vectors have compatible origins that allow their cotransformation and maintenance into a single Agrobacterium cell, as well as their simultaneous delivery to plants by a one-Agrobacterium/two-vector approach. The JoinTRV vectors are substantially smaller than those of any known TRV vector system, and pLX-TRV2 can be easily customized to express desired sequences by one-step digestion-ligation and homology-based cloning. The system was successfully used in Nicotiana benthamiana for launching TRV infection, for recombinant protein production, as well as for robust virus-induced gene silencing (VIGS) of endogenous transcripts using bacterial suspensions at low optical densities. JoinTRV-mediated delivery of single-guide RNAs in a Cas9 transgenic host allowed somatic cell editing efficiencies of ≈90%; editing events were heritable and >50% of the progeny seedlings showed mutations at the targeted loci.
Collapse
Affiliation(s)
- Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Flavio Aliaga
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
- Centro Experimental La Molina (CELM), Instituto Nacional de Innovación Agraria (INIA), Lima, Peru
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- School of Science, University of Padova, Padova, Italy
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
13
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
14
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
15
|
Permyakova NV, Marenkova TV, Belavin PA, Zagorskaya AA, Sidorchuk YV, Uvarova EA, Kuznetsov VV, Rozov SM, Deineko EV. Assessment of the Level of Accumulation of the dIFN Protein Integrated by the Knock-In Method into the Region of the Histone H3.3 Gene of Arabidopsis thaliana. Cells 2021; 10:2137. [PMID: 34440906 PMCID: PMC8394151 DOI: 10.3390/cells10082137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We investigated the possibility of obtaining a suspension cell culture of Arabidopsis thaliana carrying a site-specific integration of a target gene encoding modified human interferon (dIFN) using endonuclease Cas9. For the targeted insertion, we selected the region of the histone H3.3 gene (HTR5) with a high constitutive level of expression. Our results indicated that Cas9-induced DNA integration occurred with the highest frequency with the construction with donor DNA surrounded by homology arms and Cas9 endonuclease recognition sites. Among the monoclones of the four cell lines with knock-in studied, there is high heterogeneity in the level of expression and accumulation of the target protein. The accumulation of dIFN protein in cell lines with targeted insertions into the target region of the HTR5 gene does not statistically differ from the level of accumulation of dIFN protein in the group of lines with random integration of the transgene. However, one among the monoclonal lines with knock-in has a dIFN accumulation level above 2% of TSP, which is very high.
Collapse
Affiliation(s)
- Natalya V. Permyakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, 630090 Novosibirsk, Russia; (T.V.M.); (P.A.B.); (A.A.Z.); (Y.V.S.); (E.A.U.); (V.V.K.); (S.M.R.); (E.V.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|