1
|
Kaur S, Seem K, Duhan N, Kumar S, Kaundal R, Mohapatra T. Comparative miRNome and transcriptome analyses reveal the expression of novel miRNAs in the panicle of rice implicated in sustained agronomic performance under terminal drought stress. PLANTA 2024; 259:128. [PMID: 38639776 DOI: 10.1007/s00425-024-04399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
MAIN CONCLUSION Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress. Drought tolerance is a complex multigenic trait, wherein the genes are fine-tuned by coding and non-coding components in mitigating deleterious effects. MicroRNA (miRNA) controls gene expression at post-transcriptional level either by cleaving mRNA (transcript) or by suppressing its translation. miRNAs are known to control developmental processes and abiotic stress tolerance in plants. To identify terminal drought-responsive novel miRNA in contrasting rice cultivars, we constructed small RNA (sRNA) libraries from immature panicles of drought-tolerant rice [Nagina 22 (N 22)] and drought-sensitive (IR 64) cultivars grown under control and terminal drought stress. Our analysis of sRNA-seq data resulted in the identification of 169 known and 148 novel miRNAs in the rice cultivars. Among the novel miRNAs, 68 were up-regulated while 43 were down-regulated in the panicle of N 22 under stress. Interestingly, 31 novel miRNAs up-regulated in N 22 were down-regulated in IR 64, whereas 4 miRNAs down-regulated in N 22 were up-regulated in IR 64 under stress. To detect the effects of miRNA on mRNA expression level, transcriptome analysis was performed, while differential expression of miRNAs and their target genes was validated by RT-qPCR. Targets of the differentially expressed miRNAs include transcription factors and stress-associated genes involved in cellular/metabolic/developmental processes, response to abiotic stress, programmed cell death, photosynthesis, panicle/seed development, and grain yield. Differential expression of the miRNAs could be validated in an independent set of the samples. The findings might be useful in genetic improvement of drought-tolerant rice.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
- ICAR-Research Complex for North Eastern Hill Region (NEH), Umiam, Meghalaya, 793103, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naveen Duhan
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
2
|
Hu M, Zhang H, Kong L, Ma J, Wang T, Lu X, Guo Y, Zhang J, Guan R, Chu P. Comparative proteomic and physiological analyses reveal tribenuron-methyl phytotoxicity and nontarget-site resistance mechanisms in Brassica napus. PLANT, CELL & ENVIRONMENT 2023; 46:2255-2272. [PMID: 37102754 DOI: 10.1111/pce.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The application of herbicides is the most effective strategy for weed control and the development of herbicide-resistant crops will facilitate the weed management. The acetolactate synthase-inhibiting herbicide, tribenuron-methyl (TBM), is broadly used for weed control. However, its application in rapeseed field is restricted since rapeseed is sensitive to TBM. Herein, an integrated study of cytological, physiological and proteomic analysis of the TBM-resistant rapeseed mutant M342 and its wild-type (WT) plants was conducted. After TBM spraying, M342 showed improved tolerance to TBM, and proteins implicated in non-target-site resistance (NTSR) to herbicides had a significantly higher level in M342 as compared with the WT. Differentially accumulated proteins (DAPs) between these two genotypes were enriched in glutathione metabolism and oxidoreduction coenzyme metabolic process, which protected the mutant from oxidative stress triggered by TBM. Important DAPs related to stress or defence response were up-accumulated in M342 regardless of the TBM treatment, which might serve as the constitutive part of NTSR to TBM. These results provide new clues for further exploration of the NTSR mechanism in plants and establish a theoretical basis for the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongkun Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lingna Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Juanjuan Ma
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xinyu Lu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yue Guo
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Pu Chu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
4
|
Transcriptome and Physio-Biochemical Profiling Reveals Differential Responses of Rice Cultivars at Reproductive-Stage Drought Stress. Int J Mol Sci 2023; 24:ijms24021002. [PMID: 36674519 PMCID: PMC9863700 DOI: 10.3390/ijms24021002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Drought stress severely affects the growth and development of rice, especially at the reproductive stage, which results in disturbed metabolic processes, reduced seed-set/grain filling, deteriorated grain quality, declined productivity, and lower yield. Despite the recent advances in understanding the responses of rice to drought stress, there is a need to comprehensively integrate the morpho-physio-biochemical studies with the molecular responses/differential expression of genes and decipher the underlying pathways that regulate the adaptability of rice at various drought-sensitive growth stages. Our comparative analysis of immature panicle from a drought-tolerant (Nagina 22) and a drought-sensitive (IR 64) rice cultivar grown under control (well-watered) and water-deficit/drought stress (treatment, imposed at the reproductive stage) conditions unraveled some novel stress-responsive genes/pathways responsible for reproductive-stage drought stress tolerance. The results revealed a more important role of upregulated (6706) genes in the panicle of N 22 at reproductive-stage drought stress compared to that (5590) in IR 64. Functional enrichment and MapMan analyses revealed that majority of the DEGs were associated with the phytohormone, redox signalling/homeostasis, secondary metabolite, and transcription factor-mediated mitigation of the adverse effects of drought stress in N 22. The upregulated expression of the genes associated with starch/sucrose metabolism, secondary metabolites synthesis, transcription factors, glutathione, linoleic acid, and phenylalanine metabolism in N 22 was significantly more than that in the panicle of IR 64. Compared to IR 64, 2743 genes were upregulated in N 22 under control conditions, which further increased (4666) under drought stress in panicle of the tolerant cultivar. Interestingly, we observed 6706 genes to be upregulated in the panicle of N 22 over IR 64 under drought and 5814 genes get downregulated in the panicle of N 22 over IR 64 under the stress. In addition, RT-qPCR analysis confirmed differential expression patterns of the DEGs. These genes/pathways associated with the reproductive-stage drought tolerance might provide an important source of molecular markers for genetic manipulation of rice for enhanced drought tolerance.
Collapse
|
5
|
Suri A, Singh H, Kaur K, Kaachra A, Singh P. Genome-wide characterization of FK506-binding proteins, parvulins and phospho-tyrosyl phosphatase activators in wheat and their regulation by heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1053524. [PMID: 36589073 PMCID: PMC9797600 DOI: 10.3389/fpls.2022.1053524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitous proteins which are essential for cis-trans isomerisation of peptide bonds preceding the proline residue. PPIases are categorized into four sub-families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs). Apart from catalysing the cis-trans isomerization, these proteins have also been implicated in diverse cellular functions. Though PPIases have been identified in several important crop plants, information on these proteins, except cyclophilins, is scanty in wheat. In order to understand the role of these genes in wheat, we carried out genome-wide identification using computational approaches. The present study resulted in identification of 71 FKBP (TaFKBP) 12 parvulin (TaPar) and 3 PTPA (TaPTPA) genes in hexaploid wheat genome, which are distributed on different chromosomes with uneven gene densities. The TaFKBP and TaPar proteins, besides PPIase domain, also contain additional domains, indicating functional diversification. In silico prediction also revealed that TaFKBPs are localized to ER, nucleus, chloroplast and cytoplasm, while the TaPars are confined to cytoplasm and nucleus. The TaPTPAs, on the contrary, appear to be present only in the cytoplasm. Evolutionary studies predicted that most of the TaFKBP, TaPar and TaPTPA genes in hexaploid wheat have been derived from their progenitor species, with some events of loss or gain. Syntenic analysis revealed the presence of many collinear blocks of TaFKBP genes in wheat and its sub-genome donors. qRT-PCR analysis demonstrated that expression of TaFKBP and TaPar genes is regulated differentially by heat stress, suggesting their likely involvement in thermotolerance. The findings of this study will provide basis for further functional characterization of these genes and their likely applications in crop improvement.
Collapse
Affiliation(s)
- Anantika Suri
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Anish Kaachra
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Qiao ZW, Wang DR, Wang X, You CX, Wang XF. Genome-wide identification and stress response analysis of cyclophilin gene family in apple (Malus × domestica). BMC Genomics 2022; 23:806. [PMID: 36474166 PMCID: PMC9727951 DOI: 10.1186/s12864-022-08976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cyclophilin (CYP) belongs to the immunophilin family and has peptidyl-prolyl cis-trans isomerase (PPIase) activity, which catalyzes the cis-trans isomerization process of proline residues. CYPs widely exist in eukaryotes and prokaryotes, and contain a conserved cyclophilin-like domain (CLD). Plant cyclophilins are widely involved in a range of biological processes including stress response, metabolic regulation, and growth and development. RESULT In this study, 30 cyclophilin genes on 15 chromosomes were identified from the 'Golden Delicious' apple (M. domestica) genome. Phylogenetic analysis showed that the cyclophilin family genes can be divided into three clades in Malus. Collinear analysis showed that ten gene pairs were the result of segmental duplication. Analysis of gene and protein structure further supported the phylogenetic tree and collinearity analysis. The expression of MdCYPs in different organs was higher in leaves, flowers, and fruits. Ten and eight CYPs responded to drought and salt stress, respectively. MdCYP16, a nuclear-localized MD CYP, was screened from the intersection of the two expression profiling datasets and was highly sensitive to drought and salt stress. GUS staining of transgenic Arabidopsis indicated that MdCYP16 may be involved in the regulation of abiotic stress. CONCLUSION This study systematically analyzed members of the apple cyclophilin family and confirmed the involvement of MdCYP16 as a nuclear-localized MD cyclophilin that acts in response to salt and drought stress in apple. Our work identifies members of the apple cyclophilin gene family, and provides an important theoretical basis for in-depth study of cyclophilin function. Additionally, the analysis provides candidate genes that may be involved in stress response in apple.
Collapse
Affiliation(s)
- Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Ru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
7
|
Conti V, Cantini C, Romi M, Cesare MM, Parrotta L, Del Duca S, Cai G. Distinct Tomato Cultivars Are Characterized by a Differential Pattern of Biochemical Responses to Drought Stress. Int J Mol Sci 2022; 23:5412. [PMID: 35628226 PMCID: PMC9141555 DOI: 10.3390/ijms23105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| |
Collapse
|
8
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
9
|
Cyclophilins and Their Functions in Abiotic Stress and Plant-Microbe Interactions. Biomolecules 2021; 11:biom11091390. [PMID: 34572603 PMCID: PMC8464771 DOI: 10.3390/biom11091390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/12/2023] Open
Abstract
Plants have developed a variety of mechanisms and regulatory pathways to change their gene expression profiles in response to abiotic stress conditions and plant–microbe interactions. The plant–microbe interaction can be pathogenic or beneficial. Stress conditions, both abiotic and pathogenic, negatively affect the growth, development, yield and quality of plants, which is very important for crops. In contrast, the plant–microbe interaction could be growth-promoting. One of the proteins involved in plant response to stress conditions and plant–microbe interactions is cyclophilin. Cyclophilins (CyPs), together with FK506-binding proteins (FKBPs) and parvulins, belong to a big family of proteins with peptidyl-prolyl cis-trans isomerase activity (Enzyme Commission (EC) number 5.2.1.8). Genes coding for proteins with the CyP domain are widely expressed in all organisms examined, including bacteria, fungi, animals, and plants. Their different forms can be found in the cytoplasm, endoplasmic reticulum, nucleus, chloroplast, mitochondrion and in the phloem space. They are involved in numerous processes, such as protein folding, cellular signaling, mRNA processing, protein degradation and apoptosis. In the past few years, many new functions, and molecular mechanisms for cyclophilins have been discovered. In this review, we aim to summarize recent advances in cyclophilin research to improve our understanding of their biological functions in plant defense and symbiotic plant–microbe interactions.
Collapse
|