1
|
Kim J, Woo Sung Y, Yang JW, Jung Nam K, Lee KL, Shim D, Kim YH. Genetic variations underlying root-knot nematode resistance in sweetpotato. Gene 2024; 931:148895. [PMID: 39187137 DOI: 10.1016/j.gene.2024.148895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Root-knot nematode (Meloidogyne incognita) causes severe crop damage and large economic losses worldwide. Several cultivars of sweetpotato [Ipomoea batatas (L.) Lam)] have been developed with root-knot nematode-resistant traits; however, many of these cultivars do not have favorable agronomic characteristics. To understand the genetic traits underlying M. incognita resistance in sweetpotato, whole genome resequencing was conducted on three RKN-susceptible (Dahomi, Shinhwangmi, and Yulmi) and three RKN-resistant (Danjami, Pungwonmi, and Juhwangmi) sweetpotato cultivars. Three SNPs (single nucleotide polymorphisms) in promotor sequences were shared in RKN-resistant cultivars and were correlated with disease resistance. One of these SNPs was located in G6617|TU10904, which encoded a homolog of RIBOSOMAL PROTEIN EL15Z, and was associated with reduced expression in RKN-resistant cultivars only. Alongside SNP analysis, mRNA-seq data were analyzed for the same cultivars with and without nematode infection, and 18 nematode-sensitive genes were identified that responded in a cultivar-specific manner. Of these genes, expression of G8735|TU14367 was lower in sensitive cultivars than in RKN-resistant cultivars. Overall, this study identified two genes that potentially have key roles in the regulation of nematode resistance and will be useful targets for nematode resistance breeding programs.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Biology Education, Korea National University of Education, Cheongju, Republic of Korea
| | - Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, Republic of Korea; Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, RDA, Suwon, Republic of Korea
| | - Ki Jung Nam
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea.
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Kwon JS, Lee J, Shilpha J, Jang H, Kang WH. The landscape of sequence variations between resistant and susceptible hot peppers to predict functional candidate genes against bacterial wilt disease. BMC PLANT BIOLOGY 2024; 24:1036. [PMID: 39482582 PMCID: PMC11529287 DOI: 10.1186/s12870-024-05742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum (Ral), results in substantial yield losses in pepper crops. Developing resistant pepper varieties through breeding is the most effective strategy for managing BW. To achieve this, a thorough understanding of the genetic information connected with resistance traits is essential. Despite identifying three major QTLs for bacterial wilt resistance in pepper, Bw1 on chromosome 8, qRRs-10.1 on chromosome 10, and pBWR-1 on chromosome 1, the genetic information of related BW pepper varieties has not been sufficiently studied. Here, we resequenced two pepper inbred lines, C. annuum 'MC4' (resistant) and C. annuum 'Subicho' (susceptible), and analyzed genomic variations through SNPs and Indels to identify candidate genes for BW resistance. RESULTS An average of 139.5 Gb was generated among the two cultivars, with coverage ranging from 44.94X to 46.13X. A total of 8,815,889 SNPs was obtained between 'MC4' and 'Subicho'. Among them, 31,190 (0.35%) were non-synonymous SNPs (nsSNPs) corresponding to 10,926 genes, and these genes were assigned to 142 Gene Ontology (GO) terms across the two cultivars. We focused on three known BW QTL regions by identifying genes with sequence variants through gene set enrichment analysis and securing those belonging to high significant GO terms. Additionally, we found 310 NLR genes with nsSNP variants between 'MC4' (R) and 'Subicho' (S) within these regions. Also, we performed an Indel analysis on these genes. By integrating all this data, we identified eight candidate BW resistance genes, including two NLR genes with nsSNPs variations in qRRs-10.1 on chromosome 10. CONCLUSION We identified genomic variations in the form of SNPs and Indels by re-sequencing two pepper cultivars with contrasting traits for bacterial wilt. Specifically, the four genes associated with pBWR-1 and Bw1 that exhibit both nsSNP and Indel variations simultaneously in 'Subicho', along with the two NLR genes linked to qRRs-10.1, which are known for their direct involvement in immune responses, are identified as most likely BW resistance genes. These variants in leading candidate genes associated with BW resistance can be used as important markers for breeding pepper varieties.
Collapse
Affiliation(s)
- Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
3
|
Meresa BK, Matthys J, Kyndt T. Biochemical Defence of Plants against Parasitic Nematodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2813. [PMID: 39409684 PMCID: PMC11479011 DOI: 10.3390/plants13192813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Plant parasitic nematodes (PPNs), such as Meloidogyne spp., Heterodera spp. and Pratylenchus spp., are obligate parasites on a wide range of crops, causing significant agricultural production losses worldwide. These PPNs mainly feed on and within roots, impairing both the below-ground and the above-ground parts, resulting in reduced plant performance. Plants have developed a multi-component defence mechanism against diverse pathogens, including PPNs. Several natural molecules, ranging from cell wall components to secondary metabolites, have been found to protect plants from PPN attack by conferring nematode-specific resistance. Recent advances in omics analytical tools have encouraged researchers to shed light on nematode detection and the biochemical defence mechanisms of plants during nematode infection. Here, we discuss the recent progress on revealing the nematode-associated molecular patterns (NAMPs) and their receptors in plants. The biochemical defence responses of plants, comprising cell wall reinforcement; reactive oxygen species burst; receptor-like cytoplasmic kinases; mitogen-activated protein kinases; antioxidant activities; phytohormone biosynthesis and signalling; transcription factor activation; and the production of anti-PPN phytochemicals are also described. Finally, we also examine the role of epigenetics in regulating the transcriptional response to nematode attack. Understanding the plant defence mechanism against PPN attack is of paramount importance in developing new, effective and sustainable control strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Biotechnology Department, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| | - Jasper Matthys
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| | - Tina Kyndt
- Biotechnology Department, Ghent University, B-9000 Ghent, Belgium;
| |
Collapse
|
4
|
Ozdemir S, Piya S, Lopes-Caitar VS, Coffey N, Rice JH, Hewezi T. Local and systemic transcriptome and spliceome reprogramming induced by the root-knot nematode Meloidogyne incognita in tomato. HORTICULTURE RESEARCH 2024; 11:uhae206. [PMID: 39286358 PMCID: PMC11403207 DOI: 10.1093/hr/uhae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
Root-knot nematodes (Meloidogyne spp.) are widely spread root parasites that infect thousands of vascular plant species. These highly polyphagous nematodes engage in sophisticated interactions with host plants that results in the formation of knot-like structures known as galls whose ontogeny remains largely unknown. Here, we determined transcriptome changes and alternative splicing variants induced by Megalaima incognita in galls and neighboring root cells at two distinct infective stages. M. incognita induced substantial transcriptome changes in tomato roots both locally in galls and systemically in neighboring cells. A considerable parallel regulation of gene expression in galls and neighboring cells were detected, indicative of effective intercellular communications exemplified by suppression of basal defense responses particularly during the early stage of infection. The transcriptome analysis also revealed that M. incognita exerts a tight control over the cell cycle process as a whole that results in an increase of ploidy levels in the feeding sites and accelerated mitotic activity of the gall cells. Alternative splicing analysis indicated that M. incognita significantly modulates pre-mRNA splicing as a total of 9064 differentially spliced events from 2898 genes were identified where intron retention and exon skipping events were largely suppressed. Furthermore, a number of differentially spliced events were functionally validated using transgenic hairy root system and found to impact gall formation and nematode egg mass production. Together, our data provide unprecedented insights into the transcriptome and spliceome reprogramming induced by M. incognita in tomato with respect to gall ontogeny and nematode parasitism.
Collapse
|
5
|
Deng H, Wang F, Wu Q, Sun H, Ma J, Ni R, Li Z, Zhang L, Zhang J, Liu M. Novel Multiresistant Osmotin-like Protein from Sweetpotato as a Promising Biofungicide to Control Ceratocystis fimbriata by Destroying Spores through Accumulation of Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1487-1499. [PMID: 38215405 DOI: 10.1021/acs.jafc.3c07663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Osmotin-like proteins (OLPs) play an important role in host-plant defense. In this study, a novel multiresistant OLP (IbOLP1) was screened from sweetpotato (Ipomoea batatas) with a molecular weight of 26.3 kDa. The expression level of IbOLP1 was significantly higher in resistant cultivars than susceptible ones after inoculation with Ceratocystis fimbriata, which causes black rot disease in sweetpotato. The expression of IbOLP1 in Pichia pastoris led to the lysis of yeast cells themselves. The recombinant IbOLP1 displayed antifungal, antibacterial, and antinematode activity and stability. IbOLP1 could restrain the mycelial growth and lyse spores of C. fimbriata, distinctly reducing the incidence of black rot in sweetpotato. The IbOLP1 can trigger the apoptosis of black rot spores by elevating the intracellular levels of reactive oxygen species. Collectively, these findings suggest that IbOLP1 can be used to develop natural antimicrobial resources instead of chemical agents and generate new, disease-resistant germplasm.
Collapse
Affiliation(s)
- Huangyue Deng
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Fangrui Wang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qian Wu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Houjun Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Jukui Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu, Xuhuai District, Xuzhou, Jiangsu Province 221131, China
| | - Rui Ni
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Zongyun Li
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province 250100, China
| | - Jian Zhang
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Meiyan Liu
- Department of Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| |
Collapse
|
6
|
Chen SP, Kuo YW, Lin JS. Review: Defense responses in sweetpotato (Ipomoea batatas L.) against biotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111893. [PMID: 37813194 DOI: 10.1016/j.plantsci.2023.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Sweetpotato (Ipomoea batatas L.) is regarded as amongst the world's most important crops for food, vegetable, forage, and raw material for starch and alcohol production. Since pest attack and disease infection are the main limiting aspects frequently causing the yield loss and quality degradation of sweetpotato, it is a great demand to develop the effective defense strategies for maintaining productivity. In the past decade, many studies have focused on dynamic analysis at the physiological, biochemical, and molecular responses of sweetpotatoes to environmental challenges. This review offers an overview of the defense mechanisms against biotic stresses in sweetpotato observed so far, particularly insect herbivory and pathogen infections. The defenses of sweetpotato include the regulation of the toxic and anti-digestive proteins, plant-derived compounds, physical barrier formation, and sugar distribution. Ipomoelin and sporamin have been extensively researched for the defense against herbivore wounding. Herbivory-induced plant volatiles, chlorogenic acid, and latex phytochemicals play important roles in defenses for insect herbivory. Induction of IbSWEET10 reduces sugar content to mediate F. oxysporum resistance. Therefore, these researches provide the genetic strategies for improving resistance bioengineering and breeding of sweetpotato crops and future prospects for research in this field.
Collapse
Affiliation(s)
- Shi-Peng Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan.
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
7
|
Sung YW, Kim J, Yang JW, Shim D, Kim YH. Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes (Basel) 2023; 14:2074. [PMID: 38003017 PMCID: PMC10671793 DOI: 10.3390/genes14112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
M. incognita, a root-knot nematode (RKN), infects the roots of several important food crops, including sweet potato (Ipomoea batatas Lam.), and severely reduces yields. However, the molecular mechanisms underlying infection remain unclear. Previously, we investigated differential responses to RKN invasion in susceptible and resistant sweet potato cultivars through RNA-seq-based transcriptome analysis. In this study, gene expression similarities and differences were examined in RKN-susceptible sweet potato cultivars during the compatible response to RKN infection. Three susceptible cultivars investigated in previous research were used: Dahomi (DHM), Shinhwangmi (SHM), and Yulmi (YM). Of the three cultivars, YM had the highest number of genes with altered expression in response to infection. YM was also the cultivar with the highest susceptibility to RKN. Comparisons among cultivars identified genes that were regulated in more than one cultivar upon infection. Pairwise comparisons revealed that YM and DHM shared the most regulated genes, whereas YM and SHM shared the lowest number of regulated genes. Five genes were up-regulated, and two were down-regulated, in all three cultivars. Among these, four genes were highly up-regulated in all cultivars: germin-like protein, anthranilate synthase α subunit, isocitrate lyase, and uncharacterized protein. Genes were also identified that were uniquely regulated in each cultivar in response to infection, suggesting that susceptible cultivars respond to infection through shared and cultivar-specific pathways. Our findings expand the understanding of the compatible response to RKN invasion in sweet potato roots and provide useful information for further research on RKN defense mechanisms.
Collapse
Affiliation(s)
- Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Yang JW, Park SU, Lee HU, Nam KJ, Lee KL, Lee JJ, Kim JH, Kwak SS, Kim HS, Kim YH. Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection. Antioxidants (Basel) 2023; 12:1164. [PMID: 37371894 DOI: 10.3390/antiox12061164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Root-knot nematodes (RKN) cause significant damage to sweetpotato plants and cause significant losses in yield and quality. Reactive oxygen species (ROS) play an important role in plant defenses, with levels of ROS-detoxifying antioxidant enzymes tightly regulated during pathogen infection. In this study, ROS metabolism was examined in three RKN-resistant and three RKN-susceptible sweetpotato cultivars. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were assessed, as was lignin-related metabolism. In RKN-infected roots, both resistant and susceptible cultivars increased SOD activity to produce higher levels of hydrogen peroxide (H2O2). However, H2O2 removal by CAT activity differed between cultivars, with susceptible cultivars having higher CAT activity and lower overall H2O2 levels. In addition, the expression of phenylpropanoid-related phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase genes, which encode enzymes involved in lignin metabolism, were higher in resistant cultivars, as were total phenolic and lignin contents. Enzyme activities and H2O2 levels were examined during the early (7 days) and late (28 days) phases of infection in representative susceptible and resistant cultivars, revealing contrasting changes in ROS levels and antioxidant responses in the different stages of infection. This study suggests that differences in antioxidant enzyme activities and ROS regulation in resistant and susceptible cultivars might explain reduced RKN infection in resistant cultivars, resulting in smaller RKN populations and overall higher resistance to infection and infestation by RKNs.
Collapse
Affiliation(s)
- Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, Rural Development Administration, Suwon 16200, Republic of Korea
| | - Sul-U Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34030, Republic of Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58538, Republic of Korea
| | - Ki Jung Nam
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| | - Jeung Joo Lee
- Department of Plant Medicine, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| | - Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31008, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34030, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34030, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52609, Republic of Korea
| |
Collapse
|
9
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
10
|
Ahn JY, Kim J, Yang JY, Lee HJ, Kim S, Cho KS, Lee SH, Kim JH, Lee TH, Hur Y, Shim D. Comparative Transcriptome Analysis between Two Potato Cultivars in Tuber Induction to Reveal Associated Genes with Anthocyanin Accumulation. Int J Mol Sci 2022; 23:ijms23073681. [PMID: 35409041 PMCID: PMC8998591 DOI: 10.3390/ijms23073681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are generally accumulated within a few layers, including the epidermal cells of leaves and stems in plants. Solanum tuberosum cv. ‘Jayoung’ (hereafter, JY) is known to accumulate anthocyanin both in inner tissues and skins. We discovered that anthocyanin accumulation in the inner tissues of JY was almost diminished (more than 95% was decreased) in tuber induction condition. To investigate the transcriptomic mechanism of anthocyanin accumulation in JY flesh, which can be modulated by growth condition, we performed mRNA sequencing with white-colored flesh tissue of Solanum tuberosum cv. ‘Atlantic’ (hereafter, ‘Daeseo’, DS) grown under canonical growth conditions, a JY flesh sample grown under canonical growth conditions, and a JY flesh sample grown under tuber induction conditions. We could identify 36 common DEGs (differentially expressed genes) in JY flesh from canonical growth conditions that showed JY-specifically increased or decreased expression level. These genes were enriched with flavonoid biosynthetic process terms in GO analysis, as well as gene set enrichment analysis (GSEA) analysis. Further in silico analysis on expression levels of anthocyanin biosynthetic genes including rate-limiting genes such as StCHS and StCHI followed by RT-PCR and qRT-PCR analysis showed a strong positive correlation with the observed phenotypes. Finally, we identified StWRKY44 from 36 common DEGs as a possible regulator of anthocyanin accumulation, which was further supported by network analysis. In conclusion, we identified StWRKY44 as a putative regulator of tuber-induction-dependent anthocyanin accumulation.
Collapse
Affiliation(s)
- Ju Young Ahn
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Ju Yeon Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Hyun Ju Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Soyun Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Admin-istration, Pyeongchang 25342, Korea;
| | - Sang-Ho Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
| | - Jin-Hyun Kim
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Tae-Ho Lee
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| |
Collapse
|
11
|
Khoei MA, Karimi M, Karamian R, Amini S, Soorni A. Identification of the Complex Interplay Between Nematode-Related lncRNAs and Their Target Genes in Glycine max L. FRONTIERS IN PLANT SCIENCE 2021; 12:779597. [PMID: 34956274 PMCID: PMC8705754 DOI: 10.3389/fpls.2021.779597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better understand the regulation of defense mechanism against PPNs in soybean, we investigated the role of long non-coding RNAs (lncRNAs) in response to two nematode species, Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis (reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: reniform-associated data set) were employed to discover the lncRNAome profile of soybean under SCN and reniform infection, respectively. Upon identification of unannotated transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. These transcripts were then used to predict cis and trans nematode-related targets in soybean genome. Computational prediction of target genes function, some of which were also among differentially expressed genes, revealed the involvement of putative nematode-responsive genes as well as enrichment of multiple stress responses in both data sets. Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation of gene expression in soybean in response to SNC and reniform infection, respectively. Collectively, this study provides a novel insight into the signaling and regulatory network of soybean-pathogen interactions and opens a new window for further research.
Collapse
Affiliation(s)
| | | | - Roya Karamian
- Department of Biology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|