1
|
Kang X, Wu X, Liu Y, Zhang A, Duan L, Zhou J, Zhan Z, Qi W. Shrub effect on grassland community assembly depends on plant functional traits and shrub morphology. Oecologia 2025; 207:77. [PMID: 40314734 DOI: 10.1007/s00442-025-05716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/12/2025] [Indexed: 05/03/2025]
Abstract
An accurate assessment of shrub-herb interactions is challenging because shrubs can facilitate herb growth as nurse plants and negatively affect herbs as competitors. As responses to the effects of neighbors are often trait dependent, the impact of shrubs on grassland communities may differ with a variation in herb functional traits. In 2020, we surveyed the structure and functional pattern of 160 Qinghai-Tibet alpine grassland communities under the canopy of four dominant shrub species and their surrounding open areas. We found an overall negative effect of shrubs on grassland productivity, species diversity, and individual abundance, suggesting that interspecific resource competition, rather than facilitation, dominated the effect of shrubs on herb growth. The negative effect was weakest for small deciduous shrub species, implying that seasonal defoliation and low shading conditions could reduce the light competition of shrubs on herbs. Shrubs generally increased grassland functional diversity of vegetative traits, especially leaf economic traits, but decreased that of reproductive traits, especially seed traits, demonstrating that shrubs affected grassland community assembly by offering benign microhabitats to protect herbaceous species with stress-intolerant or fast-acquisition vegetative traits and setting physical barriers to prevent the entry of species with specific reproductive traits. Moreover, as canopy transmittance increased, positive shrub effects on leaf size diversity became more pronounced. However, an increase in canopy size intensified the negative effects of shrubs on the diversity of plant height and some reproductive traits. Results illustrated that the structuring of alpine grassland communities by shrubs depends on their type (semi-evergreen or deciduous) and size.
Collapse
Affiliation(s)
- Xiaomei Kang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xinyang Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yanjun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Aoran Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lijie Duan
- Gansu Provincial Extension Station of Grassland Techniques, Lanzhou, 730000, China
| | - Jieyang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhixi Zhan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Wei Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhang J, Liang M, Tong S, Qiao X, Li B, Yang Q, Chen T, Hu P, Yu S. Response of leaf functional traits to soil nutrients in the wet and dry seasons in a subtropical forest on an island. FRONTIERS IN PLANT SCIENCE 2023; 14:1236607. [PMID: 38143586 PMCID: PMC10748499 DOI: 10.3389/fpls.2023.1236607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Introduction Island ecosystems often have a disproportionate number of endemic species and unique and fragile functional characteristics. However, few examples of this type of ecosystem have been reported. Methods We conducted a comprehensive field study on Neilingding Island, southern China. The leaf samples of 79 subtropical forest tree species were obtained and their functional traits were studied in the dry and wet seasons to explain the relationships between plant functional traits and soil nutrients. Results We found a greater availability of soil moisture content (SMC) and nutrients in the wet season than in the dry season. The values of wet season soil available phosphorus (5.97 mg·kg-1), SMC (17.67%), and soil available potassium (SAK, 266.96 mg·kg-1) were significantly higher than those of the dry season. The leaf dry matter content, specific leaf weight, leaf density, leaf total carbon, leaf total nitrogen, leaf total calcium, and the N/P and C/P ratios of leaves were all significantly higher in the dry season than in the wet season, being 18.06%, 12.90%, 12.00%, 0.17%, 3.41%, 9.02%, 26.80%, and 24.14% higher, respectively. In contrast, the leaf area (51.01 cm2), specific leaf area (152.76 cm2·g-1), leaf water content (0.59%), leaf total nitrogen (1.31%), leaf total phosphorus (0.14%), and leaf total magnesium (0.33%) were much lower in the dry season than in the wet one. There were significant pairwise correlations between leaf functional traits, but the number and strength of correlations were significantly different in the dry and wet seasons. The SAK, soil total phosphorus (STP), and pH impacted plant leaf functional traits in the dry season, whereas in the wet season, they were affected by SAK, STP, pH, and NO3- (nitrate). Discussion Both soil nutrients and water availability varied seasonally and could cause variation in a number of leaf traits.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Minxia Liang
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Sen Tong
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Xueting Qiao
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Buhang Li
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Qiong Yang
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Ting Chen
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Ping Hu
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Tayir M, Dai Y, Shi Q, Abdureyim A, Erkin F, Huang W. Distinct leaf functional traits of Tamarix chinensis at different habitats in the hinterland of the Taklimakan desert. FRONTIERS IN PLANT SCIENCE 2023; 13:1094049. [PMID: 36756227 PMCID: PMC9900739 DOI: 10.3389/fpls.2022.1094049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Leaf functional traits reflect plant adaptive strategies towards environmental heterogeneity. However, which factor play the key role of plasticity of leaf functional traits among various variable environmental factors remains unclear in desert hinterland oasis area. Here, we analyzed variations in leaf water content (LWC), δ 13C values of leaves (δ 13C), specific leaf area (SLA), leaf organic carbon concentration (LOC), leaf total nitrogen concentration (LTN), leaf total phosphorus concentration (LTP), and leaf C: N: P stoichiometry in Tamarix chinensis growing in five habitats at the Daliyabuyi, a natural pristine oasis in northwestern China, that differ abiotically and biotically. The spatial heterogeneity of leaf functional traits was evident. Abiotic factors vitally influence leaf functional traits, of which groundwater depth (GWD) and soil C: N stoichiometry (SOC: STN) are crucial. GWD exhibited close relationships with LWC (P < 0.05) and LOC: LTP (P < 0.01), but not δ 13C. Soil water content (SWC) and SOC: STN were negatively related to SLA (P < 0.01; P < 0.05). While, SOC: STN showed positive relationships with LOC: LTN (P < 0.05). As for biological factors, we found T. chinensis in habitat with Sophora alopecuroidies had the highest LTN, possibly as a result of N fixation of leguminous plants (S. alopecuroidies) promotes the N concentration of T. chinensis. Close relationships also existed between leaf functional traits, LWC showed significantly negatively relatd to δ 13C, LOC: LTN and LOC: LTP (P < 0.05), whereas δ 13C had positively correlated with LOC: LTN (P < 0.01) but negatively correlated with LTN (P < 0.05). T. chinensis had relative higher LWC couple with lower δ 13C, and exhibiting lower C, N, P in leaves and their stoichiometric ratios, and also lower SLA which compared with other terrestrial plant. Such coordinations suggesting that T. chinensis develops a suite of trait combinations mainly tends to more conservative to response local habitats in Daliyabuyi, which is contribute to understand desert plant resource acquisition and utilization mechanisms in extremely arid and barren environments.
Collapse
Affiliation(s)
- Mawlida Tayir
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Yue Dai
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi, China
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
| | - Qingdong Shi
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Anwar Abdureyim
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Flora Erkin
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Wanyuan Huang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| |
Collapse
|
4
|
Xing H, Shi Z, Liu S, Chen M, Xu G, Cao X, Zhang M, Chen J, Li F. Leaf traits divergence and correlations of woody plants among the three plant functional types on the eastern Qinghai-Tibetan Plateau, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1128227. [PMID: 37077644 PMCID: PMC10106608 DOI: 10.3389/fpls.2023.1128227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Leaf traits are important indicators of plant life history and may vary according to plant functional type (PFT) and environmental conditions. In this study, we sampled woody plants from three PFTs (e.g., needle-leaved evergreens, NE; broad-leaved evergreens, BE; broad-leaved deciduous, BD) on the eastern Qinghai-Tibetan Plateau, and 110 species were collected across 50 sites. Here, the divergence and correlations of leaf traits in three PFTs and relationships between leaf traits and environment were studied. The results showed significant differences in leaf traits among three PFTs, with NE plants showed higher values than BE plants and BD plants for leaf thickness (LT), leaf dry matter content (LDMC), leaf dry mass per area (LMA), carbon: nitrogen ratio (C/N), and nitrogen content per unit area (Narea), except for nitrogen content per unit mass (Nmass). Although the correlations between leaf traits were similar across three PFTs, NE plants differed from BE plants and BD plants in the relationship between C/N and Narea. Compared with the mean annual precipitation (MAP), the mean annual temperature (MAT) was the main environmental factor that caused the difference in leaf traits among three PFTs. NE plants had a more conservative approach to survival compared to BE plants and BD plants. This study shed light on the regional-scale variation in leaf traits and the relationships among leaf traits, PFT, and environment. These findings have important implications for the development of regional-scale dynamic vegetation models and for understanding how plants respond and adapt to environmental change.
Collapse
Affiliation(s)
- Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Zuomin Shi,
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|