1
|
Madhan S, Arunan YE, Rangasamy A, Dananjeyan B, Iruthayasamy J, Gajendiran M, Ramasamy K, Rajasekaran R, Saminathan V. Rhizobial, passenger nodule endophytes and phyllosphere bacteria in combination with acyl homoserine lactones enhances the growth and yield of groundnut. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00893. [PMID: 40270784 PMCID: PMC12017914 DOI: 10.1016/j.btre.2025.e00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Quorum sensing (QS) mechanisms play an essential role in mediating several signals and plant-bacteria interactions, promoting plant growth. This study demonstrated production of multiple Homoserine lactone (HSL) molecules like C6 HSL, C7 HSL, C8 HSL, 3-Hydroxy-C8-HSL and 3-oxo-C14 HSL in rhizobial and passenger endophytes and phyllospheric bacteria which regulated production of plant growth promoting traits viz., indole acetic acid and exo-polysaccharide production, biofilm formation, and motility. Quorum quenching (QQ) molecules like salicylic acid, gallic acid, and disalicylic acid impaired these traits, but exogenous addition of QS molecules (C7HSL and 3-oxo-C14 HSL) restored these inhibitory effects of QQ compounds. The pot culture experiment revealed that the treatment involving Methylobacterium populi TMV7-4 or Enterobacter cloacae S23 with salicylic acid, C7HSL and 3-oxo-C14 HSL significantly enhanced plant growth including root length, nodulation, pod formation, soil available nutrients and plant nutrients uptake. In future field validation is required for the use of QS molecules in improving groundnut production.
Collapse
Affiliation(s)
- Sivakumar Madhan
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Yuvasri Errakutty Arunan
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Anandham Rangasamy
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Balachandar Dananjeyan
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Johnson Iruthayasamy
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Manimaran Gajendiran
- Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Krishnamoorthy Ramasamy
- Department of Crop Management, Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu 642103, India
| | - Raghu Rajasekaran
- Centre for Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Vincent Saminathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
2
|
Salma Santhosh S, Meena S, Baskar M, Karthikeyan S, Vanniarajan C, Ramesh T. Transformative strategies for saline soil restoration: Harnessing halotolerant microorganisms and advanced technologies. World J Microbiol Biotechnol 2025; 41:140. [PMID: 40289223 DOI: 10.1007/s11274-025-04342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Soil salinity is a critical global challenge that severely impairs crop productivity and soil health by disrupting water uptake, nutrient acquisition, and ionic balance in plants, thereby posing a significant threat to food security. This review underscores innovative strategies to mitigate salinity stress, focusing on the pivotal role of halotolerant microorganisms and their synergistic interactions with plants. Halotolerant microorganisms enhance plant resilience through diverse mechanisms under salinity, including exopolysaccharide production, sodium sequestration, and phytohormone regulation. It improves ionic balance, nutrient uptake, and root development, facilitated by osmoregulatory and genetic adaptations. In this discussion, we explored emerging technologies, including genome editing (e.g., CRISPR-Cas9), synthetic biology, and advanced omics-based tools such as metagenomics and metatranscriptomics. These cutting-edge approaches offer profound insights into microbial diversity and their functional adaptations to saline environments. By leveraging these technologies, it is possible to design targeted bioremediation strategies through the customization of microbial functionalities to address specific environmental challenges effectively. Advanced methodologies, such as microbial volatile organic compounds (mVOCs), nanotechnology, and stress-tolerant microbial consortia, significantly enhance plant stress tolerance and facilitate soil restoration. Moreover, integrating digital technologies, including machine learning and artificial intelligence (AI), optimizes bioremediation processes by providing precise, scalable, and adaptable solutions tailored to diverse agricultural ecosystems. The synergistic application of halotolerant microbe-mediated approaches with advanced biotechnological and digital innovations presents a transformative strategy for saline soil restoration. Future research should focus on harmonizing these technologies and methodologies to maximize plant-microbe interactions and establish resilient, sustainable agricultural systems.
Collapse
Affiliation(s)
- S Salma Santhosh
- Department of Soil Science & Agricultural Chemistry, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India.
| | - S Meena
- Department of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - M Baskar
- Department of Soil Science & Agricultural Chemistry, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| | - S Karthikeyan
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - C Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| | - T Ramesh
- Department of Agronomy, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
3
|
Maphosa S, Steyn M, Lebre PH, Gokul JK, Convey P, Marais E, Maggs-Kölling G, Cowan DA. Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations. Microbiol Res 2025; 293:128076. [PMID: 39884152 DOI: 10.1016/j.micres.2025.128076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Rhizosphere microbial communities are intimately associated with plant root surfaces. The rhizosphere microbiome is recruited from the surrounding soil and is known to impact positively on the plant host via enhanced resistance to pathogens, increased nutrient availability, growth stimulation and increased resistance to desiccation. Desert ecosystems harbour a diversity of perennial and annual plant species, generally exhibiting considerable physiological adaptation to the low-water environment. In this study, we explored the rhizosphere bacterial microbiomes associated with selected desert plant species. The rhizosphere bacterial communities of 11 plant species from the central Namib Desert were assessed using 16S rRNA gene-dependent phylogenetic analyses. The rhizosphere microbial community of each host plant species was compared with control soils collected from their immediate vicinity, and with those of all other host plants. Rhizosphere and control soil bacterial communities differed significantly and were influenced by both location and plant species. Rhizosphere-associated genera included 67 known plant growth-promoting taxa, including Rhizobium, Bacillus, Microvirga, Kocuria and Paenibacillus. Other than Kocuria, these genera constituted the 'core' rhizosphere bacterial microbiome, defined as being present in > 90 % of the rhizosphere communities. Nine of the 11 desert plant species harboured varying numbers and proportions of species-specific microbial taxa. Predictive analyses of functional pathways linked to rhizosphere microbial taxa showed that these were significantly enriched in the biosynthesis or degradation of a variety of substances such as sugars, secondary metabolites, phenolic compounds and antimicrobials. Overall, our data suggest that plant species in the Namib Desert recruit unique taxa to their rhizosphere bacterial microbiomes that may contribute to their resilience in this extreme environment.
Collapse
Affiliation(s)
- Silindile Maphosa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Mégan Steyn
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jarishma K Gokul
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa; Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
4
|
Rosić I, Nikolić I, Anteljević M, Marić I, Ranković T, Stanković S, Berić T, Medić O. Diversity and activity of AHL-lactonases in Bacillus spp. from various environments. FEMS Microbiol Lett 2025; 372:fnaf038. [PMID: 40194945 DOI: 10.1093/femsle/fnaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025] Open
Abstract
Disrupting quorum sensing (QS) pathways in animal and plant pathogenic bacteria is an effective strategy to mitigate infections without promoting antibiotic and pesticide resistance. This approach inhibits the production of virulence factors, biofilm formation, and toxin production, reducing bacterial pathogenicity. In plant health protection, Bacillus spp. are extensively researched and utilized as biocontrol agents; however, the potential of their AHL-lactonase-producing ability, which plays a key role as a QS inhibitor of Gram-negative pathogens, remains largely unexplored. This study examined the activity and diversity of QQ enzymes from Bacillus spp. isolates obtained from various natural sources, confirming their presence in previously unreported environments associated with agricultural fields (straw and manure). Our findings show that AiiA lactonase is the most dominant and highly conserved AHL-lactonase among Bacillus isolates from bulk soil, manure, and straw. Despite its sequence conservation, we observed significant variation in AiiA lactonase activities toward the N-hexanoyl-DL-homoserine lactone (C6-HSL) substrate. Furthermore, in silico analysis suggested that the Bacillus sp. YtnP lactonase may have a lower affinity for C6-HSL compared to AiiA lactonase. Finally, this research presents a selection of Bacillus isolates with high AiiA lactonase activity for potential testing against plant pathogens.
Collapse
Affiliation(s)
- Iva Rosić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ivan Nikolić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Marina Anteljević
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ivana Marić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Tamara Ranković
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Slaviša Stanković
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Olja Medić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
6
|
Barcia-Piedras JM, Pérez-Romero JA, Mateos-Naranjo E, Parra R, Rodríguez-Llorente ID, Camacho M, Redondo-Gómez S. Stimulation of PGP Bacteria on the Development of Seeds, Plants and Cuttings of the Obligate Halophyte Arthrocaulon (Arthrocnemum) macrostachyum (Moric.) Piirainen & G. Kadereit. PLANTS (BASEL, SWITZERLAND) 2023; 12:1436. [PMID: 37050061 PMCID: PMC10096739 DOI: 10.3390/plants12071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The Earth is undergoing alterations at a high speed, which causes problems such as environmental pollution and difficulty in food production. This is where halophytes are interesting, due to their high potential in different fields, such as remediation of the environment and agriculture. For this reason, it is necessary to deepen the knowledge of the development of halophytes and how plant growth-promoting bacteria (PGP) can play a fundamental role in this process. Therefore, in this work were tested the effects of five PGP bacteria on its rhizosphere and other endophytic bacteria at different concentrations of NaCl on seed germination, plant growth (0 and 171 mM) and cutting growth (0 mM) of Arthrocaulon macrostachyum. The growth promotion in this strict halophyte is highlighted due to the presence of PGP bacteria and the fact that no salt is needed. Thus, without salt, the bacterial strains Kocuria polaris Hv16, Pseudarthrobacter psychrotolerans C58, and Rahnella aceris RTE9 enhanced the biomass production by more than 60% in both stems and roots. Furthermore, germination was encouraged by more than 30% in the presence of both R. aceris RTE9 and K. polaris Hv16 at 171 mM NaCl; the latter also had a biocontrol effect on the fungi that grew on the seeds. Additionally, for the first time in cuttings of this perennial species, the root biomass was improved thanks to the consortium of K. polaris Hv16 and P. psychrotolerans C58. Finally, this study demonstrates the potential of PGPs for optimising the development of halophytes, either for environmental or agronomic purposes.
Collapse
Affiliation(s)
- José-María Barcia-Piedras
- Centro Las Torres, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Carretera, Sevilla-Cazalla de la Sierra Km 12.2, 41200 Alcalá del Río, Spain;
| | - Jesús-Alberto Pérez-Romero
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510 Puerto Real, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Raquel Parra
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | | | - María Camacho
- Centro Las Torres, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Carretera, Sevilla-Cazalla de la Sierra Km 12.2, 41200 Alcalá del Río, Spain;
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| |
Collapse
|
7
|
Lucero CT, Lorda GS, Halliday N, Ambrosino ML, Cámara M, Taurian T. Impact of quorum sensing from native peanut phosphate solubilizing Serratia sp. S119 strain on interactions with agronomically important crops. Symbiosis 2022. [DOI: 10.1007/s13199-022-00893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Sanchez-Mahecha O, Klink S, Heinen R, Rothballer M, Zytynska S. Impaired microbial N-acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. PLANT, CELL & ENVIRONMENT 2022; 45:3052-3069. [PMID: 35852014 DOI: 10.1111/pce.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Beneficial bacteria interact with plants using signalling molecules, such as N-acyl homoserine-lactones (AHLs). Although there is evidence that these molecules affect plant responses to pathogens, few studies have examined their effect on plant-insect and microbiome interactions, especially under variable soil conditions. We investigated the effect of the AHL-producing rhizobacterium Acidovorax radicis and its AHL-negative mutant (does not produce AHLs) on modulating barley (Hordeum vulgare) plant interactions with cereal aphids (Sitobion avenae) and earthworms (Dendrobaena veneta) across variable nutrient soils. Acidovorax radicis inoculation increased plant growth and suppressed aphids, with stronger effects by the AHL-negative mutant. However, effects varied between barley cultivars and the presence of earthworms altered interaction outcomes. Bacteria-induced plant defences differed between cultivars, and aphid exposure, with pathogenesis-related and WRKY pathways partly explaining the ecological effects in the more resistant cultivars. Additionally, we observed few but specific indirect effects via the wider root microbiome where the AHL-mutant strain influenced rare OTU abundances. We conclude that bacterial AHL-signalling disruption affects plant-microbial interactions by inducing different plant pathways, leading to increased insect resistance, also mediated by the surrounding biotic and abiotic environment. Understanding the mechanisms by which beneficial bacteria can reduce insect pests is a key research area for developing effective insect pest management strategies in sustainable agriculture.
Collapse
Affiliation(s)
- Oriana Sanchez-Mahecha
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Sophia Klink
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Robin Heinen
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Michael Rothballer
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Sharon Zytynska
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
He C, Zheng L, Gao W, Ding J, Li C, Xu X, Han B, Li Q, Wang S. Diversity and functions of quorum sensing bacteria in the root environment of the Suaeda glauca and Phragmites australis coastal wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54619-54631. [PMID: 35305219 DOI: 10.1007/s11356-022-19564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The quorum sensing (QS) system plays a significant role in the bacteria-bacteria or plant-bacteria relationships through signal molecules. However, little is known about the distribution and functional diversity of QS bacteria in the root environment of Suaeda glauca and Phragmites australis in coastal wetlands. We explored the bacterial community by amplicon sequencing and isolated 1050 strains from the rhizosphere soil and root tissues of S. glauca and P. australis in northern China to investigate the bacterial community and AHL producers. AHL activity was found in 76 isolates, and 22 distinct strains were confirmed by 16S rRNA gene sequencing. A substantial number of AHL producers clustered in rhizobiales and sphingomonadale, which derived from the root tissues. AHL producers in the rhizosphere soil mostly belonged to rhodobacterales. The different taxa of AHL producers in the rhizosphere soil and root tissues resulted in a variation of AHL profiles that C6-HSL dominated the AHL profiles in root bacteria compared to the C8-HSL in rhizobacteria, implying different ecological roles for AHL producers in the rhizosphere soil and root tissues. Many AHL producers may form biofilms, and some can degrade DMSP and oil, demonstrating that QS bacteria in the root environment have a wide ecological roles. In our study, for one of the first times here, we explore the distribution and functional variety of AHL producers in the root environment of S. glauca-P. australis. This study expands current knowledge of the relationship between QS bacteria and coastal plants (S. glauca and P. australis), and vital roles of QS bacterial in maintaining the health of coastal wetlands.
Collapse
Affiliation(s)
- Changfei He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jinfeng Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Chengxuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiyuan Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shuai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
10
|
Kuhl-Nagel T, Rodriguez PA, Gantner I, Chowdhury SP, Schwehn P, Rosenkranz M, Weber B, Schnitzler JP, Kublik S, Schloter M, Rothballer M, Falter-Braun P. Novel Pseudomonas sp. SCA7 Promotes Plant Growth in Two Plant Families and Induces Systemic Resistance in Arabidopsis thaliana. Front Microbiol 2022; 13:923515. [PMID: 35875540 PMCID: PMC9297469 DOI: 10.3389/fmicb.2022.923515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.
Collapse
Affiliation(s)
- Theresa Kuhl-Nagel
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patricia Antonia Rodriguez
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabella Gantner
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patrick Schwehn
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Baris Weber
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
11
|
Abbamondi GR, Tommonaro G. Research Progress and Hopeful Strategies of Application of Quorum Sensing in Food, Agriculture and Nanomedicine. Microorganisms 2022; 10:1192. [PMID: 35744710 PMCID: PMC9229978 DOI: 10.3390/microorganisms10061192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) regulates the expression of several genes including motility, biofilm development, virulence expression, population density detection and plasmid conjugation. It is based on "autoinducers", small molecules that microorganisms produce and release in the extracellular milieu. The biochemistry of quorum sensing is widely discussed and numerous papers are available to scientists. The main purpose of this research is to understand how knowledge about this mechanism can be exploited for the benefit of humans and the environment. Here, we report the most promising studies on QS and their resulting applications in different fields of global interest: food, agriculture and nanomedicine.
Collapse
Affiliation(s)
- Gennaro Roberto Abbamondi
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy;
| | | |
Collapse
|
12
|
Fortt J, González M, Morales P, Araya N, Remonsellez F, Coba de la Peña T, Ostria-Gallardo E, Stoll A. Bacterial Modulation of the Plant Ethylene Signaling Pathway Improves Tolerance to Salt Stress in Lettuce (Lactuca sativa L.). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.768250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Salinity has extensive adverse effects on plant growth and the development of new agronomic strategies to improve crop salt tolerance is becoming necessary. Currently, the use of plant growth promoting rhizobacteria (PGPR) to mitigate abiotic stress in crops is of increasing interest. The most analyzed mechanism is based on ACC deaminase activity, an enzyme that decreases the ethylene synthesis, an important phytohormone in plant stress response. We aimed to identify other PGPR mediated mechanisms involved in the regulation of salt stress in plant. We used three PGPR strains (ESL001, ESL007, SH31), of which only ESL007 demonstrated ACC deaminase activity, to evaluate their effect on lettuce plants under salt stress (100 mM NaCl). We measured growth and biochemical parameters (e.g., proline content, lipid peroxidation and ROS degradation), as well as expression levels of genes involved in ethylene signaling (CTR1, EBF1) and transcription factors induced by ethylene (ERF5, ERF13). All bacterial strains enhanced growth on salt-stressed lettuce plants and modulated the proline levels. Strains ESL007 and SH31 triggered a higher catalase and ascorbate-peroxidase activity, compared to non-stressed plants. Differential expression of ethylene-related genes in inoculated plants subjected to salinity was observed. We gained consistent evidence for the existence of alternative mechanisms to ethylene modulation, which probably rely on bacterial IAA production and other chemical signals. These mechanisms modify the expression of genes associated with ethylene signaling and regulation, complementarily to the ACC deaminase model to diminish abiotic stress responses.
Collapse
|
13
|
Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. BIOLOGY 2022; 11:biology11020155. [PMID: 35205022 PMCID: PMC8869449 DOI: 10.3390/biology11020155] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Collapse
|
14
|
Babenko LM, Kosakivska IV, Romanenko КО. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol Int 2021; 46:523-534. [PMID: 34937124 DOI: 10.1002/cbin.11749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022]
Abstract
N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lidia M Babenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna V Kosakivska
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Кateryna О Romanenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|