1
|
Li XM, Gao Y, Wang SH, Huang YG, Long GQ, Wang DD, Zhang R, Wang AH, Huang SH, Jia JM. Natural Prenylflavonoids from Sophora flavescens Root Bark against Multidrug-Resistant Methicillin-Sensitive Staphylococcus aureus Targeting the Membrane Permeability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14684-14700. [PMID: 38905352 DOI: 10.1021/acs.jafc.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The overuse of antibiotics in animal farming and aquaculture has led to multidrug-resistant methicillin-sensitive Staphylococcus aureus (MR-MSSA) becoming a common pathogen in foodborne diseases. Sophora flavescens Ait. serves as a traditional plant antibacterial agent and functional food ingredient. A total of 30 compounds (1-30) were isolated from the root bark of S. flavescens, consisting of 20 new compounds (1-20). In the biological activity assay, compound 1 demonstrated a remarkable inhibitory effect on MR-MSSA, with an MIC of 2 μg/mL. Furthermore, 1 was found to rapidly eliminate bacteria, inhibit biofilm growth, and exhibit exceptionally low cytotoxicity. Mechanistic studies have revealed that 1 possesses an enhanced membrane-targeting ability, binding to the bacterial cell membrane components phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and cardiolipin (CL). This disruption of bacterial cell membrane integrity increases intracellular reactive oxygen species, protein and DNA leakage, reduced bacterial metabolism, and ultimately bacterial death. In summary, these findings suggest that compound 1 holds promise as a lead compound against MR-MSSA.
Collapse
Affiliation(s)
- Xin-Min Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yun Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Si-Han Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yao-Guang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Qing Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Hui Huang
- Department of Head and Neck Surgery, Stomatological Hospital of China Medical University, Shenyang 110002, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
2
|
Chen WF, Meng XF, Jiao YS, Tian CF, Sui XH, Jiao J, Wang ET, Ma SJ. Bacteroid Development, Transcriptome, and Symbiotic Nitrogen-Fixing Comparison of Bradyrhizobium arachidis in Nodules of Peanut (Arachis hypogaea) and Medicinal Legume Sophora flavescens. Microbiol Spectr 2023; 11:e0107922. [PMID: 36656008 PMCID: PMC9927569 DOI: 10.1128/spectrum.01079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Bradyrhizobium arachidis strain CCBAU 051107 could differentiate into swollen and nonswollen bacteroids in determinate root nodules of peanut (Arachis hypogaea) and indeterminate nodules of Sophora flavescens, respectively, with different N2 fixation efficiencies. To reveal the mechanism of bacteroid differentiation and symbiosis efficiency in association with different hosts, morphologies, transcriptomes, and nitrogen fixation efficiencies of the root nodules induced by strain CCBAU 051107 on these two plants were compared. Our results indicated that the nitrogenase activity of peanut nodules was 3 times higher than that of S. flavescens nodules, demonstrating the effects of rhizobium-host interaction on symbiotic effectiveness. With transcriptome comparisons, genes involved in biological nitrogen fixation (BNF) and energy metabolism were upregulated, while those involved in DNA replication, bacterial chemotaxis, and flagellar assembly were significantly downregulated in both types of bacteroids compared with those in free-living cells. However, expression levels of genes involved in BNF, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, hydrogenase synthesis, poly-β-hydroxybutyrate (PHB) degradation, and peptidoglycan biosynthesis were significantly greater in the swollen bacteroids of peanut than those in the nonswollen bacteroids of S. flavescens, while contrasting situations were found in expression of genes involved in urea degradation, PHB synthesis, and nitrogen assimilation. Especially higher expression of ureABEF and aspB genes in bacteroids of S. flavescens might imply that the BNF product and nitrogen transport pathway were different from those in peanut. Our study revealed the first differences in bacteroid differentiation and metabolism of these two hosts and will be helpful for us to explore higher-efficiency symbiosis between rhizobia and legumes. IMPORTANCE Rhizobial differentiation into bacteroids in leguminous nodules attracts scientists to investigate its different aspects. The development of bacteroids in the nodule of the important oil crop peanut was first investigated and compared to the status in the nodule of the extremely promiscuous medicinal legume Sophora flavescens by using just a single rhizobial strain of Bradyrhizobium arachidis, CCBAU 051107. This strain differentiates into swollen bacteroids in peanut nodules and nonswollen bacteroids in S. flavescens nodules. The N2-fixing efficiency of the peanut nodules is three times higher than that of S. flavescens. By comparing the transcriptomes of their bacteroids, we found that they have similar gene expression spectra, such as nitrogen fixation and motivity, but different spectra in terms of urease activity and peptidoglycan biosynthesis. Those altered levels of gene expression might be related to their functions and differentiation in respective nodules. Our studies provided novel insight into the rhizobial differentiation and metabolic alteration in different hosts.
Collapse
Affiliation(s)
- Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xiang Fei Meng
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Sheng Jun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| |
Collapse
|
3
|
Zhang Q, Wang S, Ji S. Trifolirhizin regulates the balance of Th17/Treg cells and inflammation in the ulcerative colitis mice through inhibiting the TXNIP-mediated activation of NLRP3 inflammasome. Clin Exp Pharmacol Physiol 2022; 49:787-796. [PMID: 35575951 DOI: 10.1111/1440-1681.13654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent autoimmune disease, characterized by recurrence and remission of mucosal inflammation. Although the understanding of the pathogenesis of UC has been improved, effective therapeutic drugs are required for treating patients with UC. In current work, the mouse model of colitis was established. Trifolirhizin was demonstrated to improve symptom in dextran sulfate sodium (DSS)-induced colitis mice. The body weight of mice was elevated, while the disease activity index (DAI) was reduced. Moreover, Trifolirhizin was involved in inhibition of inflammation and regulation of Th17/Treg cell balance in DSS-induced colitis mice. Further, the activation NLRP3 inflammasome was suppressed by Trifolirhizin in DSS-induced colitis mice. Trifolirhizin was also identified to regulate AMPK-TXNIP pathway. The Trifolirhizin-mediated anti-inflammatory effect was inhibited by suppressing AMPK in DSS-induced UC mice. In summary, the research suggested that administration of Trifolirhizin significantly improved the symptoms and the pathological damage in DSS-induced UC mice. Trifolirhizin regulated the balance of Th17/Treg cells and inflammation in the UC mice through inhibiting the TXNIP-mediated activation of NLRP3 inflammasome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Digestive Internal Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| | - Shufang Wang
- Department of Digestive Internal Medicine, Liayunngang Second People's Hospital, Lianyungang, Jiangsu, China
| | - Shanyun Ji
- Department of Digestive Internal Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|