1
|
Xu J, Wei H, Sun Z, Li W, Long J, Liu J, Feng Z, Cao K. Hydroxytyrosol as a Mitochondrial Homeostasis Regulator: Implications in Metabolic Syndrome and Related Diseases. Antioxidants (Basel) 2025; 14:398. [PMID: 40298640 PMCID: PMC12024272 DOI: 10.3390/antiox14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Hydroxytyrosol (HT), a principal bioactive phytochemical abundant in Mediterranean dietary sources, has emerged as a molecule of significant scientific interest owing to its multifaceted health-promoting properties. Accumulating evidence suggests that HT's therapeutic potential in metabolic disorders extends beyond conventional antioxidant capacity to encompass mitochondrial regulatory networks. This review synthesizes contemporary evidence from our systematic investigations and the existing literature to delineate HT's comprehensive modulatory effects on mitochondrial homeostasis. We systematically summarized the impact of HT on mitochondrial dynamics (fusion/fission equilibrium), biogenesis and energy metabolism, mitophagy, inter-organellar communication with the endoplasmic reticulum, and microbiota-mitochondria crosstalk. Through this multidimensional analysis, we established HT as a mitochondrial homeostasis modulator with potential therapeutic applications in metabolic syndrome (MetS) and its related pathologies including type 2 diabetes mellitus, obesity-related metabolic dysfunction, dyslipidemia, non-alcoholic steatohepatitis, and hypertension-related complications. Moreover, we further discussed translational challenges in HT research, emphasizing the imperative for direct target identification, mitochondrial-targeted delivery system development, and combinatorial therapeutic strategies. Collectively, this review provides a mechanistic framework for advancing HT research and accelerating its clinical implementation in MetS and its related diseases.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Huanglong Wei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Zhenyu Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Wankang Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| |
Collapse
|
2
|
Rahikainen M, Berkowitz O, Whelan J, Kangasjärvi S, Pascual J. Role of aconitase in plant stress response and signaling. PHYSIOLOGIA PLANTARUM 2025; 177:e70128. [PMID: 39968683 DOI: 10.1111/ppl.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Mitochondria are the centres of carbon and energy metabolism in cells and are functionally integrated with other organelles. Under environmental stress, disturbances in organellar functions trigger stress signals that activate the necessary metabolic responses and maintain cell redox homeostasis. The tricarboxylic acid cycle enzyme aconitase has emerged as a key component in stress-induced organellar signalling and a regulator of metabolic and redox balance in photosynthetic organisms. Aconitase mediates mitochondrial and chloroplast retrograde signalling and contributes to the activation of the alternative oxidase (AOX) pathway in mitochondria. Aconitase-driven citrate metabolism plays a crucial role in providing reducing equivalents and metabolic precursors for cytosolic nitrogen metabolism and biosynthetic pathways relevant for stress acclimation. Besides its enzymatic activity, aconitase has a non-canonical function as it is a post-transcriptional regulator of specific gene transcripts. The varied functions of aconitase under stress are facilitated by the regulation of specific aconitase isoforms at multiple levels. This review discusses the emerging role of aconitase as a central regulator of stress responses and signalling in photosynthetic organisms.
Collapse
Affiliation(s)
- Moona Rahikainen
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
- Provincial International Science and Technology Cooperation Base on Engineering Biology, Zhejiang University, Haining, P.R. China
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jesús Pascual
- Genetics, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
3
|
Selinski J, Frings S, Schmidt-Schippers R. Perception and processing of stress signals by plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2337-2355. [PMID: 39527570 DOI: 10.1111/tpj.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
Collapse
Affiliation(s)
- Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, D-24118, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| |
Collapse
|
4
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
5
|
Yang Z, Zhi P, Chang C. Priming seeds for the future: Plant immune memory and application in crop protection. FRONTIERS IN PLANT SCIENCE 2022; 13:961840. [PMID: 35968080 PMCID: PMC9372760 DOI: 10.3389/fpls.2022.961840] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 05/12/2023]
Abstract
Plants have evolved adaptive strategies to cope with pathogen infections that seriously threaten plant viability and crop productivity. Upon the perception of invading pathogens, the plant immune system is primed, establishing an immune memory that allows primed plants to respond more efficiently to the upcoming pathogen attacks. Physiological, transcriptional, metabolic, and epigenetic changes are induced during defense priming, which is essential to the establishment and maintenance of plant immune memory. As an environmental-friendly technique in crop protection, seed priming could effectively induce plant immune memory. In this review, we highlighted the recent advances in the establishment and maintenance mechanisms of plant defense priming and the immune memory associated, and discussed strategies and challenges in exploiting seed priming on crops to enhance disease resistance.
Collapse
|