1
|
Supatmi S, Lam LPY, Yamamoto S, Afifi OA, Ji P, Osakabe Y, Osakabe K, Umezawa T, Tobimatsu Y. Essential yet dispensable: The role of CINNAMATE 4-HYDROXYLASE in rice cell wall lignification. PLANT PHYSIOLOGY 2025; 198:kiaf164. [PMID: 40272427 DOI: 10.1093/plphys/kiaf164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
A comprehensive understanding of the intricate lignin biosynthesis in grasses could contribute to enhancing our ability to utilize grass biomass. CINNAMATE 4-HYDROXYLASE (C4H), in conjunction with PHENYLALANINE AMMONIA-LYASE (PAL), initiates the entry of phenylalanine into the cinnamate/monolignol pathway, leading to the production of diverse phenylpropanoids, including lignin monomers. Despite extensive research on C4H in eudicots, genetic studies of C4H in grasses remain considerably limited. Notably, the role of C4H in the presence of PHENYLALANINE/TYROSINE AMMONIA-LYASE (PTAL), a grass-specific ammonia-lyase that can bypass the conserved PAL-C4H pathway by recruiting tyrosine into the cinnamate/monolignol pathway, remains unclear. To address this gap, a set of genome-edited rice (Oryza sativa) mutants harboring knockout mutations in rice C4H genes were generated and subjected to the analysis of growth phenotype and cell wall chemotype, alongside isotopic feeding and chemical inhibitor assays to test the contributions of the PAL-C4H and PTAL pathways. The phenotype and chemotype characterizations of C4H-knockout rice mutants demonstrated that Class I (OsC4H1) and Class II (OsC4H2a and OsC4H2b) C4Hs cooperatively contribute to lignin biosynthesis in rice. Nevertheless, the effects of C4H deficiency on plant development and lignin formation in rice appeared to be markedly less prominent compared to those reported in eudicots. The 13C-labeled phenylalanine and tyrosine feeding experiments demonstrated that even with the phenylalanine-derived PAL-C4H pathway completely blocked, C4H-knockout rice could still produce substantial levels of lignin and maintain sound cell walls by utilizing the tyrosine-derived PTAL pathway. Overall, this study demonstrates the essential but dispensable role of C4H in grass cell wall lignification.
Collapse
Affiliation(s)
- Supatmi Supatmi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Lydia Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering Science, Akita University, Akita City, Akita 010-0852, Japan
| | - Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Osama Ahmed Afifi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Pingping Ji
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8502, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima City, Tokushima 770-8503 Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Carrillo R, Moreno I, Romero LC, Aroca A, Gotor C. Hydrogen sulfide-induced barley resilience to drought and salinity through protein persulfidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109644. [PMID: 39965413 DOI: 10.1016/j.plaphy.2025.109644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Barley (Hordeum vulgare) is a widely cultivated cereal crops, and its production is increasingly threatened by environmental stresses such as drought and salinity. Hydrogen sulfide is established as a signaling molecule that promotes tolerance to plant stress throught persulfidation, a post-translational modification of cysteine residues in proteins. The purpose of this study is to explore the impact of NaHS (sulfide donor) pretreatment on barley plants in enhancing tolerance to drought and salinity stresses, and determine if persulfidation is involved. In pretreated-plants, phenotypical traits and pigment contents showed an improvement in the survival of the plants under stress conditions. Quantification of stress-markers such as anthocyanin, proline, and reactive oxygen species also showed significant decreased contents in pretreated compared to untreated plants. In addition, the accumulation of amino acids under drought stress was significantly reduced when plants were pretreated with NaHS. Similarly, the increase of ABA content as a typical drought response was reduced in the pretreated plants. When plants are exposed to salt stress, the Na+/K+ ratio was maintained low in NaHS-pretreated plants, by increasing K+ levels. The sulfide ameliorative effect to salt was also observed during germination in previously NaHS-soaked seeds. Our findings suggest that sulfide pretreatment prepares barely plants to better deal with drought and salinity. Moreover, persulfidation was analyzed under all conditions, exhibiting enhanced levels under stress when plants were pretreated with NaHS. Our findings indicate that sulfide pretreatment induces a previous state in barley to respond more efficiently to stress and propose persulfidation is the underlying mechanism.
Collapse
Affiliation(s)
- Reyes Carrillo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
3
|
Huo Y, Li K, Yang S, Yi B, Chai Z, Fan L, Shu L, Gao B, Li H, Cai W. A Systematic Methodology for the Identification of the Chemical Composition of the Mongolian Drug Erdun-Uril Compound Utilizing UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2024; 29:4349. [PMID: 39339344 PMCID: PMC11434484 DOI: 10.3390/molecules29184349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The traditional Mongolian medicine Erdun-Uril is a conventional combination of 29 herbs commonly used for the treatment of cerebrovascular ailments. It has the effects of reducing inflammation, counteracting oxidative stress, and averting strokes caused by persistent cerebral hypoperfusion. Prior research on Erdun-Uril has predominantly concentrated on its pharmacodynamics and mechanism of action; however, there has been a lack of systematic and comprehensive investigation into its chemical constituents. Therefore, it is crucial to establish an efficient and rapid method for evaluating the chemical constituents of Erdun-Uril. In this study, Erdun-Uril was investigated using UHPLC-Q-Exactive Orbitrap MS combined with parallel reaction monitoring for the first time. Eventually, a total of 237 compounds, including 76 flavonoids, 68 phenolic compounds, 19 alkaloids, 7 amino acids, etc., were identified based on the chromatographic retention time, bibliography data, MS/MS2 information, neutral loss fragments (NLFs), and diagnostic fragment ions (DFIs). And of these, 225 were reported for the first time in this study. This new discovery of these complex components would provide a reliable theoretical basis for the development of pharmacodynamics and quality standards of the Mongolian medicine Erdun-Uril.
Collapse
Affiliation(s)
- Yanghui Huo
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, China
| | - Suyu Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Bo Yi
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Zhihua Chai
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Lingxuan Fan
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Liangyin Shu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Shandong Second Medical University, Weifang 261000, China
| | - Bowen Gao
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Huanting Li
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
4
|
Antunes DR, Forini MMLH, Coqueiro YA, Pontes MS, Lima PHC, Cavalcante LAF, Sanches AO, Caires ARL, Santiago EF, Grillo R. Effect of hyaluronic acid-stabilized silver nanoparticles on lettuce (Lactuca sativa L.) seed germination. CHEMOSPHERE 2024; 364:143080. [PMID: 39146989 DOI: 10.1016/j.chemosphere.2024.143080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Yasmin A Coqueiro
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Montcharles S Pontes
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil; Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Alex O Sanches
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Etenaldo F Santiago
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil.
| |
Collapse
|
5
|
Simpson JP, Kim CY, Kaur A, Weng JK, Dilkes B, Chapple C. Genome-wide association identifies a BAHD acyltransferase activity that assembles an ester of glucuronosylglycerol and phenylacetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2169-2187. [PMID: 38558472 DOI: 10.1111/tpj.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.
Collapse
Affiliation(s)
- Jeffrey P Simpson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, 02142, USA
- Department of Chemistry and Chemical Biology & Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02120, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, 02120, USA
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
6
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
El-Azaz J, Moore B, Takeda-Kimura Y, Yokoyama R, Wijesingha Ahchige M, Chen X, Schneider M, Maeda HA. Coordinated regulation of the entry and exit steps of aromatic amino acid biosynthesis supports the dual lignin pathway in grasses. Nat Commun 2023; 14:7242. [PMID: 37945591 PMCID: PMC10636026 DOI: 10.1038/s41467-023-42587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Vascular plants direct large amounts of carbon to produce the aromatic amino acid phenylalanine to support the production of lignin and other phenylpropanoids. Uniquely, grasses, which include many major crops, can synthesize lignin and phenylpropanoids from both phenylalanine and tyrosine. However, how grasses regulate aromatic amino acid biosynthesis to feed this dual lignin pathway is unknown. Here we show, by stable-isotope labeling, that grasses produce tyrosine >10-times faster than Arabidopsis without compromising phenylalanine biosynthesis. Detailed in vitro enzyme characterization and combinatorial in planta expression uncovered that coordinated expression of specific enzyme isoforms at the entry and exit steps of the aromatic amino acid pathway enables grasses to maintain high production of both tyrosine and phenylalanine, the precursors of the dual lignin pathway. These findings highlight the complex regulation of plant aromatic amino acid biosynthesis and provide novel genetic tools to engineer the interface of primary and specialized metabolism in plants.
Collapse
Affiliation(s)
- Jorge El-Azaz
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Bethany Moore
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Yuri Takeda-Kimura
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Faculty of Agriculture, Yamagata University, Yamagata-shi, Japan
| | - Ryo Yokoyama
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Micha Wijesingha Ahchige
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Xuan Chen
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- International Institute of Tea Industry Innovation for "one Belt, one Road", Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Matthew Schneider
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Cell Culture Company, Minneapolis, MN, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Montiel J, García-Soto I, James EK, Reid D, Cárdenas L, Napsucialy-Mendivil S, Ferguson S, Dubrovsky JG, Stougaard J. Aromatic amino acid biosynthesis impacts root hair development and symbiotic associations in Lotus japonicus. PLANT PHYSIOLOGY 2023; 193:1508-1526. [PMID: 37427869 PMCID: PMC10517252 DOI: 10.1093/plphys/kiad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Ivette García-Soto
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
9
|
Chandrakanth NN, Zhang C, Freeman J, de Souza WR, Bartley LE, Mitchell RA. Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases. FRONTIERS IN PLANT SCIENCE 2023; 13:1088879. [PMID: 36733587 PMCID: PMC9887202 DOI: 10.3389/fpls.2022.1088879] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the last decade it has become clear that enzymes in the "BAHD" family of acyl-CoA transferases play important roles in the addition of phenolic acids to form ester-linked moieties on cell wall polymers. We focus here on the addition of two such phenolics-the hydroxycinnamates, ferulate and p-coumarate-to two cell wall polymers, glucuronoarabinoxylan and to lignin. The resulting ester-linked feruloyl and p-coumaroyl moities are key features of the cell walls of grasses and other commelinid monocots. The capacity of ferulate to participate in radical oxidative coupling means that its addition to glucuronoarabinoxylan or to lignin has profound implications for the properties of the cell wall - allowing respectively oxidative crosslinking to glucuronoarabinoxylan chains or introducing ester bonds into lignin polymers. A subclade of ~10 BAHD genes in grasses is now known to (1) contain genes strongly implicated in addition of p-coumarate or ferulate to glucuronoarabinoxylan (2) encode enzymes that add p-coumarate or ferulate to lignin precursors. Here, we review the evidence for functions of these genes and the biotechnological applications of manipulating them, discuss our understanding of mechanisms involved, and highlight outstanding questions for future research.
Collapse
Affiliation(s)
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jackie Freeman
- Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | | | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Rowan A.C. Mitchell
- Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
10
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Terefe T, Mhlongo MI. Metabolomic evaluation of PGPR defence priming in wheat ( Triticum aestivum L.) cultivars infected with Puccinia striiformis f. sp. tritici (stripe rust). FRONTIERS IN PLANT SCIENCE 2023; 14:1103413. [PMID: 37123830 PMCID: PMC10132142 DOI: 10.3389/fpls.2023.1103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Plant-microbe interactions are a phenomenal display of symbiotic/parasitic relationships between living organisms. Plant growth-promoting rhizobacteria (PGPR) are some of the most widely investigated plant-beneficial microbes due to their capabilities in stimulating plant growth and development and conferring protection to plants against biotic and abiotic stresses. As such, PGPR-mediated plant priming/induced systemic resistance (ISR) has become a hot topic among researchers, particularly with prospects of applications in sustainable agriculture. The current study applies untargeted ultra-high performance liquid chromatography-high-definition mass spectrometry (UHPLC-HDMS) to investigate PGPR-based metabolic reconfigurations in the metabolome of primed wheat plants against Puccinia striiformis f. sp. tricti (Pst). A seed bio-priming approach was adopted, where seeds were coated with two PGPR strains namely Bacillus subtilis and Paenibacillus alvei (T22) and grown under controlled conditions in a glasshouse. The plants were infected with Pst one-week post-germination, followed by weekly harvesting of leaf material. Subsequent metabolite extraction was carried out for analysis on a UHPLC-HDMS system for data acquisition. The data was chemometrically processed to reveal the underlying trends and data structures as well as potential signatory biomarkers for priming against Pst. Results showed notable metabolic reprogramming in primary and secondary metabolism, where the amino acid and organic acid content of primed-control, primed-challenged and non-primed-challenged plants were differentially reprogrammed. Similar trends were observed from the secondary metabolism, in which primed plants (particularly primed-challenged) showed an up-regulation of phenolic compounds (flavonoids, hydroxycinnamic acids-HCAs- and HCA amides) compared to the non-primed plants. The metabolomics-based semi-quantitative and qualitative assessment of the plant metabolomes revealed a time-dependent metabolic reprogramming in primed-challenged and primed-unchallenged plants, indicating the metabolic adaptations of the plants to stripe rust infection over time.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Tarekegn Terefe
- Division of Small Grain Diseases and Crop Protection, Agricultural Research Council-Small Grains Institute (ARC-SGI), Private Bag X29 Bethlehem, Free State, Bethlehem, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- *Correspondence: Msizi I. Mhlongo,
| |
Collapse
|
11
|
Ferreira SS, Goeminne G, Simões MS, Pina AVDA, Lima LGAD, Pezard J, Gutiérrez A, Rencoret J, Mortimer JC, Del Río JC, Boerjan W, Cesarino I. Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6307-6333. [PMID: 35788296 DOI: 10.1093/jxb/erac300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | | - Jade Pezard
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| |
Collapse
|
12
|
Wu J, Zhu W, Shan X, Liu J, Zhao L, Zhao Q. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. MOLECULAR PLANT 2022; 15:1517-1532. [PMID: 35996753 DOI: 10.1016/j.molp.2022.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glycosylation by uridine diphosphate-dependent glycosyltransferases (UGTs) in plants contributes to the complexity and diversity of secondary metabolites. UGTs are generally promiscuous in their use of acceptors, making it challenging to reveal the function of UGTs in vivo. Here, we described an approach that combined glycoside-specific metabolomics and precursor isotopic labeling analysis to characterize UGTs in Arabidopsis. We revisited the UGT72E cluster, which has been reported to catalyze the glycosylation of monolignols. Glycoside-specific metabolomics analysis reduced the number of differentially accumulated metabolites in the ugt72e1e2e3 mutant by at least 90% compared with that from traditional untargeted metabolomics analysis. In addition to the two previously reported monolignol glycosides, a total of 62 glycosides showed reduced accumulation in the ugt72e1e2e3 mutant, 22 of which were phenylalanine-derived glycosides, including 5-OH coniferyl alcohol-derived and lignan-derived glycosides, as confirmed by isotopic tracing of [13C6]-phenylalanine precursor. Our method revealed that UGT72Es could use coumarins as substrates, and genetic evidence showed that UGT72Es endowed plants with enhanced tolerance to low iron availability under alkaline conditions. Using the newly developed method, the function of UGT78D2 was also evaluated. These case studies suggest that this method can substantially contribute to the characterization of UGTs and efficiently investigate glycosylation processes, the complexity of which have been highly underestimated.
Collapse
Affiliation(s)
- Jie Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinyue Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingling Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Barros J, Shrestha HK, Serrani-Yarce JC, Engle NL, Abraham PE, Tschaplinski TJ, Hettich RL, Dixon RA. Proteomic and metabolic disturbances in lignin-modified Brachypodium distachyon. THE PLANT CELL 2022; 34:3339-3363. [PMID: 35670759 PMCID: PMC9421481 DOI: 10.1093/plcell/koac171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
Lignin biosynthesis begins with the deamination of phenylalanine and tyrosine (Tyr) as a key branch point between primary and secondary metabolism in land plants. Here, we used a systems biology approach to investigate the global metabolic responses to lignin pathway perturbations in the model grass Brachypodium distachyon. We identified the lignin biosynthetic protein families and found that ammonia-lyases (ALs) are among the most abundant proteins in lignifying tissues in grasses. Integrated metabolomic and proteomic data support a link between lignin biosynthesis and primary metabolism mediated by the ammonia released from ALs that is recycled for the synthesis of amino acids via glutamine. RNA interference knockdown of lignin genes confirmed that the route of the canonical pathway using shikimate ester intermediates is not essential for lignin formation in Brachypodium, and there is an alternative pathway from Tyr via sinapic acid for the synthesis of syringyl lignin involving yet uncharacterized enzymatic steps. Our findings support a model in which plant ALs play a central role in coordinating the allocation of carbon for lignin synthesis and the nitrogen available for plant growth. Collectively, these data also emphasize the value of integrative multiomic analyses to advance our understanding of plant metabolism.
Collapse
Affiliation(s)
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Juan C Serrani-Yarce
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201, USA
| | - Nancy L Engle
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76201, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Paul E Abraham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Robert L Hettich
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | | |
Collapse
|
14
|
Koley S, Chu KL, Gill SS, Allen DK. An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2938-2952. [PMID: 35560196 DOI: 10.1093/jxb/erac062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography-mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Saba S Gill
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|
15
|
Tag you're it: Application of stable isotope labeling and LC-MS to identify the precursors of specialized metabolites in plants. Methods Enzymol 2022; 676:279-303. [DOI: 10.1016/bs.mie.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|