1
|
Antunes PM, Stürmer SL, Bever JD, Chagnon PL, Chaudhary VB, Deveautour C, Fahey C, Kokkoris V, Lekberg Y, Powell JR, Aguilar-Trigueros CA, Zhang H. Enhancing consistency in arbuscular mycorrhizal trait-based research to improve predictions of function. MYCORRHIZA 2025; 35:14. [PMID: 40009242 PMCID: PMC11865136 DOI: 10.1007/s00572-025-01187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi (phylum Glomeromycota) are obligate symbionts with plants influencing plant health, soil a(biotic) processes, and ecosystem functioning. Despite advancements in molecular techniques, understanding the role of AM fungal communities on a(biotic) processes based on AM fungal taxonomy remains challenging. This review advocates for a standardized trait-based framework to elucidate the life-history traits of AM fungi, focusing on their roles in three dimensions: host plants, soil, and AM fungal ecology. We define morphological, physiological, and genetic key traits, explore their functional roles and propose methodologies for their consistent measurement, enabling cross-study comparisons towards improved predictability of ecological function. We aim for this review to lay the groundwork for establishing a baseline of AM fungal trait responses under varying environmental conditions. Furthermore, we emphasize the need to include underrepresented taxa in research and utilize advances in machine learning and microphotography for data standardization.
Collapse
Affiliation(s)
- Pedro M Antunes
- Biology Department, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada.
| | - Sidney L Stürmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, SC, 89030-903, Brazil
| | - James D Bever
- Kansas Biological Survey and Center for Ecological Research and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Pierre-Luc Chagnon
- Institut de Recherche en Biologie Vegetale, Universite de Montreal, 4101 Sherbrooke Est, Montreal, QC, H1X2B2, Canada
| | - V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH, USA
| | - Coline Deveautour
- Institut Polytechnique UniLaSalle, Unité AGHYLE, Campus Rouen, 76130, Mont-Saint-Aignan, Normandie, France
| | - Catherine Fahey
- Biology Department, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Vasilis Kokkoris
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Ylva Lekberg
- MPG Ranch & Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| |
Collapse
|
2
|
Oliveira J, Yildirir G, Corradi N. From Chaos Comes Order: Genetics and Genome Biology of Arbuscular Mycorrhizal Fungi. Annu Rev Microbiol 2024; 78:147-168. [PMID: 38985977 DOI: 10.1146/annurev-micro-041522-105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate mutualists that can enhance nutrition and growth of their plant hosts while providing protection against pathogens. AMF produce spores and hyphal networks that can carry thousands of nuclei in a continuous cytoplasm, with no evidence of sexual reproduction. This review examines the impact of genomic technologies on our view of AMF genetics and evolution. We highlight how the genetics, nuclear dynamics, and epigenetics of these prominent symbionts follow trends preserved in distant multinucleate fungal relatives. We also propose new avenues of research to improve our understanding of their nuclear biology and their intricate genetic interactions with plant hosts.
Collapse
Affiliation(s)
- Jordana Oliveira
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
3
|
Klein M, Bisot C, Oyarte Gálvez L, Kokkoris V, Shimizu TS, Dong L, Weedon JT, Bouwmeester H, Kiers ET. The potential of strigolactones to shift competitive dynamics among two Rhizophagus irregularis strains. Front Microbiol 2024; 15:1470469. [PMID: 39483758 PMCID: PMC11524933 DOI: 10.3389/fmicb.2024.1470469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Strigolactones are phytohormones that influence arbuscular mycorrhizal fungal (AMF) spore germination, pre-symbiotic hyphal branching, and metabolic rates. Historically, strigolactone effects have been tested on single AMF strains. An open question is whether intraspecific variation in strigolactone effects and intraspecific interactions can influence AMF competition. Using the Rhizophagus irregularis strains A5 and C2, we tested for intraspecific variation in the response of germination and pre-symbiotic growth (i.e., hyphal length and branching) to the strigolactones GR24 and 5-deoxystrigol. We also tested if interactions between these strains modified their germination rates and pre-symbiotic growth. Spore germination rates were consistently high (> 90%) for C2 spores, regardless of treatment and the presence of the other strain. For A5 spores, germination was increased by strigolactone presence from approximately 30 to 70% but reduced when grown in mixed culture. When growing together, branching increased for both strains compared to monocultures. In mixed cultures, strigolactones increased the branching for both strains but led to an increase in hyphal length only for the strain A5. These strain-specific responses suggest that strigolactones may have the potential to shift competitive dynamics among AMF species with direct implications for the establishment of the AMF community.
Collapse
Affiliation(s)
- Malin Klein
- Section of Ecology and Evolution, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Corentin Bisot
- Physics of Behavior, AMOLF Institute, Amsterdam, Netherlands
| | - Loreto Oyarte Gálvez
- Section of Ecology and Evolution, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Physics of Behavior, AMOLF Institute, Amsterdam, Netherlands
| | - Vasilis Kokkoris
- Section of Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Lemeng Dong
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - James T. Weedon
- Section of Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - E. Toby Kiers
- Section of Ecology and Evolution, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Tominaga T, Kaminaka H. In Vitro Hyphal Branching Assay Using Rhizophagus irregularis. Bio Protoc 2024; 14:e5054. [PMID: 39210954 PMCID: PMC11349495 DOI: 10.21769/bioprotoc.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Most terrestrial plants are associated with symbiotic Glomeromycotina fungi, commonly known as arbuscular mycorrhizal (AM) fungi. AM fungi increase plant biomass in phosphate-depleted conditions by allocating mineral nutrients to the host; therefore, host roots actively exude various specialized metabolites and orchestrate symbiotic partners. The hyphal branching activity induced by strigolactones (SLs), a category of plant hormones, was previously discovered using an in vitro assay system. For this bioassay, AM fungi of the Gigaspora genus (Gigasporaeae) are commonly used due to their linear hyphal elongation and because the simple branching pattern is convenient for microscopic observation. However, many researchers have also used Glomeraceae fungi, such as Rhizophagus species, as the symbiotic partner of host plants, although they often exhibit a complex hyphal branching pattern. Here, we describe a method to produce and quantify the hyphal branches of the popular model AM fungus Rhizophagus irregularis. In this system, R. irregularis spores are sandwiched between gels, and chemicals of interest are diffused from the surface of the gel to the germinating spores. This method enables the positive effect of a synthetic SL on R. irregularis hyphal branching to be reproduced. This method could thus be useful to quantify the physiological effects of synthesized chemicals or plant-derived specialized metabolites on R. irregularis. Key features • Development of an in vitro hyphal branching assay using germinating spores of Rhizophagus irregularis. • This in vitro assay system builds upon a method developed by Kameoka et al. [1] but modified to make it more applicable to hydrophilic compounds. • Optimized for R. irregularis to count the hyphal branches. • This bioassay requires at least 12 days to be done.
Collapse
Affiliation(s)
- Takaya Tominaga
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Koyama Minami, Tottori, Japan
| |
Collapse
|
5
|
Sun D, Rozmoš M, Kokkoris V, Kotianová M, Hršelová H, Bukovská P, Faghihinia M, Jansa J. Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes. MYCORRHIZA 2024; 34:303-316. [PMID: 38829432 PMCID: PMC11283409 DOI: 10.1007/s00572-024-01154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.
Collapse
Affiliation(s)
- Daquan Sun
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic.
| | - Martin Rozmoš
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Vasilis Kokkoris
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1108, Amsterdam, NL-1081HZ, The Netherlands
| | - Michala Kotianová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Hana Hršelová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Petra Bukovská
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Maede Faghihinia
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Dr, Ames, IA, 50011, US
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| |
Collapse
|
6
|
Sperschneider J, Yildirir G, Rizzi YS, Malar C M, Mayrand Nicol A, Sorwar E, Villeneuve-Laroche M, Chen ECH, Iwasaki W, Brauer EK, Bosnich W, Gutjahr C, Corradi N. Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host-plant interactions. Nat Microbiol 2023; 8:2142-2153. [PMID: 37884816 DOI: 10.1038/s41564-023-01495-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are prominent root symbionts that can carry thousands of nuclei deriving from two parental strains in a large syncytium. These co-existing genomes can also vary in abundance with changing environmental conditions. Here we assemble the nuclear genomes of all four publicly available AMF heterokaryons using PacBio high-fidelity and Hi-C sequencing. We find that the two co-existing genomes of these strains are phylogenetically related but differ in structure, content and epigenetics. We confirm that AMF heterokaryon genomes vary in relative abundance across conditions and show this can lead to nucleus-specific differences in expression during interactions with plants. Population analyses also reveal signatures of genetic exchange indicative of past events of sexual reproduction in these strains. This work uncovers the origin and contribution of two nuclear genomes in AMF heterokaryons and opens avenues for the improvement and environmental application of these strains.
Collapse
Affiliation(s)
- Jana Sperschneider
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yanina S Rizzi
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Essam Sorwar
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Elizabeth K Brauer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Whynn Bosnich
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Terry V, Kokkoris V, Villeneuve-Laroche M, Turcu B, Chapman K, Cornell C, Zheng Z, Stefani F, Corradi N. Mycorrhizal response of Solanum tuberosum to homokaryotic versus dikaryotic arbuscular mycorrhizal fungi. MYCORRHIZA 2023; 33:333-344. [PMID: 37572110 DOI: 10.1007/s00572-023-01123-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts of most land plants. In these organisms, thousands of nuclei that are either genetically similar (homokaryotic) or derived from two distinct parents (dikaryotic) co-exist in a large syncytium. Here, we investigated the impact of these two nuclear organizations on the mycorrhizal response of potatoes (Solanum tuberosum) by inoculating four potato cultivars with eight Rhizophagus irregularis strains individually (four homokaryotic and four dikaryotic). By evaluating plant and fungal fitness-related traits four months post inoculation, we found that AMF genetic organization significantly affects the mycorrhizal response of host plants. Specifically, homokaryotic strains lead to higher total, shoot, and tuber biomass and a higher number of tubers, compared to dikaryotic strains. However, fungal fitness-related traits showed no clear differences between homokaryotic and dikaryotic strains. Nucleotype content analysis of single spores confirmed that the nucleotype ratio of AMF heterokaryon spores can shift depending on host identity. Together, these findings continue to highlight significant ecological differences derived from the two distinct genetic organizations in AMF.
Collapse
Affiliation(s)
- Victoria Terry
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Present address: Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Present address: Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | | | - Bianca Turcu
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kendyll Chapman
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Zhiming Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Franck Stefani
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
8
|
Lebreton A, Ramana JV, Zhang C, Meng Y. Multiple facets of cutting-edge mycorrhizal research: 11th International Conference on Mycorrhiza (ICOM 11), Beijing, China, August 2022: 11 th International Conference on Mycorrhiza (ICOM 11), Beijing, China, 1-5 August 2022. THE NEW PHYTOLOGIST 2023; 238:1771-1774. [PMID: 36974958 DOI: 10.1111/nph.18825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Annie Lebreton
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - John V Ramana
- Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
- Bio-Protection Aotearoa, PO Box 85084, Lincoln, 7647, New Zealand
| | - Changfeng Zhang
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zurich, 8046, Switzerland
| | - Yiming Meng
- Institute of Ecology and Earth Science, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| |
Collapse
|
9
|
McGale E, Sanders IR. Integrating plant and fungal quantitative genetics to improve the ecological and agricultural applications of mycorrhizal symbioses. Curr Opin Microbiol 2022; 70:102205. [PMID: 36201974 DOI: 10.1016/j.mib.2022.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Finding and targeting genes that quantitatively contribute to agricultural and ecological processes progresses food production and conservation efforts. Typically, quantitative genetic approaches link variants in a single organism's genome with a trait of interest. Recently, genome-to-genome mapping has found genome variants interacting between species to produce the result of a multiorganism (including multikingdom) interaction. These were plant and bacterial pathogen genome interactions; plant-fungal coquantitative genetics have not yet been applied. Plant-mycorrhizae symbioses exist across most biomes, for a majority of land plants, including crop plants, and manipulate many traits from single organisms to ecosystems for which knowing the genetic basis would be useful. The availability of Rhizophagus irregularis mycorrhizal isolates, with genomic information, makes dual-genome methods with beneficial mutualists accessible and imminent.
Collapse
Affiliation(s)
- Erica McGale
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, Borda V, Burni M, Janoušková M, Urcelay C. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. THE NEW PHYTOLOGIST 2022; 235:320-332. [PMID: 35302658 DOI: 10.1111/nph.18102] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. AMF had stronger positive effects on phosphorus nutrition than on plant growth and nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.
Collapse
Affiliation(s)
- Nicolás Marro
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Gabriel Grilli
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Florencia Soteras
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Milena Caccia
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Silvana Longo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Noelia Cofré
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Valentina Borda
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Magali Burni
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Martina Janoušková
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Carlos Urcelay
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| |
Collapse
|
11
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
12
|
Aguilar-Trigueros CA, Boddy L, Rillig MC, Fricker MD. Network traits predict ecological strategies in fungi. ISME COMMUNICATIONS 2022; 2:2. [PMID: 37938271 PMCID: PMC9723744 DOI: 10.1038/s43705-021-00085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 05/11/2023]
Abstract
Colonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative 'phalanx' and 'guerilla' descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information.
Collapse
Affiliation(s)
- C A Aguilar-Trigueros
- Freie Universität Berlin, Institut für Biologie, Altensteinstraße 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - L Boddy
- School of Biosciences, Sir Martin Evans Building, Cardiff University, CF10 3AX, Cardiff, UK
| | - M C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstraße 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - M D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| |
Collapse
|
13
|
Cornell C, Kokkoris V, Turcu B, Dettman J, Stefani F, Corradi N. The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors. Fungal Genet Biol 2021; 158:103639. [PMID: 34800644 DOI: 10.1016/j.fgb.2021.103639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread obligate root symbionts that assist plants in obtaining nutrients and protection against environmental stresses. In the model species Rhizophagus irregularis, heterokaryotic strains (AMF dikaryons) carry thousands of nuclei originating from two parental strains whose frequency varies depending on strains and host identity. Here, using digital droplet PCR, we demonstrate that surrounding abiotic factors (temperature, phosphorus, and pH) also change the nuclear dynamics of such strains in root organ cultures. Furthermore, when spatially separated portions of the AMF mycelium grow under different abiotic conditions, all the produced spores carry highly similar nuclear ratios. Overall, these findings demonstrate that abiotic stressors impact the nuclear organization of a widespread group of multinucleate plant symbionts, and reveal remarkable mechanisms of nuclear ratio harmonization across the mycelium in these prominent symbionts.
Collapse
Affiliation(s)
- Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON K1A 0C6, Canada
| | - Bianca Turcu
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON K1A 0C6, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON K1A 0C6, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|